Болезни Военный билет Призыв

Методика решения уравнений с параметрами графическим способом. Графический метод решения уравнений с параметрами. Графические способы решения уравнений

Уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают из года в год в список заданий типа B и C на едином государственном экзамене ЕГЭ. Однако среди большого числа уравнений с параметрами есть те, которые с легкостью могут быть решены графическим способом. Рассмотрим этот метод на примере решения нескольких задач.

Найти сумму целых значений числа a, при которых уравнение |x 2 – 2x – 3| = a имеет четыре корня.

Решение.

Чтобы ответить на вопрос задачи, построим на одной координатной плоскости графики функций

y = |x 2 – 2x – 3| и y = a.

График первой функции y = |x 2 – 2x – 3| будет получен из графика параболы y = x 2 – 2x – 3 путем симметричного отображения относительно оси абсцисс той части графика, которая находится ниже оси Ox. Часть графика, находящаяся выше оси абсцисс, останется без изменений.

Проделаем это поэтапно. Графиком функции y = x 2 – 2x – 3 является парабола, ветви которой направлены вверх. Чтобы построить ее график, найдем координаты вершины. Это можно сделать по формуле x 0 = -b/2a. Таким образом, x 0 = 2/2 = 1. Чтобы найти координату вершины параболы по оси ординат, подставим полученное значение для x 0 в уравнение рассматриваемой функции. Получим, что y 0 = 1 – 2 – 3 = -4. Значит, вершина параболы имеет координаты (1; -4).

Далее нужно найти точки пересечения ветвей параболы с осями координат. В точках пересечения ветвей параболы с осью абсцисс значение функции равно нулю. Поэтому решим квадратное уравнение x 2 – 2x – 3 = 0. Его корни и будут искомыми точками. По теореме Виета имеем x 1 = -1, x 2 = 3.

В точках пересечения ветвей параболы с осью ординат значение аргумента равно нулю. Таким образом, точка y = -3 есть точка пересечения ветвей параболы с осью y. Полученный график изображен на рисунке 1.

Чтобы получить график функции y = |x 2 – 2x – 3|, отобразим симметрично относительно оси x часть графика, находящуюся ниже оси абсцисс. Полученный график изображен на рисунке 2.

График функции y = a – это прямая, параллельная оси абсцисс. Он изображен на рисунке 3. С помощью рисунка и находим, что графики имеют четыре общие точки (а уравнение – четыре корня), если a принадлежит интервалу (0; 4).

Целые значения числа a из полученного интервала: 1; 2; 3. Чтобы ответить на вопрос задачи, найдем сумму этих чисел: 1 + 2 + 3 = 6.

Ответ: 6.

Найти среднее арифметическое целых значений числа a, при которых уравнение |x 2 – 4|x| – 1| = a имеет шесть корней.

Начнем с построения графика функции y = |x 2 – 4|x| – 1|. Для этого воспользуемся равенством a 2 = |a| 2 и выделим полный квадрат в подмодульном выражении, написанном в правой части функции:

x 2 – 4|x| – 1 = |x| 2 – 4|x| - 1 = (|x| 2 – 4|x| + 4) – 1 – 4 = (|x |– 2) 2 – 5.

Тогда исходная функция будет иметь вид y = |(|x| – 2) 2 – 5|.

Для построения графика этой функции строим последовательно графики функций:

1) y = (x – 2) 2 – 5 – парабола с вершиной в точке с координатами (2; -5); (Рис. 1).

2) y = (|x| – 2) 2 – 5 – часть построенной в пункте 1 параболы, которая находится справа от оси ординат, симметрично отображается слева от оси Oy; (Рис. 2).

3) y = |(|x| – 2) 2 – 5| – часть построенного в пункте 2 графика, которая находится ниже оси x, отображается симметрично относительно оси абсцисс наверх. (Рис. 3).

Рассмотрим получившиеся рисунки:

Графиком функции y = a является прямая, параллельная оси абсцисс.

С помощью рисунка делаем вывод, что графики функций имеют шесть общих точек (уравнение имеет шесть корней), если a принадлежит интервалу (1; 5).

Это можно видеть на следующем рисунке:

Найдем среднее арифметическое целых значений параметра a:

(2 + 3 + 4)/3 = 3.

Ответ: 3.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают из года в год в список заданий типа B и C на едином государственном экзамене ЕГЭ. Однако среди большого числа уравнений с параметрами есть те, которые с легкостью могут быть решены графическим способом. Рассмотрим этот метод на примере решения нескольких задач.

Найти сумму целых значений числа a, при которых уравнение |x 2 – 2x – 3| = a имеет четыре корня.

Решение.

Чтобы ответить на вопрос задачи, построим на одной координатной плоскости графики функций

y = |x 2 – 2x – 3| и y = a.

График первой функции y = |x 2 – 2x – 3| будет получен из графика параболы y = x 2 – 2x – 3 путем симметричного отображения относительно оси абсцисс той части графика, которая находится ниже оси Ox. Часть графика, находящаяся выше оси абсцисс, останется без изменений.

Проделаем это поэтапно. Графиком функции y = x 2 – 2x – 3 является парабола, ветви которой направлены вверх. Чтобы построить ее график, найдем координаты вершины. Это можно сделать по формуле x 0 = -b/2a. Таким образом, x 0 = 2/2 = 1. Чтобы найти координату вершины параболы по оси ординат, подставим полученное значение для x 0 в уравнение рассматриваемой функции. Получим, что y 0 = 1 – 2 – 3 = -4. Значит, вершина параболы имеет координаты (1; -4).

Далее нужно найти точки пересечения ветвей параболы с осями координат. В точках пересечения ветвей параболы с осью абсцисс значение функции равно нулю. Поэтому решим квадратное уравнение x 2 – 2x – 3 = 0. Его корни и будут искомыми точками. По теореме Виета имеем x 1 = -1, x 2 = 3.

В точках пересечения ветвей параболы с осью ординат значение аргумента равно нулю. Таким образом, точка y = -3 есть точка пересечения ветвей параболы с осью y. Полученный график изображен на рисунке 1.

Чтобы получить график функции y = |x 2 – 2x – 3|, отобразим симметрично относительно оси x часть графика, находящуюся ниже оси абсцисс. Полученный график изображен на рисунке 2.

График функции y = a – это прямая, параллельная оси абсцисс. Он изображен на рисунке 3. С помощью рисунка и находим, что графики имеют четыре общие точки (а уравнение – четыре корня), если a принадлежит интервалу (0; 4).

Целые значения числа a из полученного интервала: 1; 2; 3. Чтобы ответить на вопрос задачи, найдем сумму этих чисел: 1 + 2 + 3 = 6.

Ответ: 6.

Найти среднее арифметическое целых значений числа a, при которых уравнение |x 2 – 4|x| – 1| = a имеет шесть корней.

Начнем с построения графика функции y = |x 2 – 4|x| – 1|. Для этого воспользуемся равенством a 2 = |a| 2 и выделим полный квадрат в подмодульном выражении, написанном в правой части функции:

x 2 – 4|x| – 1 = |x| 2 – 4|x| - 1 = (|x| 2 – 4|x| + 4) – 1 – 4 = (|x |– 2) 2 – 5.

Тогда исходная функция будет иметь вид y = |(|x| – 2) 2 – 5|.

Для построения графика этой функции строим последовательно графики функций:

1) y = (x – 2) 2 – 5 – парабола с вершиной в точке с координатами (2; -5); (Рис. 1).

2) y = (|x| – 2) 2 – 5 – часть построенной в пункте 1 параболы, которая находится справа от оси ординат, симметрично отображается слева от оси Oy; (Рис. 2).

3) y = |(|x| – 2) 2 – 5| – часть построенного в пункте 2 графика, которая находится ниже оси x, отображается симметрично относительно оси абсцисс наверх. (Рис. 3).

Рассмотрим получившиеся рисунки:

Графиком функции y = a является прямая, параллельная оси абсцисс.

С помощью рисунка делаем вывод, что графики функций имеют шесть общих точек (уравнение имеет шесть корней), если a принадлежит интервалу (1; 5).

Это можно видеть на следующем рисунке:

Найдем среднее арифметическое целых значений параметра a:

(2 + 3 + 4)/3 = 3.

Ответ: 3.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

§ 8. ПРИМЕНЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ К СТАТИСТИКЕ.

2. Определение неизвестных параметров распределения.

C помощью гистограммы мы можем приближенно построить график плотности распределения случайной величины . Вид этого графика часто позволяет высказать предположение о плотности распределения вероятностей случайной величины . В выражение этой плотности распределения обычно входят некоторые параметры, которые требуется определить из опытных данных.
Остановимся на том частном случае, когда плотность распределения зависит от двух параметров.
Итак, пусть x 1 , x 2 , ..., x n - наблюдаемые значения непрерывной случайной величины , и пусть ее плотность распределения вероятностей зависит от двух неизвестных параметров A и B , т.е. имеет вид . Один из методов нахождения неизвестных параметров A и B состоит в том, что их выбирают таким образом, чтобы математическое ожидание и дисперсия теоретического распределения совпали с выборочными средними значением и дисперсией :

(66)
где
(67)

Из двух полученных уравнений () находят неизвестные параметры A и B . Так, например, если случайная величина подчиняется нормальному закону распределения вероятностей, то ее плотность распределения вероятностей

зависит от двух параметров a и . Эти параметры, как мы знаем, являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины ; поэтому равенства () запишутся так:

(68)

Следовательно, плотность распределения вероятностей имеет вид

Замечание 1. Такую задачу мы уже решали в . Результат замера есть случайная величина , подчиняющаяся нормальному закону распределения с параметрами a и . За приближенное значение a мы выбрали величину , а за приближенное значение - величину .

Замечание 2. При большом количестве опытов нахождение величин и по формулам () cвязано с громоздкими вычислениями. Поэтому поступают так: каждое из наблюдаемых значений величины , попавшее в i -й интервал ] X i-1 , X i [ статистического ряда, считают приближенно равным середине c i этого интервала, т.е. c i =(X i-1 +X i)/2 . Рассмотрим первый интервал ] X 0 , X 1 [ . В него попало m 1 наблюдаемых значений случайной величины , каждое из которых мы заменяем числом с 1 . Следовательно, сумма этих значений приближенно равна m 1 с 1 . Аналогично, сумма значений , попавших во второй интервал, приближенно равна m 2 с 2 и т.д. Поэтому

Подобным же образом получим приближенное равенство

Итак, Покажем, что

(71)
Действительно,