Болезни Военный билет Призыв

Методическая разработка на тему: лабораторные работы по химии для естественнонаучного профиля. Методы приготовления суспензий. Суспензии (Suspensiones). Технология лекарств аптечного приготовления. Технология лекарств. Фармация

Лабораторная работа

Тема: Приготовление суспензии карбоната кальция в воде.

Цель: изучить способы приготовления суспензий; отработать навыки экспериментальной работы, соблюдая правила техники безопасности при работе в кабинете химии.

Оборудование: пробирка с порошком мела, пробирка с водой.

Дисперсные системы – это системы, в которых мелкие частицы вещества, или дисперсная фаза, распределены в однородной среде (жидкость, газ, кристалл), или дисперсионной фазе

Суспензия относится к дисперсной системе ВЗВЕСИ, и состоит из жидкости и распределенного в ней твердого вещества с размером частиц более 100 нм. Если порошок поместить в жидкость и перемешать, то получится суспензия, а при высушивании суспензия снова превращается в порошок.

Концентрированные суспензии (пасты) могут быть получены как в результате оседания более разбавленных суспензий, так и непосредственно растиранием порошков или массивных твердых тел с жидкостями.

Последовательность выполнения работы:

1. К порошку мела в пробирке добавьте 1-2 мл воды и энергично взболтайте.

2. Опишите наблюдаемое явление. Записи внесите в таблицу по форме:

Что делали

Что наблюдали

Уравнения реакций

3. Сформулируйте вывод

Контрольные вопросы:

1. Укажите, что в полученной вами дисперсной системе «суспензия» является дисперсионной средой, а что дисперсной фазой?

2. Разделяются ли со временем дисперсионная среда и дисперсная фаза в данной суспензии?

Список литературы

Габриэлян О.С., Остроумов И.Г. Химия для профессий и специальностей технического профиля. М. Издательский центр «Академия». 2011

Лабораторная работа №2

Тема: Получение эмульсии моторного масла.

Цель: изучить способы приготовления эмульсий, ознакомиться с областями их применения.

Оборудование: пробирка с маслом, пробирка с водой.

Краткие теоретические сведения

Эмульсия относится к дисперсной системе ВЗВЕСИ. Эму́льсия (новолат. emulsio, от лат. emulgeo - дою, выдаиваю) - дисперсная система с жидкой дисперсионной средой и жидкой дисперсной фазой. Эмульсии состоят из несмешиваемых жидкостей. Например, молоко - одна из первых изученных эмульсий, в нём капельки жира распределены в водной среде. Они постепенно поднимаются на поверхность, поскольку их плотность меньше, чем плотность воды. В молоке за несколько часов образуется слой сливок. Молоко является не устойчивой эмульсией. Получение устойчивых концентрированных эмульсий возможно только в присутствии специальных эмульгаторов.

К эмульгаторам, способным образовывать прочные защитные пленки, относятся высокомолекулярные соединения, например, сапонин, белки (желатин, казеин), каучук, смолы, соли жирных кислот (мыла) и др. Наибольший интерес представляют собой желатированные или твердые эмульсии.Желатированные эмульсии характеризуются большой устойчивостью, прочностью и другими механическими свойствами. Примерами таких эмульсий являются консистентные смазки, маргарин, сливочное масло, густые кремы. Обычными эмульсиями являются жидкости, применяемые при обработке металлов.

Лабораторная работа №2

Тема: Приготовление суспензии карбоната кальция в воде. Получение эмульсии моторного масла. Ознакомление со свойствами дисперсных систем.

Цели: изучить способы приготовления эмульсий и суспензий;научиться отличать коллоидный раствор от истинного; отработать навыки экспериментальной работы, соблюдая правила техники безопасности при работе в кабинете химии.

Методические указания:

Дисперсные системы – это системы, в которых мелкие частицы вещества, или дисперсная фаза, распределены в однородной среде (жидкость, газ, кристалл), или дисперсионной фазе

Химия дисперсных систем изучает поведение вещества в сильно раздробленном, высокодисперсном состоянии, характеризующемся очень высоким отношением общей площади поверхности всех частиц к их общему объему или массе (степень дисперсности).

От названия коллоидных систем произошло название отдельной области химии – коллоидной. «Коллоидная химия» – традиционное название химии дисперсных систем и поверхностных явлений. Важнейшая особенность дисперсного состояния вещества состоит в том, что энергия системы главным образом сосредоточена на поверхности раздела фаз. При диспергировании, или измельчении, вещества происходит значительное увеличение площади поверхности частиц (при постоянном суммарном их объеме). При этом энергия, затрачиваемая на измельчение и на преодоление сил притяжения между образующимися частицами, переходит в энергию поверхностного слоя – поверхностную энергию. Чем выше степень измельчения, тем больше поверхностная энергия. Поэтому область химии дисперсных систем (и коллоидных растворов) считают химией поверхностных явлений.

Коллоидные частицы настолько малы (содержат 103–109 атомов), что не задерживаются обычными фильтрами, не видны в обычный микроскоп, не оседают под действием силы тяжести. Их устойчивость со временем снижается, т.е. они подвержены «старению». Дисперсные системы термодинамически неустойчивы и стремятся к состоянию с наименьшей энергией, когда поверхностная энергия частиц становится минимальной. Это достигается за счет уменьшения общей площади поверхности при укрупнении частиц (что может также происходить при адсорбции на поверхности частиц других веществ).

Классификация дисперсных систем

Дисперсная фаза

Дисперсионная

Название системы

(Дисперсная система не образуется)

Жидкость

Пена газированной воды, пузырьки газа в жидкости, мыльная пена

Твердое тело

Твердая пена

Пенопласт, микропористая резина, пемза, хлеб, сыр

Жидкость

Аэрозоль

Туман, облака, струя из аэрозольного баллона

Жидкость

Эмульсия

Молоко, сливочное масло, майонез, крем, мазь

Твердое тело

Твердая эмульсия

Жемчуг, опал

Твердое тело

Аэрозоль, порошок

Пыль, дым, мука, цемент

Жидкость

Суспензия, золь (коллоидный раствор)

Глина, паста, ил, жидкие смазочные масла с добавкой графита или MoS

Твердое тело

Твердый золь

Сплавы, цветные стекла, минералы

Методы исследования дисперсных систем (определение размера, формы и заряда частиц) основаны на изучении их особых свойств, обусловленных гетерогенностью и дисперсностью, в частности оптических. Коллоидные растворы обладают оптическими свойствами, отличающими их от настоящих растворов, – они поглощают и рассеивают проходящий через них свет. При боковом рассматривании дисперсной системы, через которую проходит узкий световой луч, внутри раствора на темном фоне виден светящийся голубоватый так называемый конус ТиндаляКонус Тиндаля тем ярче, чем выше концентрация и больше размер частиц. Интенсивность светорассеяния усиливается при коротковолновом излучении и при значительном отличии показателей преломления дисперсной и дисперсионной фаз. С уменьшением диаметра частиц максимум поглощения смещается в коротковолновую часть спектра, и высокодисперсные системы рассеивают более короткие световые волны и поэтому имеют голубоватую окраску. На спектрах рассеяния света основаны методы определения размера и формы частиц.

При определенных условиях в коллоидном растворе может начаться процесс коагуляции. Коагуляция – явление слипания коллоидных частиц и выпадения их в осадок. При этом коллоидный раствор превращается в суспензию или гель. Гели или студни представляют собой студенистые осадки, образующиеся при коагуляции золей. Со временем структура гелей нарушается (отслаивается) – из них выделяется вода(явление синерезиса

Приборы и реактивы; ступка с пестиком, ложка-шпатель, стакан, стеклянная палочка, фонарик, пробирка; вода, карбонат кальция (кусочек мела), масло, ПАВ, мука, молоко, зубная паста, раствор крахмала, раствор сахара. Ход работы: 1 Инструктаж по ТБ Меры безопасности: Осторожно использовать стеклянную посуду. Правила первой помощи: При ранении стеклом удалите осколки из раны, смажьте края раны раствором йода и перевяжите бинтом. При необходимости обратиться к врачу.

Опыт № 1. Приготовление суспензии карбоната кальция в воде

Суспензии имеют ряд общих свойств с порошками, они подобны по дисперсности. Если порошок поместить в жидкость и перемешать, то получится суспензия, а при высушивании суспензия снова превращается в порошок.

В стеклянную пробирку влить 4-5мл воды и всыпать 1-2 ложечки карбоната кальция. Пробирку закрыть резиновой пробкой и встряхнуть пробирку несколько раз. Опишите внешний вид и видимость частиц. Оцените способность осаждаться и способность к коагуляции Запишите наблюдения.

На что похожа полученная смесь?

Опыт № 2. Получение эмульсии моторного масла

В стеклянную пробирку влить 4-5мл воды и 1-2 мл масла, закрыть резиновой пробкой и встряхнуть пробирку несколько раз. Изучить свойства эмульсии. Опишите внешний вид и видимость частиц Оцените способность осаждаться и способность к коагуляции Добавьте каплю ПАВ (эмульгатора) и перемешайте ещё раз. Сравните результаты. Запишите наблюдения.

Опыт № 3. Приготовление коллоидного раствора и изучение его свойств

В стеклянный стакан с горячей водой внести 1-2 ложечки муки(или желатина), тщательно перемешать. Оцените способность осаждаться и способность к коагуляции. Пропустить через раствор луч света фонарика на фоне темной бумаги. Наблюдается ли эффект Тиндаля?

Вопросы для выводов

    Как отличить коллоидный раствор от истинного?

    Значение дисперсных систем в повседневной жизни.

Суспензии лекарственных веществ готовят двумя методами: дисперсионным и конденсационным.

В основе дисперсионного метода лежит принцип получения определенной степени дисперсности путем измельчения порошкообразного лекарственного вещества.

В основе конденсационного способа - соединение молекул в более крупные частицы - агрегаты, характерные для суспензий.

При приготовлении суспензий дисперсионным методом получаются более крупные частицы (грубые суспензии), а при приготовлении суспензий конденсационным методом - более мелкие частицы (тонкие суспензии).

Технология суспензий должна включать такие технологические приемы, которые обеспечили бы получение суспензий с тонко диспергированными частицами. Суспензии с концентрацией лекарственных веществ 3 % и более готовят по массе.

Приготовление суспензий дисперсионным методом. В зависимости от того, какие вещества входят в состав суспензии (гидрофильные или гидрофобные), способ диспергирования будет различным.

К гидрофильным веществам относятся магния оксид, цинка оксид, крахмал, белая глина, висмута нитрат основной и др. К гидрофобным - камфора, ментол, тимол, сера, фенилсалицилат и другие аналогичные вещества.

Приготовление суспензий с гидрофильными веществами. При приготовлении суспензий из гидрофильных веществ твердое лекарственное вещество сначала растирают в ступке в сухом виде, а затем (по правилу Дерягина) с половинным количеством жидкости (от массы сухого вещества). Полученную смесь в виде кашицы (пульпы) разбавляют водой и сливают во флакон для отпуска.

Rp.: Zinci oxydi 10,0

Aquae purificatae 100 ml

Misce. Da. Signa. Для примочек

Суспензия для наружного применения, в состав которой входит гидрофильное вещество - цинка оксид. 10,0 г цинка оксида растирают в ступке сначала в сухом виде, а затем добавляют 4-6 мл воды и тщательно растирают, чтобы обеспечить максимальное диспергирование. Затем по частям прибавляют остальное количество воды и переносят во флакон для отпуска, стараясь путем смывания со стенок ступки количественно перенести диспергированный цинка оксид.

Оформляют этикетками «Наружное» и «Перед употреблением взбалтывать».

Дата № рецепта

Zinci oxydi 10,0

Aquae purificatae 100 ml __________

m общ = 110,0

Приготовил: (подпись)

Проверил: (подпись)

Прием взмучивания. Для получения более тонких и устойчивых суспензий применяют прием взмучивания, который является разновидностью метода диспергирования. Он используется для приготовления суспензий из гидрофильных веществ, отличающихся большой плотностью.

Rp.: Bismuthi subnitratis 2,0

Aquae Menthae 200 ml

В этом случае 2,0 г висмута нитрата основного тщательно растирают в ступке, затем добавляют 1 мл мятной воды (по правилу Деря-гина), растирают, добавляют 5- или 10-кратное количество мятной воды (около 10 мл), перемешивают и оставляют в покое на 2-3 минуты, чтобы более крупные частицы осели, а тонкую смесь сливают во флакон для отпуска. Остаток снова растирают, добавляют 5-10-кратное количество воды, перемешивают, оставляют в покое, а затем сливают во флакон для отпуска. Эту операцию повторяют до тех пор, пока все вещество не будет переведено в тонкодиспергирован-ное состояние. После взмучивания с водой заметная седиментация наблюдается через 2-3 часа. Исходная дисперсность микстуры легко восстанавливается при взбалтывании перед употреблением. В данной микстуре один из стабилизирующих факторов - поверхностный потенциал - возникает в результате электролитической диссоциации поверхностного слоя взвешенных частиц висмута нитрата основного.

Устойчивость микстур-суспензий с гидрофильными веществами значительно повышается, если в пропись будут введены вещества, увеличивающие вязкость дисперсионной среды, не будучи при этом ПАВ. В качестве таких вязких жидкостей целесообразно вводить в микстуры сахарный и другие сиропы (если они не прописаны в рецепте, можно посоветовать врачу). Тогда твердое вещество тщательно растирают в сухом виде, а затем с небольшим количеством сиропа (половинное количество по отношению к веществу), добавляют остальное количество сиропа и разбавляют водой. Сиропы повышают вязкость микстуры, вследствие чего скорость оседания взвешенных частиц лекарственного вещества уменьшается, и оно более точно дозируется.

При приготовлении суспензий из гидрофильных набухающих веществ их сначала растирают в сухом виде (если прописаны другие порошки в рецепте, то смешивают с этими веществами), а затем смешивают с водой, не растирая с половинным количеством воды.

Приготовление суспензий с гидрофобными веществами. Получить устойчивую суспензию из гидрофобных веществ простым растиранием с жидкостью не удается. В таких случаях гидрофобные вещества смешивают с гидрофильным коллоидом для образования на поверхности твердых частиц адсорбционных оболочек, придающих суспензии необходимую устойчивость (см. с. 308).

Для веществ с нерезко выраженными гидрофобными свойствами (терпингидрат, фенилсалицилат, сульфаниламидные препараты и др.) в качестве стабилизаторов используют абрикосовую камедь, желатозу, 5 % -ный раствор метилцеллюлозы или твин-80 в количествах, указанных в табл. 19.

Для веществ с резко выраженными гидрофобными свойствами (ментол, камфора и др.) количество стабилизаторов увеличивается в 2 раза (табл. 19). Гидрофилизирующие свойства указанных защитных веществ проявляются в присутствии воды. Для образования

Таблица 19 Количество стабилизатора на 1,0 г гидрофобного вещества

первичной пульпы требуется количество воды, равное полусумме препарата и защитного вещества.

Rp.: Therpini hydrati 2,0

Natrii hydrocarbonatis 1,0

Aquae purificatae 100 ml

Misce. Da. Signa. По 1 столовой ложке 3 раза в день

Микстура-суспензия с терпингидратом - веществом с нерезко выраженными гидрофобными свойствами. Поэтому суспензии с терпингидратом отличаются склонностью к флоккуляции. Это приводит к быстрому осаждению.

В подставку отмеривают бюреткой 80 мл воды очищенной и 20 мл 5 %-ного раствора натрия гидрокарбоната. В ступке растирают 2,0 г терпингидрата с 10 каплями спирта (труднопорошкуемое вещество), затем добавляют 1,0 г желатозы и 1,5 мл раствора натрия гидрокарбоната. Все тщательно растирают до получения пульпы (однородной смеси). Затем добавляют (небольшими порциями) раствор натрия гидрокарбоната, сливая полученную суспензию во флакон для отпуска.

Дата № рецепта

Aquae purificatae 80 ml

Solutionis Natrii hydrocarbonatis 5 % 20 ml

Therpini hydrati 2,0

Gelatosae _______________1,0

V общ = 100 ml

Приготовил: (подпись)

Проверил: (подпись)

Rp.: Mentholi 0,5

Natrii hydrocarbonatis

Natrii tetraboratis aa 1,5

Aquae purificatae 100 ml

Misce. Da. Signa. Полоскание

Суспензия для наружного применения с гидрофобным пахучим и летучим веществом ментолом, с резко выраженными гидрофобными свойствами.

В подставку отмеривают 100 мл воды и растворяют натрия гидрокарбонат и натрия тетраборат (или берут 30 мл натрия гидрокарбоната в виде 5 %-ного раствора). В ступку помещают 0,5 г ментола, растирают с 5 каплями спирта (как труднопорошкуемое вещество), добавляют 1,0 г 5 %-ного раствора метилцеллюлозы и растирают до получения однородной кашицы. Затем добавляют =15 капель водного раствора солей (по правилу Дерягина), растирают и небольшими порциями прибавляют раствор солей. После перемешивания смывают содержимое ступки во флакон для отпуска.

При приготовлении суспензий с гидрофобными веществами особого подхода требует приготовление суспензий серы, так как она относится к числу особых веществ с резко выраженными гидрофобными свойствами. Сера адсорбируется на поверхности воздушных пузырьков и ее частицы всплывают на поверхность в виде пенистого слоя. Применение для стабилизации суспензий серы общепринятых веществ не всегда целесообразно, так как они уменьшают ее фармакологическую активность. В качестве стабилизатора суспензий серы для наружного применения используют калийное или зеленое мыло из расчета на 1,0 г серы 0,1-0,2 г мыла. Мыло не применяют, если в суспензию входят соли тяжелых или щелочноземельных металлов, так как при этом образуются нерастворимые осадки. Следует также учитывать, что медицинское мыло несовместимо с кислотами.

Rp.: Sulfuris praecipitati 2,0

Aquae purificatae 100 ml

Misce. Da. Signa. Втирать в кожу головы

Серу растирают с частью глицерина 0,8-1,2 г. Глицерин обладает высокими гидрофильными свойствами, смачивает поверхность частиц серы и способствует их измельчению. К полученной пульпе добавляют остальной глицерин и очищенную воду, смывая смесь во флакон для отпуска. В последнюю очередь добавляют 0,2 г калийного мыла и тщательно взбалтывают флакон.

Rp.: Streptocidi 3,0

Sulfuris praecipitati

Acidi salicylici aa 2,0

Sol. acidi borici 3 % aa 50 ml

Misce. Da. Signa. Для протирания кожи

Во флакон для отпуска отвешивают 2,0 г кислоты салициловой, 1,5 г кислоты борной, 3,5 г камфоры, добавляют 50 мл этилового спирта 90 %. Флакон укупоривают и взбалтывают до растворения порошков. В подставку отмеривают 50 мл воды очищенной. В ступке измельчают 3,0 г стрептоцида с 15 каплями спирта 95 % (труднопорошкуемое вещество), добавляют 2,0 г серы, 3,0 г глицерина и растирают до однородной кашицы. Добавляют 50 мл (частями) воды очищенной, смывая суспензию во флакон для отпуска.

При приготовлении суспензий объемом 1-3 л можно использовать средства механизации - смеситель СЭС-1 (см. главу 10).

Приготовление суспензий конденсационным методом. В аптечной практике широкое применение при приготовлении суспензий находит конденсационный метод. При этом различают следующие случаи образования суспензий:

За счет химического взаимодействия;

За счет замены растворителя.

Конденсационный метод получения суспензий основан на получении высокодисперсных частиц веществ дисперсной фазы, которые находятся в молекулярном или ионном состоянии. Процесс образования этих соединений зависит от целого ряда условий: от температуры; от концентрации растворенных веществ; от порядка смешивания.

В аптечных условиях такие микстуры-суспензии получаются чаще всего в результате реакции обменного разложения, реже - за счет реакции гидролиза, окислительно-восстановительных и других реакций.

Для получения тонких дисперсий необходимо, чтобы исходные вещества были в состоянии разбавленных растворов или коллоидно-дисперсных систем.

Rp.: Calcii chloridi 10,0

Natrii hydrocarbonatis 4,0

Aquae purificatae 200 ml

Misce. Da. Signa. По 1 столовой ложке 3 раза в день

Нерастворимое вещество образуется при смешивании растворов кальция хлорида и натрия гидрокарбоната. В результате обменного разложения образуется свежеосажденный кальция карбонат:

СаС1 2 + 2NaHC0 3 ------ CaC0 3 J + Н 2 0 + 2NaCl

Для того, чтобы получить кальция карбонат в тонко диспергированном состоянии, необходимо приготовить сначала растворы кальция хлорида и натрия гидрокарбоната, а затем их слить. В результате получается тонкий осадок кальция карбоната. Лучше воспользоваться концентрированными растворами: 50%-ным кальция хлорида и 5 % -ным натрия гидрокарбоната. Тогда во флакон для отпуска отмеривают 100 мл воды очищенной, добавляют 20 мл 50 % -ного раствора кальция хлорида и 80 мл 5 % -ного раствора натрия гидрокарбоната.

Тема: «Знакомство с аптекой»

Ознакомилась с расположением и оборудованием производственных помещений аптеки, расположением и оснащением рабочих мест, соответствием санитарного состояния требованиям приказа МЗ РФ № 309 от 21.10.97 г.

Ознакомилась с помещениями хранения лекарственных веществ, соответствием требованиям приказа № 377 от 13.11.96 г. и № 318 от 5.11.97 г.

Изучила устройство и обслуживание аквадистиллятора. Требования к воде очищенной и воде для инъекций, хранение, контроль качества и подачу воды очищенной на рабочее место провизора-технолога.

Вода очищенная должна иметь pH = 5,0–7,0, не содержать хлоридов, сульфатов, нитратов, восстанавливающих веществ, кальция, диоксид углерода, тяжелых металлов, нормируется содержание аммиака. В 1 мл воде очищенной не должно быть более 100 микроорганизмов.

Вода для инъекций должна отвечать требованиям, предъявленным к воде очищенной, и, кроме того, быть апирогенной, то есть не содержать антимикробных веществ и других добавок. Она может храниться в асептических условиях, но не более 24 ч (при температуре 5–10º С или 80 – 95º С) в закрытых емкостях, исключающих загрязнение инородными частицами и микроорганизмами.

Воду очищенную получают в специально оборудованном помещении. Воду очищенную получают в аквадистилляторах.

Чаще используют аквадистилляторы ДЭ-4 и ДЭ-25 непрерывного действия, с одноступенчатым испарителем, в который вмонтированы электронагревательные элементы. Автоматический датчик отключает электроподогрев при понижении уровня воды ниже допустимого.

1. Rp.: Codeini 0,02

Riboflavini 0,02

Misce ut fiat pulvis

Da tales doses № 4

Выписан сложный дозированный порошок. Содержит вещества списка Б – кодеин и димедрол, и красящее вещество – рибофлавин.

Кодеин – белый кристаллический порошок белого цвета, без запаха, горьковатого вкуса.

Димедрол – белый мелкокристаллический порошок без запаха, горького вкуса, вызывает онемение на языке.

Рибофлавин – желто-оранжевый кристаллический порошок, горького вкуса, без запаха. Мало растворим в воде, практически нерастворим в 95% спирте, эфире, ацетоне, бензоле и хлороформе.

Сахар – белые или бесцветные кристаллы без запаха, сладкого вкуса, легко растворимы в воде.

Компоненты совместимы.

Проверка доз.

Кодеин: по рецепту РД = 0,02 СД = 0,06

по ГФ ВРД = 0,05 ВСД = 0,2

Димедрол: по рецепту РД = 0,05 СД = 0,15

по ГФ ВРД = 0,1 ВСД = 0,25

Дозы не завышены.

Кодеин: 0,02 х 4 = 0,08

Рибофлавин: 0,02 х 4 = 0,08

Димедрол: 0,05 х 4 = 0,2

Сахар: 0,25 х 4 = 1,0

Общая масса: 0,08 + 0,08 + 0,2 + 1,0 = 1,36

Развеска: 1,36 / 4 = 0,34

Для приготовления порошка используем ступку № 2. Оптимальное время измельчения 90 секунд.

Определяем потери при затирании пор ступки (коэффициент = 2).

Кодеин: 0,007 х 2 = 0,014

0,014 – х% х = 0,014 х 100 / 0,08 = 17,5%

Сахар: 0,021 х 2 = 0,042

0,042 – х% х = 0,042 х 100 / 1 = 4,2%

Поры ступки затираем сахаром.

Технология: В ступку помещаем 1 г сахара, растираем, далее добавляем 0,08 г кодеина, сверху наслаиваем 0,08 г рибофлавина и на него наслаиваем 0,2 г димедрола. Все измельчаем.

Riboflavini 0,08

Dimedroli 0,2

m общ. = 1,36

m 1 = 0,34 № 4

приготовил:

проверил:

отпустил:

Фасуем по 0,34 г в вощеные капсулы и складываем в бумажный пакет.

2. Rp.: Codeini phosphates 0,015

Coffeini – natrii benzoatis 0,05

Misce ut fiat pulvis

Da tales doses № 15

Signa. По 1 порошку 3 раза в день.

Выписан сложный дозированный порошок. Содержит вещества списка Б – кодеина фосфат, кофеин – бензоат натрия, анальгин.

Кодеина фосфат – белый кристаллический порошок, легко раствори в воде.

Кофеин бензоат натрия – белый кристаллический порошок без запаха.

Анальгин – белый или белый с едва заметным желтоватым оттенком крупно игольчатый кристаллический порошок, легко растворим в воде.

Компоненты совместимы.

Проверка доз.

Кодеина фосфат: по рецепту РД = 0,015 СД = 0,045

по ГФ ВРД = 0,1 ВСД = 0,3

Кофеин – бензоат натрия: по рецепту РД = 0,05 СД = 0,15

по ГФ ВРД = 0,5 ВСД = 1,5

Анальгин: по рецепту РД = 0,3 СД = 0,9

по ГФ ВРД = 1 ВСД = 3

Дозы не завышены.

Кодеина фосфат: 0,015 х 15 = 0,23

Кофеин – бензоат натрия: 0,05 х 15 = 0,75

Анальгин: 0,3 х 15 = 4,5

Развеска: 5,48 / 15 = 0,37

Используем ступку № 4.

Кодеина фосфат: 0,007 х 3 = 0,021

0,021 – х% х = 9,1%

0,048 – х% х = 6,4%

Анальгин: 0,022 х 3 = 0,066

0,066 – х% х = 1,47%

Затираем поры ступки анальгином.

Технология: в ступку № 4 помещаем 4,5 г анальгина, растираем, добавляем 0,75 г кофеина натрия бензоата. И в последнюю очередь добавляем 0,23 г кодеина фосфата. Все измельчаем.

Дата____№ 2

Coffeini-natriibenzoatis 0,75

Codeini phosphates 0,23

m общ. = 5,48

m 1 = 0,37 № 15

приготовил:

проверил:

отпустил:

Оформляем этикеткой: «Внутреннее», «Порошки», «Хранить в прохладном месте», «Хранить в защищенном от света месте», «Беречь от детей».

Срок хранения порошков – 10 суток.

Дата: 4.08. 2009 г.

Ознакомилась с основными правилами приготовления. Приготовила 1 порошок для наружного применения, 2 раствора для внутреннего применения.

Порошками называют твердую лекарственную форму, состоящую из одного или нескольких сыпучих лекарственных веществ, кажущуюся в результате измельчения и смешивания однородной при рассматривании невооруженным глазом.

Порошки представляют собой свободные всесторонне дисперсионные системы без дисперсионной среды с мелкодисперсными частицами разного размера и формы. В некоторых случаях в порошки вводят жидкие компоненты, но в количествах, не нарушающих их сыпучесть.

Приготовление порошков состоит из следующих технологических операций:

1. Фармацевтическая экспертиза прописи рецепта.

2. Подготовительные мероприятия.

3. Выбор оптимального варианта технологии с учетом массы и физико-химических свойств входящих компонентов.

4. Расчет количества ингредиентов порошков.

5. Отвешивание ингредиентов.

6. Измельчение, смешивание.

7. Дозирование.

8. Упаковка и оформление к отпуску.

9. Оформление паспорта письменного контроля.

10. Оценка качества порошков.

3. Rp.: Phenobarbitali 0,05

Coffeini – natrii benzoatis 0,02

Papaverini hydrochloridi 0,03

Calcii gluconatis 0,5

Misce ut fiat pulvis

Datalesdoses № 10

Выписан сложный дозированный порошок. Содержит вещества списка Б – фенобарбитал, кофеин – бензоат натрия, папаверина гидрохлорид.

Фенобарбитал – белый кристаллический порошок без запаха, горьковатого вкуса.

Кофеин бензоат натрия – см. рецепт № 2.

Кальция глюконат – белый порошок без запаха.

Компоненты совместимы.

Проверка доз.

Фенобарбитал: по рецепту РД = 0,05 СД = 0,1

по ГФ ВРД = 0,2 ВСД = 0,5

Кофеин – бензоат натрия: по рецепту РД = 0,02 СД = 0,04

по ГФ ВРД = 0,5 ВСД = 1,5

по ГФ ВРД = 0,2 ВСД = 0,6

Дозы не завышены.

Фенобарбитал: 0,05 х 10 = 0,5

Кофеин-бензоат натрия: 0,02 х 10 = 0,2

Кальция глюконат: 0,5 х 10 = 5,0

Масса общая: 0,5 + 0,2 + 0,3 + 5,0 = 6,0

Развеска: 6 / 10 = 0,6

Используем ступку № 4.

Рассчитываем потери (коэффициент 3):

Фенобарбитал: 0,018 х 3 = 0,054

0,054 – х% х = 10,8%

Кофеин – бензоат натрия: 0,016 х 3 = 0,048

0,048 – х% х = 24%

Папаверина гидрохлорид: 0,01 х 3 = 0,03

0,03 – х% х = 10%

Затираем поры ступки кальция глюконатом (кристаллическое вещество).

Технология: в ступку № 4 помещаем 5 г кальция глюконата измельчаем, затем добавляем 0,3 г папаверина гидрохлорида, растираем, добавляем 0,5 г фенобарбитала и 0,2 г кофеина-бензоата натрия. Все растираем, перемешиваем.

Дата____№ 3

Calciigluconatis 5,0

Papaverinihydrochloride 0,3

Phenobarbitali 0,5

Coffeini-natrii benzoatis 0,2

m 1 = 0,6 № 10

приготовил:

проверил:

отпустил:

Фасуем по 0,6 г в вощеные капсулы и складываем в бумажный пакет.

Оформляем этикеткой: «Внутреннее», «Порошки», «Хранить в прохладном месте», «Хранить в защищенном от света месте», «Беречь от детей».

Срок хранения порошков – 10 суток.

4. Rp.: Magnesiioxydi

Natrii hydrocarbonatis

Bismuti subnitratis ana 0,25

Misce ut fiat pulvis

Da tales doses № 15

Signa. По 1 порошку 3 раза в день.

Выписан сложный дозированный порошок. Содержит легкопылящее вещество – магния оксид.

Магния оксид – белый аморфный порошок без запаха.

Натрия гидрокарбонат – белый кристаллический порошок без запаха, слабо щелочного вкуса, устойчив в сухом воздухе, медленно разлагается во влажном. Растворим в воде.

Висмута субнитрат – белый аморфный или мелкокристаллический порошок.

Компоненты совместимы.

Магния оксид: 0,25 х 15 = 3,75

Натрия гидрокарбонат: 3,75

Висмута субнитрат: 3,75

Масса общая: 3,75 х 3 = 11,25

Развеска: 11,25 / 15 = 0,75

Так как магния оксид легко пылящее вещество, при определении ступки его массу условно увеличиваем в 2 раза. Используем ступку № 4.

Рассчитываем потери (коэффициент 5):

Магния оксид: 0,016 х 5 = 0,08

0,08 – х% х = 2,1%

Натрия гидрокарбонат: 0,011 х 5 = 0,055

0,055 – х% х = 1,4%

Висмута субнитрат: 0,0042 х 5 = 0,21

0,21 – х% х = 5,6%

Затираем поры ступки гидрокарбонатом натрия.

Технология: в ступку № 5 помещаем 3,75 г натрия гидрокарбоната, растираем. Затем добавляем 3,75 г висмута субнитрата, все измельчаем. В конце при осторожном перемешивании добавляем 3,75 г магния оксида.

Дата____№ 4

Natriihydrocarbonatis 3,75

Bismutisubnitratis 3,75

Magnesii oxydi 3,75

m общ. = 11,25

m 1 = 0,75 № 15

приготовил:

проверил:

отпустил:

Фасуем по 0,75 г в вощеные капсулы и складываем в бумажный пакет.

Оформляем этикеткой: «Внутреннее», «Порошки», «Хранить в прохладном месте», «Хранить в защищенном от света месте», «Беречь от детей».

Срок хранения порошков – 10 суток.

Дата: 5.08.2009 г.

Тема: «Приготовление порошков»

Ознакомилась с частными случаями приготовления порошков. Приготовила 3 порошка для внутреннего применения.

При изготовлении сложных порошков учитывают физико-химические свойства входящих ингредиентов и количества, в которых выписаны лекарственные вещества.

Основные правила изготовления сложных порошков следующие:

1. Приготовление сложных порошков начинают с выбора ступки, руководствуясь оптимальной загрузки ступки.

2. Первыми в ступке измельчают:

– вещество, индифферентное в терапевтическом отношении;

– трудно порошкуемые лекарственные вещества в присутствии спирта или эфира. Спирта берут 5–10 капель на 1,0 г вещества, а эфира – 10–15 капель;

– вещества, которые меньше теряются в порах ступки. Важно, чтобы потери лекарственного вещества, которое измельчается первым, не превысили допустимых норм отклонений, поэтому количество его должно быть достаточно большим.

3. Вторыми в ступку помещают вещества по принципу: от меньшего к большему. Если количество ингредиента, добавляемого вторым, составляет меньше 1/20 от первого, то в начале приготовления первый ингредиент помещают в ступку частично, чтобы соотношение 1:20 в дальнейшем не было превышено.

4. Если вещества прописаны в равных количествах или примерно в равных количествах и при этом их физико-химические свойства и потери в порах ступки близки, то их добавляют в ступку и измельчают вместе.

5. Если вещества прописаны в равных количествах, а их физико-химические свойства различны, то вначале измельчают крупнокристаллические вещества (магния сульфат, натрия хлорид, алюмокалиевые квасцы и др.), а потом мелкокристаллические.

6. Лекарственные вещества, содержащие большое количество кристаллизационной воды, в сложные порошки вводят и высушенном виде (натрия сульфат, магния сульфат и др.) во избежание спекания или, наоборот, отсыревания смесей при хранении.

7. Легкоподвижные, «пылящие» вещества с малой объемной массой (магния окись, магния карбонат, кальция карбонат и др.) добавляют в ступку в самую последнюю очередь. Их смешивание с остальными ингредиентами не должно быть продолжительным, иначе это может привести к излишним потерям «пылящих» лекарственных веществ.

В тех случаях, когда в рецепте совместно с «пылящим» выписано вещество, потери в порах ступки которого больше, то приготовление порошков нужно все же начинать с «пылящего». При этом отвешивают все его количество, в ступку помещают небольшую часть, достаточную для заполнения пор ступки, а остальное количество добавляют порциями в последнюю очередь, осторожно перемешивая.

8. Если в составе сложного порошка прописаны ядовитые или сильнодействующие вещества в количестве менее 0,05 г на всю массу, то должны быть использованы тритурации 1:10 или 1:100. название «тритурация» происходит от латинского слова trituratio – растирание, поскольку эти смеси приготовляют путем растирания в ступке.

В качестве разбавителя следует пользоваться молочным сахаром, который негигроскопичен и имеет плотность 1,52, близкую таковым солей алкалоидов и других ядовитых препаратов, применяющихся в виде тритураций. Лекарственное вещество и молочный сахар измельчают до наимельчайшего порошка и тщательно смешивают. Для уменьшения расслоения тритурации хранят в небольших банках и периодически перемешивают в ступке.

9. Красящие вещества (метиленовый синий, рибофлавин и др.) помещают в ступку между двумя слоями неокрашенного вещества, измельчают и смешивают до однородности. Порошки с красящими веществами готовят на отдельном рабочем месте, для каждого вещества использовать особую ступку.

10. Сложные порошки с окрашенными веществами (сухие экстракты, рутин и др.) готовятся по общим правилам.

11. Жидкие ингредиенты (настойки, жидкие экстракты) добавляют в конце смешивания, но могут быть использованы для измельчения трудно порошкуемых веществ. Введение в состав порошков жидких ингредиентов не должно изменять основного свойства порошка – сыпучести. Маслосахара приготовляют extemporaиз расчета 1 капля эфирного масла на 2 г сахара.

12. Измельчение и смешение медикаментов продолжают до тех пор, пока при рассмотрении невооруженным глазом массы приготовленного порошка с расстояния 25 см не перестанут обнаруживаться отдельные частицы. При этом нежелательно превышение оптимального времени измельчения, так как это может привести к агрегации частиц.

5. Rp.: Riboflavini 0,015

Piridoxyni hydrochloride 0,05

Misce ut fiat pulvis

Da tales doses № 15

Signa. По 1 порошку 3 раза в день.

Выписан сложный дозированный порошок. Содержит красящее вещество – рибофлавин.

Рибофлавин – см. рецепт № 1.

Пиридоксина гидрохлорид – белый кристаллический порошок без запаха.

Глюкоза – бесцветные кристаллы или белый кристаллический порошок без запаха, сладкого вкуса.

Компоненты совместимы.

Рибофлавин: 0,015 х 15 = 0,23

Пиридоксина гидрохлорид: 0,05 х 15 = 0,75

Глюкоза: 0,3 х 15 = 4,5

Масса общая: 0,23 + 0,75 + 4,5 = 5,48

Развеска: 5,48 / 15 = 0,37

Так как есть индифферентное вещество – глюкоза, им затираем поры ступки. Используем ступку № 4.

Технология: в ступку № 4 помещаем 4,5 г глюкозы, растираем. Затем добавляем 0,23 г рибофлавина и сверху наслаиваем 0,75 г пиридоксина гидрохлорида, растираем.

Дата____№ 5

Riboflavini 0,23

Piridoxini hydrochloride 0,75

m 1 = 0,37 № 15

приготовил:

проверил:

отпустил:

Фасуем по 0,37 г в вощеные капсулы и складываем в бумажный пакет.

Оформляем этикеткой: «Внутреннее», «Порошки», «Хранить в прохладном месте», «Хранить в защищенном от света месте», «Беречь от детей».

Срок хранения порошков – 10 суток.

6. Rp.: Papaverinihydrochloridi 0,03

Misce ut fiat pulvis

Da tales doses № 10

Signa. По 1 порошку 2 раза в день.

Выписан сложный дозированный порошок. Содержит вещества списка Б – папаверина гидрохлорид, димедрол, и трудно измельчаемое – камфора.

Камфора – белые кристаллические куски или бесцветный кристаллический порошок, обладает сильным характерным запахом и пряным горьковатым, затем охлаждающим вкусом. Мало растворима в воде, легко растворима в жирных и эфирным маслах.

Димедрол – см. рецепт № 1.

Папаверина гидрохлорид – белый кристаллический порошок без запаха, слегка горьковатого вкуса, список Б.

Компоненты совместимы.

Проверка доз.

Димедрол: по рецепту РД = 0,03 СД = 0,06

по ГФ ВРД = 0,1 ВСД = 0,25

Папаверина гидрохлорид: по рецепту РД = 0,03 СД = 0,06

по ГФ ВРД = 0,2 ВСД = 0,6

Дозы не завышены.

Папаверина гидрохлорид: 0,03 х 10 = 0,3

Димедрол: 0,03 х 10 = 0,3

Камфора: 0,25 х 10 = 2,5

Масса общая: 0,3 + 0,3 + 2,5 = 3,1

Развеска: 3,1 / 10 = 0,31

Используем ступку № 3.

Так как камфора трудно измельчаемое вещество, то при ее растирании используем 95% спирт:

10 капель – 1 г

х капель – 2,5 г

х = 25 капель

Рассчитываем потери (коэффициент 2):

Папаверина гидрохлорид: 0,01 х 2 = 0,02

0,02 – х% х = 6,67%

камфора: 0,024 х 3 = 0,048

0,048 – х% х = 1,92%

Технология: в ступку № 3 помещаем 2,5 г камфоры, добавляем 25 капель 95% спирта, растираем. Затем добавляем 0,3 г папаверина гидрохлорида и 0,3 г димедрола, все измельчаем, перемешиваем.

Дата____№ 6

SpiritusaethyliciXXVgtts.

Papaverini hydrochloride 0,3

Dimedroli 0,3

m 1 = 0,31 № 10

приготовил:

проверил:

отпустил:

Фасуем по 0,31 г в пергаментные капсулы и складываем в бумажный пакет.

Оформляем этикеткой: «Внутреннее», «Порошки», «Хранить в прохладном месте», «Хранить в защищенном от света месте», «Беречь от детей».

Срок хранения порошков – 10 суток.

Дата: 6.08.2009 г.

Тема: «Приготовление водных и неводных растворов»

Ознакомилась с правилами приготовления водных растворов. Изучила растворители для приготовления растворов.

Приготовила 3 водных раствора для внутреннего применения и 2 сложных порошка.

Под растворителями подразумеваются индивидуальные химические соединения или смеси, способные растворять различные вещества, то есть образовывать с ними однородные смеси – растворы, состоящие из двух или более числа компонентов.

По происхождению растворители делят на:

1) природные: неорганические (вода очищенная); органические (этанол, глицерин, масла жирные и минеральные);

2) синтетические и полусинтетические: органические (димексид, ПЭО – 400); элементорганические (полиорганосилоксановые жидкости).

На практике к растворителям относят только такие вещества, которые отвечают определенным требованиям, а именно:

1) обладают растворяющей способностью или обеспечивают оптимальную дисперсионность;

2) обеспечивают биологическую доступность лекарственных веществ;

3) не подвергаются микробной контаминации;

4) химически индифферентны, биологически безвредные;

5) обладают оптимальными органолептическими свойствами;

6) экономически выгодны.

Изготовление лекарственных форм осуществляется с применением массообразного метода изготовления, который предполагает, в зависимости от характера дисперсионной среды и дисперсионной фазы, изготовление разных лекарственных препаратов в концентрации по массе, по объему или в массообъемной концентрации.

Стадии приготовления растворов:

1) расчет количеств лекарственных веществ и воды

2) подготовка флакона для отпуска, пробки и фильтра

3) растворение

4) фильтрование или процеживание

5) контроль растворов на отсутствие механических включений

6) упаковка и оформление к отпуску.

7. Rp.: Mucylaginis Amyli 100,0

Natrii bromidi 1,5

Misce. Da. Signa. На 2 клизмы.

Выписана жидкая лекарственная форма для наружного применения. Содержит слизь крахмала и сильный электролит – натрия бромид.

Крахмал – белый нежный порошок без запаха и вкуса или куски неправильной формы, которые при растирании легко растираются в порошок. Нераствори в холодной воде, спирте, эфире.

Натрия бромид – белый кристаллический порошок без запаха, соленого вкуса, содержит одну молекулу кристаллизационной воды. Порошок растворим в 1,5 частях воды, светочувствителен.

Так как не указана концентрация то готовим 2% слизь крахмала.

Для приготовления 2% слизи надо: 1 часть крахмала

4 части холодной воды

45 частей горячей воды

Следовательно, берем 2 г крахмала

8 г холодной воды

90 г горячей воды.

Так как есть натрия бромид, то его растворяем отдельно в 5 мл воды и уменьшаем объем горячей воды для изготовления слизи.

Технология: В отдельной подставке растворяем в 5 мл воды 1,5 г натрия бромида. В другую подставке отвешиваем 2 г крахмала, прибавляем 8 мл воды комнатной температуры, перемешиваем. Оставшиеся 85 мл воды доводим до кипения, тонкой струей вливаем в нее суспензию крахмала и кипятим 2 минуты. Затем охлаждаем, добавляем раствор натрия бромида. Перемешиваем.

Дата____№ 7

Aquaepurificataefrigidae 5 ml

Natrii bromidi 1,5

Aquae purificatae frigidae 8 ml

Aquae purificatae ebulentis 85 ml

приготовил:

проверил:

отпустил:

Фильтруем во флакон для отпуска оранжевого стекла, укупориваем резиновой пробкой, обкатываем металлическим колпачком.

Оформляем этикетками: «Наружное», «Хранить в сухом месте», «Хранить в защищенном от света месте», «Беречь от детей», срок хранения 2 суток прохладном месте.

8. Rp.: Natriibromidi 1,0

Coffeini-natrii benzoatis 0,5

Aquae purificatae 100 ml

Выписана жидкая лекарственная форма для приема внутрь. Содержит вещество списка Б – кофеин-бензоат натрия.

Кофеина-бензоат натрия – см. рецепт № 3.

Проверка доз.

Общий объем: 100 мл

Число приемов: 100: 15 = 6

По рецепту: РД = 0,5/6 = 0,08

СД = 0,08 х 3 = 0,24

По ГФ: ВРД = 0,5

Дозы не завышены.

Масса лекарственных веществ = 1,0 + 0,5 = 1,5

Суммарная концентрация растворенных веществ: 1,5%. Это меньше 3%, значит прирост объема не учитываем.

Технология: В подставку отмериваем примерно 10 мл воды очищенной, растворяем в ней 0,5 г кофеина-бензоата натрия (список Б) и 1 г натрия бромида. Добавляем оставшуюся воду. Перемешиваем.

Дата______№ 8

Aquaepurificatae 10 ml

Coffeini-natriibenzoatis 0,5

Natrii bromidi 1,0

Aquae purificatae 90 ml

Приготовил:

Проверил:

Отпустил:

Фильтруем через двойной слой марли в отпускной флакон оранжевого стекла. Оформляем этикетками: «Внутреннее», «Микстура», «Хранить в защищенном от света месте», «Хранить в прохладном месте», «Беречь от детей».

Дата: 7.08.2009 г.

Тема «Приготовление водных и неводных растворов»

Ознакомилась с правилами приготовления спиртовых, масляных растворов. Изучила неводные растворители и требования к ним. Приготовила 4 раствора (1 водный и 3 неводных).

Растворы на неводных растворителях делят на:

– растворы на летучих растворителях (спирт, хлороформ, эфир)

– растворы на нелетучих растворителях (растительные и вазелиновое масла, глицерин)

– растворы на комбинированных растворителях.

Общие правила изготовления:

1) Спиртовые растворы готовят массо-объемным способом, растворы на других растворителях – по массе (в том числе растворы с эфиром и хлороформом).

2) Растворы готовят во флакон для отпуска. Это связано с возможной потерей растворителя при переливании раствора из подставки из-за вязкости или летучести растворителя.

3) Первыми во флакон для отпуска помещают порошки, потом дозируют растворитель.

4) Для ускорения растворения лекарственных веществ флакон укупоривают и нагревают на бане до 40–45°С. (Исключение – растворы с эфиром).

5) Фильтруют при необходимости (на вязких растворителях – через 2 слоя марли, на летучих – через сухой ватный тампон, прикрыв воронку часовым стеклом).

6) Если растворы готовят по массе, то для контроля качества их необходимо знать массу флакона. Ее указывают в ППК.

9. Rp.: Glucosi 3,0

Kalii iodidi 1,5

Adonisidi 4,5 ml

AquaeMenthae 150 ml

Misce. Da. Signa. По 1 столовой ложке 3 раза в день.

Выписана жидкая лекарственная форма для внутреннего применения. Содержит вещество списка Б – адонизид.

Глюкоза – см. рецепт № 5

Калия йодид – бесцветные или белые кубические кристаллы или белый мелкокристаллический порошок без запаха, солено-горького вкуса, во влажном воздухе сыреет. Растворим в 0,75 частях воды.

Адонизид – новогаленовый препарат, прозрачная жидкость слегка желтоватого цвета, своеобразного запаха, горького вкуса. Список Б.

Проверяем дозы.

По ГФ: ВРД = 40 капель

ВСД = 120 капель

В 1 мл содержится 34 капли

В 4,5 мл – х

Х = 4,5 х 34 / 1 = 153 капли

Количество приемов: 154,5 / 15 = 10

По рецепту: РД = 153 / 10 = 15,3 кап.

СД = 15,3 х 3 = 45,9 кап.

Дозы не завышены.

Глюкоза: т.к. глюкоза содержит 10% воды, значит: 3 х 100 / 100–10 = 3,3 г

Находим ∆V факт. = 3,3 х 0,69 + 1,5 х 0,25 = 2,655

Нормы допустимых отклонений: ± 2%

2 мл – 100 мл

Х – 154,5 мл х = 3,1

∆V доп. = 3,1 мл

Так как ∆V доп. больше ∆V факт., значит прирост объема не учитывается при изготовлении.

Технология: в подставку отмериваем 150 мл воды мятной, растворяем в ней 3,3 г глюкозы и 1,5 г калия йодида. Затем фильтруем через ватный тампон во флакон для отпуска оранжевого стекла. Добавляем адонизид и тщательно взбалтывают.

Дата ______№ 9

AquaeMenthae 150 ml

Kalii iodidi 1,5

Adonisidi 4,5 ml

Приготовил:

Проверил:

Отпустил:

10. Rp.: Codeiniphosphatis 0,15

Papaverini hydrochloridi 0,5

Aquae purificatae 100 ml

Misce. Da. Signa. По 1 десертной ложке 3 раза в день.

Выписана жидкая лекарственная форма для внутреннего применения. Содержит вещества списка Б – папаверина гидрохлорид, кодеина фосфат.

Кодеина фосфат – см. рецепт № 2.

Папаверина гидрохлорид – см. рецепт № 6.

Проверяем дозы.

Находим общий объем.

Масса лекарственных веществ: 0,15 + 0,5 = 0,65 г

Концентрация по рецепту 0,65% менее 3%, значит прирост объема не учитываем.

Количество приемов: 100 / 10 = 10

Кодеина фосфат: по рецепту: РД = 0,15 / 10 = 0,015

СД = 0,015 х 3 = 0,15

По ГФ: ВРД = 0,1

Папаверина гидрохлорид: по рецепту РД = 0,5/10 =0,05

СД = 0,05 х 3 = 0,15

По ГФ: ВРД = 0,2

Дозы не завышены.

Технология: в подставку отмериваем 100 мл воды очищенной, растворяем в ней 0,5 г папаверина гидрохлорида и 0,15 г кодеина фосфата. Перемешиваем. Затем фильтруем через ватный тампон во флакон для отпуска оранжевого стекла.

Дата ______№ 10

Aquaepurificatae 100 ml

Papaverinihydrochloridi 0,5

Codeini phosphatis 0,15

Приготовил:

Проверил:

Отпустил:

Укупориваем резиновой пробкой, обкатываем металлическим колпачком. Оформляем этикеткой: «Микстура», «Внутреннее», «Хранить в прохладном месте», «Хранить в темном месте», «Беречь от детей».

Дата: 10.08.2009 г.

Изучила случаи образования суспензий, требования к ним, классификацию, достоинства и недостатки, методы приготовления. Приготовила 2 порошка для наружного применения, 2 раствора.

Суспензии – это жидкая лекарственная форма, представляющая собой мелкодисперсную систему, в которой твердое вещество взвешено в жидкости.

По дисперсологической классификации – это свободные всесторонние дисперсные системы с жидкой средой и твердой фазой.

Данная лекарственная форма предназначена для внутреннего, наружного и инъекционного применения.

Суспензии образуются когда:

1) вещество не растворимо в жидкости;

2) превышен предел растворимости вещества в данной жидкости;

3) смешены два порознь растворимых вещества, реагирующих между собой с образованием осадка.

Достоинства:

1. Легко исправить вкус, цвет, запах.

2. Можно твердую фазу приготовить в виде порошков для длительного хранения, а жидкость добавлять перед приемом.

3. Терапевтический эффект при всасывании суспензий выше, чем у многих твердых или жидких лекарственных веществ, так как возможно сочетать достоинства тех и других.

Недостатки:

1. Невозможно точно дозировать дисперсную фазу.

2. Возможно гидролитическое расщепление лекарственных веществ (обеспечивает взаимодействие со средой).

3. Нельзя применять ядовитые и сильнодействующие вещества.

Существует два метода изготовления суспензий:

– дисперсионный

– конденсационный

1. Дисперсионный метод.

В зависимости от вида диспергирование различают:

А) механическое

Б) химическое

В) электрохимическое

Г) ультразвуковое.

В аптеке используют в основном механическое диспергирование.

Измельчение твердой фазы в ступке, смачивая порошок с растворителем по правилу Дерягина: наибольший расклинивающий эффект жидкость оказывает тогда, когда на 1 г сухого вещества приходиться 0,4 – 0,6 г жидкости.

Процессу измельчения способствуют факторы:

1) снятие свободной поверхностной энергии при растирании;

2) жидкость проникает в микротрещины части и расширяет их;

3) при половинном количестве жидкости оптимальная величина трения;

4) в жидкой среде устраняется амортизирующий эффект воздуха.

2. Конденсационный метод.

Конденсационный метод осуществляется двумя способами:

А) Метод замены растворителя.

Б) Метод химического диспергирования.

11. Rp.: Solutionis Natrii bromidi 2% – 100 ml

Coffeini-natrii benzoatis 0,6

Misce. Da. Signa. По 1 столовой ложке 3 раза в день.

Выписана жидкая лекарственная форма для внутреннего применения, содержащая гидрофобное вещество – камфору и вещество списка Б – кофеин-бензоат натрия.

Натрия бромид – см. рецепт № 7

Камфора – см. рецепт № 6

Кофеин-бензоат натрия – см. рецепт № 2.

Проверяем дозы кофеина-бензоата натрия:

Общий объем 100 мл.

Количество приемов: 100 /15 = 6

По рецепту: РД = 0,6 / 6 = 0,1 СД = 0,3

По ГФ: ВРД = 0,5 ВСД = 1,5

Дозы не завышены.

Камфора имеет ярко выраженные гидрофобные свойства, поэтому для приготовления суспензии берем желатозы столько же, сколько и камфоры.

Камфора трудно измельчаемое вещество, поэтому при изготовлении используем 95% спирт (на 1 г лекарственного вещества – 10 капель спирта, следовательно, берем 20 капель спирта).

Находим объем воды:

Находим ∆V факт. = 2 х 0,26 + 0,6 х 0,65 + 2 х 0,73 = 2,37 мл

Нормы допустимых отклонений: ± 3%

∆V доп. = 3 мл

Так как ∆V доп. больше ∆V факт., значит прирост объема учитывается при изготовлении.

Объем воды будет: 100 – 2,37 = 97, 63 мл

Технология: в подставке в 97,6 мл воды очищенной растворяем 0,6 г кофеин-бензоата натрия и 2 г натрия бромида. Фильтруем в другую подставку. В ступку помещаем 2 г крахмала и растираем ее с 20 каплями 95% спирта, затем добавляем 2 г желатозы и 2 мл раствора (по правилу Дерягина), измельчаем до пульпы. Добавляем оставшееся количество раствора, перемешиваем и переливаем во флакон для отпуска оранжевого стекла.

Дата ______№ 11

Aquaepurificatae97,6 ml

Coffeini-natriibenzoatis 0,6

Natrii bromidi 2,0

Spiritus aethylici XX gtts.

Gelatosae 2,0

Приготовил:

Проверил:

Отпустил:

12. Rp.: Terpinihydrati 3,0

Natriihydrocarbonatisana 1,0

Aquae purificatae 120 ml

Misce. Da. Signa. По 1 столовой ложке 3 раза в день.

Выписана жидкая лекарственная форма для внутреннего применения, содержащая гидрофобное вещество – терпингидрат.

Терпингидрат – белые прозрачные кристаллы или белый кристаллический порошок без запаха, слабогорького вкуса. Мало растворим в воде.

Натрия бензоат – белый кристаллический порошок без запаха или с очень слабым запахом, сладковато-соленого вкуса, легко растворим в воде.

Натрия гидрокарбонат – белый кристаллический порошок без запаха, соленощелочного вкуса, устойчив в сухом воздухе, медленно разлагается во влажном. Растворим в воде.

Терпингидрат обладает неярко выраженными гидрофобными свойствами, поэтому желатозы берем в 2 раза меньше терпингидрата: 1,5 г

Суммарная масса веществ: 1,5 + 1 + 1 = 3,5 г

3,5 – 120 мл

Х = 2,9 это меньше 3%, следовательно прирост объема не учитывается при изготовлении.

Объем воды будет: 120 мл

Технология: в подставку отмериваем 120 мл воды очищенной, растворяем в ней 1 г натрия гидрокарбоната и 1 г натрия бензоата. Фильтруем в другую подставку. В ступку помещаем 3 г терпингидрата, 1,5 г желатозы и 2,3 г солевого раствора по правилу Дерягина: 3 + 1,5 / 2 = 2,3). Диспергируем до образования пульпы. Добавляем оставшееся количество солевого раствора, перемешиваем и переливаем во флакон для отпуска.

Дата ______№ 12

Aquaepurificatae120 ml

Natriibenzoatis1,0

Natriihydrocarbonatis 1,0

Terpinihydrati3,0

Gelatosae 1,5

Приготовил:

Проверил:

Отпустил:

Укупориваем резиновой пробкой, обкатываем металлическим колпачком. Оформляем этикеткой: «Микстура», «Внутреннее», «Перед употреблением взбалтывать», «Хранить в прохладном месте», «Хранить в темном месте», «Беречь от детей». Срок хранения 3 суток.

Дата: 11.08.2009 г.

Тема «Приготовление суспензий и эмульсий»

Изучила классификацию, особенности технологии эмульсий, эмульгаторы, применяемые при изготовлении. Приготовила 3 раствора, 1 эмульсию (из семян тыквы).

Эмульсия – однородная по внешнему виду лекарственная форма, состоящая из взаимно нерастворимых тонко диспергированнных жидкостей, для внутреннего, наружного или инъекционного применения.

Для сохранения агрегативной устойчивости эмульсии необходимо сохранить достигнутую максимальную дисперсность, понизив величину поверхностного натяжения и тем самым избыток поверхностной энергии до ее минимального значения.

Это достигается с помощью введения веществ, обладающих поверхностно-активным действием, – эмульгаторов.

Все эмульгаторы по молекулярной структуре и свойствам могут быть разделены на ионогенные и неионогенные вещества.

Ионогенные могут быть:

Анионоактивными, диссоциирующими в воде (гидрофильная часть молекулы несет отрицательный заряд – мыла, альгинаты);

Катионоактивными (гидрофильная часть молекулы несет положительный заряд – четвертичные аммониевые соли);

Амфотерными (заряд изменяется в зависимости от рН раствора – белки, желатин, казеин и др.).

Неионогенные эмульгаторы представляют собой вещества, молекулы которых не диссоциируют в растворах (холестерин, твины, жирные спирты, целлюлоза и ее производные, растительные слизи, пектиновые вещества и др.).

Изготовление эмульсий включает следующие стадии:

Изготовление первичной эмульсии (корпуса эмульсии);

Разбавление первичной эмульсии;

Фильтрование;

Введение лекарственных веществ;

Упаковка;

Оформление к отпуску из аптеки (маркировка);

контроль на стадиях изготовления, изготовленной эмульсии и при отпуске из аптеки.

Для приготовления масляных эмульсий используют миндальное, оливковое, персиковое, подсолнечное, касторовое, вазелиновое, эфирные масла, рыбий жир, а также бальзамы и другие не смешивающиеся с водой жидкости.

Если прописана эмульсия без обозначения масла, то ее готовят из миндального, оливкового, подсолнечного или персикового масла. При отсутствии в рецепте указаний о количестве масла для приготовления 100 г эмульсии берут 10 г масла. Получение масляных эмульсий требует обязательного применения эмульгатора.

Семенные эмульсии готовят из различных семян масленичных путем растирания их с водой.

В большинстве случаев используют семена сладкого миндаля, арахиса, тыквы, мака и др.

13. Rp.: Emulsii oleosae 160,0

Misce. Da. Signa. По 1 столовой ложке 3 раза в день.

Выписана жидкая лекарственная форма для внутреннего применения – эмульсия, содержащая пахучее вещество – ментол (растворимое в масле).

Масло персиковое – прозрачная жидкость светло-желтого цвета, без цвета, без запаха или со слабым своеобразным запахом, приятного маслянистого вкуса. Растворимо в 60 частях абсолютного спирта, легко растворимо в эфире, хлороформе.

Ментол – бесцветный кристаллы с сильным запахом перечной мяты и холодящим вкусом. Летуч при обычной температуре и перегоняется с водяным паром. Почти нерастворим в воде, очень легко в спирте, эфире, уксусной кислоте.

Масса общая: 160 + 2 = 162 г

Масла персикового: 16 г

Желатозы: (16 + 2) / 2 = 9,0

Воды для первичной эмульсии: (12 + 2 + 9) / 2 = 11,5

Воды для разбавления первичной эмульсии: 162 – (16 + 2 + 9 + 11,5) = 123,5

Технология: в ступку помещаем 9 г желатозы, отмериваем 11,5 мл воды очищенной, даем постоять 2–3 минуты до образования гидрозоля. В фарфоровую чашку отвешиваем 16 г масла персикового и растворяют в нем 2 г ментола при нагревании на водяной бане (до 40 °С). Затем прибавляем по каплям при перемешивании к гидрозолю желатозы раствор ментола. Первые капли эмульгируют до характерного потрескивания. Затем, постепенно добавляя, эмульгируют остальное количество масляного раствора. Далее при перемешивании разбавляем первичную эмульсию водой до общей массы. Эмульсию переносят во флакон для отпуска темного стекла. Укупориваем плотно пластмассовой пробкой с навинчивающейся крышкой.

Дата______№ 13

Aquae purificatae 11,5 ml

Olei persicorum 16,0

Aquae purificatae 123,5 ml

Приготовил:

Проверил:

Отпустил:

14. Rp.: Emulsiioleosae 100,0

Natriibromidi 1,0

Misce. Da. Signa. По 1 столовой ложке 3 раза в день.

Выписана жидкая лекарственная форма для внутреннего применения – эмульсия.

Масло персиковое – см. рецепт № 13.

Натрия бромид – см. рецепт № 7.

Для приготовления используем масло персиковое. Готовим 10% эмульсию.

Масса общая: 100 + 1 = 101г

Масла персикового: 10 г

Желатозы: 10 / 2 = 5,0

Воды для первичной эмульсии: (10+ 5) / 2 = 7,5

Воды для разбавления первичной эмульсии: 100 – (10 + 5 + 7,5) = 77,5

Технология: в ступку помещаем 5 г желатозы, отмериваем 7,5 мл воды очищенной, даем постоять 2–3 минуты до образования гидрозоля. Далее добавляем по каплям 10 г масла персикового. Получаем первичную эмульсию. Затем в 77,5 мл воды очищенной растворяем 1 г натрия бромида. Полученным раствором разбавляем первичную эмульсию. Эмульсию процеживаем во флакон для отпуска темного стекла. Укупориваем плотно пластмассовой пробкой с навинчивающейся крышкой.

Дата______№ 14

Aquae purificatae 7,5 ml

Olei persicorum 10,0

Natrii bromidi 1,0

Aquae purificatae 77.5 ml

Приготовил:

Проверил:

Отпустил:

Оформляем этикеткой: «Внутреннее», «Перед употреблением взбалтывать», «Хранить в прохладном месте», «Хранить в темном месте», «Беречь от детей». Срок хранения 3 суток.

Дата: 12.08.2009 г.

Ознакомилась с факторами, влияющими на процесс извлечения лекарственных веществ из растительного сырья, способы получения настоев и отваров, аппаратуру, применяемую для приготовления. Изучила частные случаи изготовления водных извлечений из сырья, содержащего дубильные вещества, эфирные масла, сердечные гликозиды, алкалоиды. Приготовила 3 раствора, 2 настоя (из листьев мяты и из травы пустырника).

15. Rp.: Infusi herbae Adonidis 180 ml

Natrii bromidi 5,0

Tincturae Valerianae 3 ml

Misce. Da. Signa. По 1 столовой ложке 4 раза в день.

Выписана жидкая лекарственная форма для внутреннего применения. Содержит лекарственное растительное сырье – трава горицвета (содержит сердечные гликозиды), натрия бромид, настойку валерианы.

В стандартном сырье содержится 50 – 66 ЛЕД

Готовим настой 1: 30.

Травы адониса: 1 – 30

Так как сырье нестандартное, то делаем пересчет: х = А х Б / В

Х = 6 х 60 / 70 = 5,1

Воды очищенной:

Общий объем: 183 мл

Объем воды: 180 + (5,1 х 2,8) = 194,3 мл

Масса растворенного вещества: 5 х 100 / 183 = 2,7%, значит прирост объема не учитываем.

Технология: в инфундирку помещаем 5,1 г измельченной травы горицвета, добавляем 194,3 мл воды очищенной. Настаиваем на водяной бане 15 минут, затем оставляем при комнатной температуре на 45 минут. Процеживаем через двойной слой марли, отжимаем. В готовом настое растворяем 5 г натрия бромида, процеживаем в отпускной флакон и добавляем 3 мл настойки валерианы. Укупориваем.

Дата______№ 15

HerbaeAdonidisvernalis (70 LED) 5,1

Aquaepurificatae 194,3 ml

Natriibromidi 5,0

Tincturae Valerianae 3 ml

Приготовил:

Проверил:

Отпустил:

16. Rp.: Decocti foliorum Uvae ursi 100 ml

Hexamethylentetramini 1,0

Misce. Da. Signa. По 1 столовой ложке 2 раза в день до еды.

Выписана жидкая лекарственная форма для внутреннего применения. Содержит лекарственной растительное сырье – листья толокнянки (главное действующее вещество арбутин).

Готовим отвар 1:10, так как сырье общего списка.

Листья толокнянки: 10,0

Воды очищенной: 100 + (10 х 1,4) = 114 мл

Технология: в инфундирку помещаем 10 г измельченных до 1 мм листьев толокнянки, добавляем 114 мл воды очищенной. Настаиваем на водяной бане 30 минут, затем процеживаем через двойной слой марли, отжимаем. В готовом отваре растворяем 1 г гексаметилентетерамина, процеживаем в отпускной флакон. Укупориваем.

Дата______№ 16

FoliorumUvaeursi 10,0

Aquaepurificatae 114 ml

Hexamethylentetramini 1,0

Приготовил:

Проверил:

Отпустил:

Оформляем этикетками: «Внутреннее», «Хранить в прохладном, защищенном от света месте», «Беречь от детей», «Перед употреблением взбалтывать». Срок хранения 2 суток.

Дата: 13.08.2009 г.

Тема «Приготовление водных извлечений (настоев и отваров)»

Изучила частные случаи изготовления водных извлечений из сырья, содержащего антрагликозиды, сапонины, слизи, флавоноиды. Приготовила 2 раствора, 1 настой листьев крапивы и 1 отвар из коры дуба.

17. Rp.: Decocti foliorum Sennae ex 5,0 – 100 ml

Sirupisacchari 5 ml

Выписана жидкая лекарственная форма – отвар. Содержит листья сенны (главное действующее вещество антрагликозиды).

Листьев сенны: 5 г

Воды очищенной: 100 + (5 х 1,8) = 109 мл

Общий объем: 105 мл

Готовим отвар 1: 10

Технология: в инфундирку помещаем 5 г измельченных листьев сенны, добавляем 109 мл воды очищенной. Настаиваем на водяной бане 30 минут, затем оставляем до полного остывания. Процеживаем через двойной слой марли, отжимаем во флакон для отпуска. В отвар добавляем 5 мл сахарного сиропа. Укупориваем.

Дата______№ 17

FoliorumSennae5,0

Aquae purificatae 109 ml

Sirupi sacchari 5 ml

Приготовил:

Проверил:

Отпустил:

Оформляем этикетками: «Внутреннее», «Хранить в прохладном, защищенном от света месте», «Беречь от детей», «Перед употреблением взбалтывать». Срок хранения 2 суток.

18. Rp.: Decocti rhizomata cum radicibus Sangusorbae 150 ml

Sirupisacchari10 ml

Misce. Da. Signa. По 1 столовой ложке утром и на ночь.

Выписана жидкая лекарственная форма – отвар. Содержит корневища с корнями кровохлебки (главные действующие вещества – дубильные вещества).

Готовим отвар 1: 10, так как сырье общего списка.

Корневища с корнями кровохлебки: 15 г

Воды очищенной: 150 + (15 х 1,7) = 175,5 мл

Общий объем: 150 + 10 = 160 мл

Технология: в инфундирку помещаем 15 г измельченного лекарственного растительного сырья, добавляем 175,5 мл воды очищенной. Настаиваем на водяной бане 30 минут, затем процеживаем через двойной слой марли, отжимаем во флакон для отпуска. В отвар добавляем 10 мл сахарного сиропа. Укупориваем.

Дата______№ 18

RhizomatacumradicibusSangusorbae 15,0

Aquae purificatae 175,5 ml

Sirupi sacchari 10 ml

Приготовил:

Проверил:

Отпустил:

Оформляем этикетками: «Внутреннее», «Хранить в прохладном, защищенном от света месте», «Беречь от детей», «Перед употреблением взбалтывать». Срок хранения 2 суток.

Изобретение может быть использовано в производстве бумаги, пластмасс и красок. Способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью в водной среде включает предоставление карбоната кальция; предоставление от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5; предоставление газообразного CO 2 ; предоставление, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты. Далее проводят контактирование карбоната кальция с, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, с указанным газообразным CO 2 и с, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты. При этом водорастворимая неполимерная органическая и/или неорганическая слабая кислота имеет значение pK a , составляющее более чем 2,5, и анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли. Изобретение позволяет регулировать размер частиц карбоната кальция, повысить его удельную поверхность и выход. 4 н. и 19 з.п. ф-лы, 7 табл., 7 пр.

Изобретение относится к экономичному способу получения карбоната кальция с подвергнутой реакционной обработке поверхностью. Кроме того, настоящее изобретение относится к карбонату кальция с подвергнутой реакционной обработке поверхностью, имеющему повышенную удельную поверхность по БЭТ, и к применению способа регулирования удельной поверхности по БЭТ.

На практике карбонат кальция используют в огромных количествах в промышленном производстве бумаги, краски, резины и пластмассы для различных целей, включая покрытия, наполнители, разбавители и пигменты для производства бумаги, а также водные лакокрасочные материалы, и для очистки воды, в частности, в качестве средства для удаления неорганических материалов, в том числе тяжелых металлов и/или фармацевтических отходов, включая полициклические соединения, холестерин и/или разрушающие эндокринную систему соединения (EDC).

В отношении препятствия агрегированию частиц карбоната кальция и повышения сродства данных частиц к веществу, к которому добавляют данные частицы, например, в качестве наполнителя или флокулянта, физические и химические свойства поверхностей указанных частиц карбоната кальция изменяют путем обработки карбоната кальция жирной кислотой или натриевой солью жирной кислоты, смоляной кислоты или другими кислотами.

В технике предложено несколько подходов к улучшению химических и физических свойств карбоната кальция. Например, патент США № 4219590 описывает способ улучшения карбоната кальция введением частиц карбоната кальция в контактную реакцию с кислым газом, способным реагировать с карбонатом кальция, в целях высокой однородности размеров частиц карбоната кальция и, в то же время, покрытия поверхности частиц карбоната кальция кальциевой солью кислоты кислого газа. Патент США № 6666953 B1 относится к пигменту, наполнителю или минералу, содержащему природный карбонат кальция, обработанный одним или более источниками ионов H 3 O + и газообразным CO 2 , что позволяет уменьшать плотность бумаги при постоянной удельной поверхности без потери физических свойств, когда его используют в качестве пигмента или покровного наполнителя для указанной бумаги. WO 99/02608 A1 описывает способ получения имеющей высокое содержание твердых частиц суспензии кислотоустойчивого осажденного карбоната кальция, в котором содержащую твердые частицы суспензию обрабатывают химической добавкой, в том числе алюминатом натрия, чтобы придавать кислотоустойчивость карбонату кальция.

Кроме того, патенты США № № 5584923, 5647902, 5711799 и № № WO 97/08247 A1 и WO 98/20079 A1, соответственно, описывают карбонат кальция, который является кислотоустойчивым, что позволяет использовать его в качестве материала наполнителя в производстве нейтральной и слабокислой бумаги, и способ получения данного кислотоустойчивого карбоната кальция.

Кроме того, WO 2005/121257 A2 описывает способ получения сухого минерального пигмента, отличающегося тем, что он содержит продукт, полученный на месте использования многократной реакцией карбоната кальция и продукта или продуктов реакции указанного карбоната с газообразным CO 2 , полученным на месте использования и/или из внешнего источника; и, по меньшей мере, с одним соединением формулы R-X. WO 2004/083316 A1 относится к минеральным пигментам, содержащим продукт, полученный на месте использования двойной и/или многократной реакцией между карбонатом кальция и продуктом или продуктами реакции указанного карбоната с одним или более умеренно сильным или сильными донорами ионов H 3 O + , и продукт или продукты реакции указанного карбоната с газообразным CO 2 , полученным на месте использования и/или поступающим из внешнего источника, и, по меньшей мере, один силикат алюминия, и/или, по меньшей мере, один синтетический диоксид кремния, и/или, по меньшей мере, один силикат кальция, и/или, по меньшей мере, один силикат одновалентного металла, в том числе силикат натрия, и/или силикат калия, и/или силикат лития, предпочтительно, в том числе силикат натрия, и/или, по меньшей мере, один гидроксид алюминия, и/или, по меньшей мере, один алюминат натрия и/или калия, которые используют в производстве бумаги, в том числе в качестве наполнителя основной массы и/или покрытия бумаги.

Патент США № 5043017 относится к карбонату кальция, которому придана кислотоустойчивость путем добавления к тонкоизмельченному карбонату кальция одного из образующих хелатные комплексы кальция реагентов и сопряженных оснований, включая гексаметафосфат натрия, с последующим добавлением кислоты, в том числе фосфорной кислоты.

Однако в предшествующем уровне техники, по-видимому, не описаны экономичные способы получения и регулирования имеющих высокую удельную поверхность материалов и способы регулирования размера частиц материалов, позволяющие создавать определенные материалы на основе карбоната кальция в желательных целях. В частности, в способах получения имеющих высокую удельную поверхность материалов в предшествующем уровне техники требуется использование больших количеств и концентраций кислот от средней до высокой силы (имеющих значение pK a , менее чем или равное 2,5), чтобы получить желательный материал, имеющий высокую удельную поверхность по БЭТ. Кроме того, для использования таких кислот от средней до высокой силы необходимо соблюдение строгих требований техники безопасности, чтобы свести к минимуму опасность для работников. Кроме того, использование больших количеств и концентраций указанных кислот от средней до высокой силы также приводит к значительному и дорогостоящему потреблению химических реагентов и воды.

Таким образом, было бы желательно иметь в распоряжении способ, который обеспечивает получение карбоната кальция с подвергнутой реакционной обработке поверхностью и предоставляет возможность регулирования определенных параметров, в том числе удельной поверхности по БЭТ и размера частиц карбоната кальция.

Соответственно, задача настоящего изобретения заключается в том, чтобы предложить экономичный способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью, в котором удельную поверхность по БЭТ карбоната кальция можно контролировать или регулировать. Следующая задача настоящего изобретения заключается в том, чтобы предложить способ получения карбоната кальция, в котором увеличивается удельная поверхность по БЭТ частиц карбоната кальция. Еще одна задача настоящего изобретения заключается в том, чтобы предложить способ, в котором уменьшается требуемое количество кислоты от средней до высокой силы для данной удельной поверхности по БЭТ карбоната кальция по сравнению с материалом, полученным способом предшествующего уровня техники с использованием только кислот от средней до высокой силы. Следующая задача настоящего изобретения заключается в том, чтобы предложить способ, в котором удельная поверхность по БЭТ карбоната кальция увеличивается для данного количества кислоты от средней до высокой силы по сравнению с материалом, полученным способом предшествующего уровня техники с использованием только кислот от средней до высокой силы. Следующая задача настоящего изобретения заключается в том, чтобы предложить способ, в котором размер частиц карбоната кальция можно контролировать или регулировать. Еще одна задача настоящего изобретения заключается в том, чтобы предложить способ, в котором можно получать с высоким выходом карбонат кальция с подвергнутой реакционной обработке поверхностью.

Настоящее изобретение предназначено для достижения данных и других задач предложением способа получения карбоната кальция с подвергнутой реакционной обработке поверхностью, согласно описанию настоящего изобретения и определению его формулы.

Согласно одному аспекту настоящей заявки, разработан способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью в водной среде, где способ включает следующие стадии:

b) предоставление от 5 до 50 мас.%, в расчете на массу карбоната кальция, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, причем анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли;

e) контактирование указанного карбоната кальция с указанной, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), с указанным газообразным CO 2 согласно стадии c) и с указанной растворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d);

Авторы настоящего изобретения неожиданно обнаружили, что регулирование определенных параметров в процессе получения определенным далее способом и особенно регулирование момента введения и количества слабой кислоты в реакционную систему является ключевым фактором образования карбоната кальция с подвергнутой реакционной обработке поверхностью, имеющего особые свойства, например, повышенную удельную поверхность по БЭТ и/или размер частиц, по сравнению со способом предшествующего уровня техники, использующим только кислоты от средней до высокой силы.

В целях настоящей заявки термин «водонерастворимые кальциевые соли» определяет материалы, которые при смешивании с деионизированной водой и фильтровании через фильтр, у которого размер пор составляет 0,2 мкм, при 20°C, чтобы отделить жидкий фильтрат, позволяют получить не более чем 0,1 г твердого материала после испарения 100 г указанного жидкого фильтрата при 95-100°C. Термин «растворимые (или солюбилизированные) материалы» определяет материалы, позволяющие получить более чем 0,1 г твердого материала после испарения 100 г указанного жидкого фильтрата при 95-100°C.

В соответствии с настоящим изобретением, термин «кислота» определяет кислоту по теории Бренстеда-Лоури (Bronsted-Lowry), иными словами, источник ионов H 3 O + . Термин «анион кислоты» определяет депротонированную форму кислоты Бренстеда-Лоури, т.е. сопряженное основание кислоты. Термин «соль кислоты» определяет источник ионов H 3 O + , который, по меньшей мере, частично нейтрализован неводородным электроположительным элементом. Термин «соль» определяет электрически нейтральное ионное соединение, образованное из анионов и неводородных катионов. Термин «соль» может включать безводную форму, а также формы, содержащие кристаллизационную воду (гидраты). Термин «частично кристаллическая соль» определяет соль, которая при исследовании методом рентгенофазового анализа (РФА) представляет практически дискретную дифрактограмму.

Термин «неполимерная органическая и/или неорганическая слабая кислота» в целях настоящей заявки определяет неорганическое или органическое соединение, содержащее менее чем десять повторяющихся структурных звеньев, соединенных ковалентными химическими связями. Термин «кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты» определяет электрически нейтральное ионное соединение, образованное из анионов, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и катионов, причем данная соль содержит, по меньшей мере, один атом водорода.

Термин «суспензия» в значении настоящего изобретения представляет собой суспензию, которая включает нерастворимые твердые вещества, воду и необязательно дополнительные добавки, обычно содержит большие количества твердых веществ, является более вязкой и, как правило, имеет более высокую плотность, чем не содержащая твердых веществ жидкость, из которой она получена.

В значении настоящего изобретения термин «карбонат кальция с подвергнутой реакционной обработке поверхностью» представляет собой материал, включающий карбонат кальция и нерастворимые, предпочтительно, по меньшей мере, частично кристаллические, кальциевые соли с анионами указанных кислот, согласно указанным выше стадиям b) и d). В предпочтительном варианте осуществления нерастворимая кальциевая соль распространяется от поверхности, по меньшей мере, части карбоната кальция. Ионы кальция, образующие указанную, по меньшей мере, частично кристаллическую кальциевую соль с указанным анионом, образуются, главным образом, из исходного материала на основе карбоната кальция.

Термин «удельная поверхность по БЭТ» (УП) в значении настоящего изобретения определяет удельную поверхность, измеренную способом, описанным в приведенном ниже разделе примеров.

В соответствии с настоящим изобретением, карбонат кальция включает, как правило, тонкодисперсный (или природный) карбонат кальция (ТКК) и/или осажденный карбонат кальция (ОКК), который также известен как синтетический карбонат кальция.

Термин «тонкодисперсный карбонат кальция» в значении настоящего изобретения определяет карбонат кальция, полученный из природных источников, включая мрамор, мел или известняк, и подвергнутый обработке, в том числе измельчению, просеиванию и/или фракционированию в мокром и/или сухом состоянии, например, с помощью циклона.

Термин «осажденный карбонат кальция» в значении настоящего изобретения определяет синтезированный материал, как правило, полученный осаждением в результате реакции диоксида углерода и извести в водной среде или осаждением из водного раствора, содержащего источники ионов кальция и карбоната. Кроме того, ОКК может также представлять собой продукт взаимодействия солей кальция и карбонатов, например, хлорида кальция и карбоната натрия в водной среде.

Настоящее изобретение также относится к карбонату кальция с подвергнутой реакционной обработке поверхностью, у которого удельная поверхность (УП) по БЭТ, измеренная способом, описанным в приведенном ниже разделе примеров, составляет более чем 50 м 2 /г, предпочтительнее более чем 60 м 2 /г и наиболее предпочтительно более чем 80 м 2 /г.

Кроме того, настоящее изобретение относится к использованию способа по изобретению для контроля или регулирования свойств и параметров карбоната кальция с подвергнутой реакционной обработке поверхностью, включая удельную поверхность по БЭТ.

Согласно одному предпочтительному варианту осуществления способа по изобретению, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, выбрана из группы, состоящей из сильных кислот, у которых значение pK a составляет не более нуля при 25°C, и кислот средней силы, у которых значение pK a составляет от нуля до 2,5 включительно при 25°C.

Согласно другому предпочтительному варианту осуществления способа по изобретению, кислота средней силы выбрана из группы, состоящей из H 3 PO 4 , щавелевой кислоты и их смесей.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, представляет собой H 3 PO 4 , предпочтительно H 3 PO 4 в концентрации от 20 до 40 об.%.

Согласно одному предпочтительному варианту осуществления способа по изобретению, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты имеет молекулярную массу, составляющую менее чем 1000 г/моль, предпочтительно менее чем 750 г/моль и предпочтительнее менее чем 500 г/моль.

Согласно другому предпочтительному варианту осуществления способа по изобретению, указанная, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты выбрана из группы, состоящей из борной кислоты, лимонной кислоты, дигидроцитрата натрия, дигидроцитрата калия, гидроцитрата натрия, гидроцитрата калия, дигидробората натрия, дигидробората калия, гидробората натрия, гидробората калия и их смесей.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, указанную, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют в количестве, составляющем от 0,1 мас.% до 20 мас.%, предпочтительно от 1 мас.% до 15 мас.%, предпочтительнее от 1 мас.% до 10 мас.% до наиболее предпочтительно от 1 мас.% до 5 мас.%, в расчете на массу карбоната кальция.

Согласно одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и затем, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5.

Согласно другому предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция одновременно вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и во время ее добавления с карбонатом кальция также вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 5% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно другому предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 10% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 20% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 30% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно другому предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 50% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 80% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно другому предпочтительному варианту осуществления способа по изобретению, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, используют в виде, по меньшей мере, одного источника ионов H 3 O + , и от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция, составляет, по меньшей мере, один анион кислоты, где соответствующая кислота, по меньшей мере, одного аниона кислоты имеет значение pK a , составляющее менее чем или равное 2,5, и указанный анион кислоты способен образовывать водонерастворимые кальциевые соли.

Согласно одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция затем вступает в контакт соединение, выбранное из группы, состоящей из силиката натрия, силиката калия, силиката лития, силиката алюминия, синтетического диоксида кремния, силиката кальция, гидроксида алюминия, алюмината натрия, алюмината калия и их смесей.

Согласно другому предпочтительному варианту осуществления способа по изобретению, карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный способом по изобретению, имеет удельную поверхность по БЭТ, измеряемую согласно способу измерения, представленному далее в разделе примеров, которая составляет, по меньшей мере, 20 м 2 /г, предпочтительно, по меньшей мере, 30 м 2 /г, предпочтительнее, по меньшей мере, 40 м 2 /г, еще предпочтительнее, по меньшей мере, 50 м 2 /г, еще предпочтительнее, по меньшей мере, 60 м 2 /г, еще предпочтительнее, по меньшей мере, 70 м 2 /г и наиболее предпочтительно, по меньшей мере, 80 м 2 /г.

Согласно одному предпочтительному варианту осуществления настоящего изобретения, продукт, полученный способом по изобретению, т.е. водную суспензию сушат после стадии e), чтобы получить предпочтительно сухой или твердый продукт.

Стадия a): получение карбоната кальция, включающее водный процесс

Согласно стадии a) способа настоящего изобретения, получают карбонат кальция.

Предпочтительно, карбонат кальция выбирают из тонкодисперсного (или природного) карбоната кальция (ТКК) и/или осажденного карбоната кальция (ОКК), который также известен как синтетический карбонат кальция.

ТКК представляет собой встречающуюся в природе форму карбоната кальция, который добывают из осадочных горных пород, включая известняк или мел, или из метаморфических мраморных пород. ТКК представляет собой почти исключительно полиморфную модификацию кальцита, которая является тригонально-ромбоэдрической и самой устойчивой из полиморфных модификаций карбоната кальция.

Предпочтительно природный карбонат кальция выбирают из группы, включающей мрамор, мел, кальцит, доломит, известняк и их смеси.

Напротив, полиморфные модификации карбоната кальция типа ОКК часто включают, помимо кальцита, менее устойчивые полиморфные модификации типа арагонита, который содержит орторомбические кристаллы в форме иголок, и типа фатерита, который содержит гексагональные кристаллы и является еще менее устойчивым, чем арагонит. Различные формы ОКК можно идентифицировать по их характеристическим пикам на рентгеновской порошкограмме, полученной методом РФА.

Синтез ОКК наиболее часто осуществляют путем синтетической реакции осаждения, которая включает стадию контактирования диоксида углерода с раствором гидроксида кальция, причем последний наиболее часто получают при образовании водной суспензии оксида кальция, также известного как негашеная известь, и его суспензии, обычно называют термином «известковое молоко». В зависимости от условий реакции, данный ОКК можно получать в различных формах, включая как устойчивые, так и неустойчивые полиморфные модификации. Фактически ОКК часто представляет собой термодинамически неустойчивый материал на основе карбоната кальция.

При упоминании в контексте настоящего изобретения ОКК следует понимать как синтетические продукты на основе карбоната кальция, которые получают введением диоксида углерода в суспензию гидроксида кальция, которую в технике часто называют известковой суспензией или известковым молоком, когда ее получают взаимодействием частиц тонкоизмельченного оксида кальция с водой.

Предпочтительный синтетический карбонат кальция представляет собой осажденный карбонат кальция, включающий минералогические кристаллические формы арагонита, фатерита или кальцита или их смеси.

В предпочтительном варианте осуществления карбонат кальция измельчают перед процессом производства карбоната кальция с подвергнутой реакционной обработке поверхностью. Эту стадию измельчения можно осуществлять, используя любое традиционное измельчающее устройство, в том числе мельницу, которое известно специалистам.

В предпочтительном варианте осуществления карбонат кальция согласно стадии a) имеет средневзвешенный диаметр частиц, составляющий от 0,01 мкм до 10 мкм и предпочтительнее от 0,5 мкм до 2 мкм, который измеряют согласно способу измерения, представленному ниже в разделе примеров.

В предпочтительном способе приготовления водной суспензии карбонат кальция, в том числе тонкоизмельченный (в том числе путем помола) или нет, суспендируют в воде и таким образом получают его в виде суспензии.

В данном предпочтительном варианте осуществления указанная суспензия предпочтительно имеет значение pH, составляющее менее чем 11, предпочтительно менее чем 10,5, которое измеряют согласно способу измерения, описанному в приведенном ниже разделе примеров.

Предпочтительно водная суспензия карбоната кальция имеет содержание твердых веществ, которое составляет более чем или равно 10 мас.% и предпочтительнее составляет от 10 мас.% до 80 мас.%, в расчете на массу суспензии. Заявитель отмечает, что в случае очень высокого содержания твердых частиц необходимо иметь достаточное количество воды для проведения реакций после контактирования согласно стадии e). Водная суспензия карбоната кальция имеет содержание твердых веществ, которое составляет предпочтительнее от 16 мас.% до 60 мас.% и наиболее предпочтительно от 16 мас.% до 40 мас.%, в расчете на массу суспензии.

Стадия b): получение, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5

Согласно стадии b) способа настоящего изобретения, используют от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, где анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли. Указанные нерастворимые соответствующие кальциевые соли могут, помимо указанного аниона кислоты, включать ионы OH - и/или кристаллизационную воду.

Ионы H 3 O + , образуемые, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, служат для частичного растворения частиц карбоната кальция с образованием ионов кальция для последующего осаждения нерастворимой, по меньшей мере, частично кристаллической кальциевой соли с соответствующим анионом на поверхности карбоната кальция.

Предпочтительно кислота, которую добавляют в водную суспензию, содержащую карбонат кальция, имеет значение pK a при 25°C, которое составляет 2,5 или менее. Для кислот средней силы, включая H 3 PO 4 , щавелевую кислоту или их смеси, может наблюдаться значение pK a от 0 до 2,5 при 25°C. Эту одну или более кислот от средней до высокой силы можно добавлять к суспензии в виде концентрированного раствора или разбавленного раствора.

В одном предпочтительном варианте осуществления настоящего изобретения H 3 PO 4 используют в качестве, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5. Особенно предпочтительно использовать H 3 PO 4 в концентрации, составляющей, по меньшей мере, 10 об.%, предпочтительнее, по меньшей мере, 20 об.% и наиболее предпочтительно, по меньшей мере, 30 об.%. В другом предпочтительном варианте осуществления предпочтительно использовать H 3 PO 4 в концентрации, составляющей от 20% до 40 об.%.

В одном предпочтительном варианте осуществления, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, используют в виде:

(i) по меньшей мере, одного источника ионов H 3 O + , у которого значение pK a составляет менее чем или равно 2,5, где анион соответствующей кислоты способен образовывать водорастворимую кальциевую соль, и

Указанный, по меньшей мере, один источник ионов H 3 O + согласно п. (i) предпочтительно выбирают из группы, состоящей из азотной кислоты, серной кислоты, соляной кислоты, H 2 SO 3 , HSO 4 - или их смесей.

В особенно предпочтительном варианте осуществления указанный, по меньшей мере, один анион по п. (ii) добавляют в количестве, соответствующем количеству от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция.

В данном случае указанный, по меньшей мере, один источник ионов H 3 O + и, по меньшей мере, один анион предпочтительно используют раздельно, предпочтительно таким образом, что, по меньшей мере, один источник ионов H 3 O + по п. (i) вступает в контакт с карбонатом кальция до и/или во время контакта карбоната кальция с анионом по п. (ii).

Катион водорастворимой соли или кислой соли по п. (ii) предпочтительно выбирают из группы, состоящей из лития, натрия, калия, рубидия и их смесей. В одном предпочтительном варианте осуществления соль указанного, по меньшей мере, одного аниона по п. (ii) выбрана из группы, состоящей из сульфата натрия (Na 2 SO 4), гидросульфата натрия (NaHSO 4), сульфита натрия (Na 2 SO 3), фосфата натрия (Na 3 PO 4), гидрофосфата натрия (Na 2 HPO 4), дигидрофосфата натрия (NaH 2 PO 4), оксалата натрия (Na 2 C 2 O 4), гидрооксалата натрия (NaHC 2 O 4) и их смесей. Соль, по меньшей мере, одного аниона кислоты предпочтительно представляет собой фосфат натрия (Na 3-x H x PO 4 , где x=2, 1 или 0). Такие соли в значении настоящего изобретения следует понимать как включающие соли в безводной форме, а также в формах, содержащих кристаллизационную воду (гидрат).

По меньшей мере, один анион в виде соли по п. (ii) можно добавлять в водную суспензию, включающую карбонат кальция в любой соответствующей твердой форме, например, в форме гранул или порошка. В качестве альтернативы или в качестве дополнения, по меньшей мере, один анион в виде соли можно добавлять в водную суспензию, включающую карбонат кальция в виде концентрированного раствора или более разбавленного раствора.

В одном предпочтительном варианте осуществления настоящего изобретения, по меньшей мере, одну кислоту, у которой значение pKa составляет менее чем или равно 2,5, добавляют непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 2 ч или менее, предпочтительно в течение периода времени, составляющего 1,5 ч или менее, предпочтительнее в течение периода времени, составляющего 1 ч или менее, и наиболее предпочтительно в течение периода времени, составляющего 30 мин или менее, к водной суспензии, включающей карбонат кальция. В особенно предпочтительном варианте осуществления, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, добавляют в течение периода времени, составляющего 15 мин или менее, к водной суспензии, включающей карбонат кальция.

В другом предпочтительном варианте осуществления, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, добавляют однократно к водной суспензии, включающей карбонат кальция.

Указанную кислоту, согласно стадии b), можно добавлять в виде растворимой нейтральной или кислой соли, или в виде кислоты, при том условии, что ее растворяют до и/или во время стадии e).

В предпочтительном варианте осуществления указанную, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, добавляют в количестве, составляющем от 5 до 50 мас.%, предпочтительно от 10 до 30 мас.%, в расчете на массу указанного карбоната кальция.

После добавления, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, к суспензии, значение pH суспензии, которое измеряют согласно способу измерения, приведенному ниже в разделе примеров, может временно уменьшаться до уровня ниже 6,0.

Стадия c): получение газообразного CO 2

Согласно стадии c) способа, предложенного в настоящем изобретении, используют газообразный CO 2 .

При контакте карбоната кальция с кислотой, у которой значение pK a составляет менее чем или равно 2,5, требуемый диоксид углерода можно получать на месте использования из карбоната. В качестве альтернативы или в качестве дополнения, газообразный диоксид углерода можно подавать из внешнего источника.

Обработку кислотой и обработку газообразным диоксидом углерода можно осуществлять одновременно, что происходит автоматически, когда используют сильную кислоту. Можно также осуществлять сначала обработку кислотой по изобретению, например, кислотой средней силы, у которой значение pK a составляет от 0 до 2,5, в том числе H 2 SO 3 , HSO 4 - , H 3 PO 4 , щавелевой кислотой, с последующей обработкой газообразным диоксидом углерода, поступающим из внешнего источника.

В том случае, если используют газообразный диоксид углерода, концентрация газообразного диоксида углерода в водной суспензии во время стадии e), в расчете на объем, является такой, что соотношение объема суспензии и объема газообразного CO 2 составляет от 1:0,05 до 1:20, предпочтительнее от 1:0,05 до 1:5. В другом предпочтительном варианте осуществления указанное соотношение объема суспензии и объема газообразного CO 2 , которое составляет от 1:0,05 до 1:20, предпочтительнее от 1:0,05 до 1:5, поддерживают во время осуществления способа согласно настоящему изобретению.

Стадия d): получение, по меньшей мере, одной кислоты, у которой значение pK a составляет более чем 2,5

Согласно стадии d) способа, предложенного в настоящем изобретении, используют, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, причем указанная слабая кислота имеет значение pK a , составляющее более чем 2,5, и анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли.

По меньшей мере, у одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, которую добавляют к водной суспензии, включающей карбонат кальция, значение pK a при 25°C составляет 2,5 или более. Предпочтительно у указанной слабой кислоты, добавленной к водной суспензии, содержащей карбонат кальция, значение pK a при 25°C составляет 3,0 или более. Одну или более растворимых неполимерных органических и/или неорганических слабых кислот можно добавлять к водной суспензии в виде концентрированного раствора или разбавленного раствора.

В предпочтительном варианте осуществления, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота имеет молекулярную массу, составляющую менее чем 1000 г/моль, предпочтительно менее чем 750 г/моль, предпочтительнее менее чем 500 г/моль.

По меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота, которую добавляют к водной суспензии, предпочтительно, выбрана из группы, состоящей из лимонной кислоты, борной кислоты или их смесей.

В качестве альтернативы или в качестве дополнения, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту можно добавлять к водной суспензии в виде кислой соли. Термин «кислая соль» в значении настоящей заявки определяет электрически нейтральное ионное соединение, образованное из анионов кислот, включая, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту, и катионов, причем соль содержит, по меньшей мере, один атом водорода. Катион указанной соли предпочтительно выбран из катионов щелочных металлов, предпочтительно лития, натрия, калия, рубидия и их смесей.

В одном предпочтительном варианте осуществления, кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты выбрана из группы, состоящей из дигидроцитрата натрия и/или калия и/или лития, гидроцитрата натрия и/или калия и/или лития, дигидробората натрия и/или калия и/или лития, гидробората натрия и/или калия и/или лития и их смесей. Соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты предпочтительно представляет собой гидроцитрат натрия (Na 2 C 6 H 6 O 7).

В предпочтительном варианте осуществления указанная, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют в количестве, соответствующем от 0,1 мас.% до 20 мас.%, предпочтительно от 1 мас.% до 15 мас.%, предпочтительнее от 1,5 мас.% до 10 мас.% и наиболее предпочтительно от 2 мас.% до 5 мас.%, в расчете на массу указанного карбоната кальция.

Массовое соотношение, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, в суспензии предпочтительно составляет от 1:100 до 100:1, предпочтительнее от 1:75 до 75:1, еще предпочтительнее от 1:50 до 50:1, еще предпочтительнее от 1:50 до 1:1 и наиболее предпочтительно от 1:12 до 1:3.

После обработки диоксидом углерода и обработки, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, значение pH водной суспензии, измеренное при 20°C, обычно может достигать уровня, составляющего более чем 6,0, предпочтительно более чем 6,5, предпочтительнее более чем 7,0, еще предпочтительнее более чем 7,5. Другими словами, получают карбонат кальция с подвергнутой реакционной обработке поверхностью в виде водной суспензии, у которой значение pH составляет более чем 6,0, предпочтительно более чем 6,5, предпочтительнее более чем 7,0, еще предпочтительнее более чем 7,5. Если водную суспензию оставить до достижения равновесия, ее значение pH обычно составляет более чем 7.

Значение pH, составляющее более чем 6,0, можно обеспечить без добавления основания, когда перемешивание водной суспензии продолжают в течение достаточного периода времени, составляющего предпочтительно от 1 часа до 10 часов, предпочтительнее от 1 часа до 5 часов.

В качестве альтернативы, перед достижением состояния равновесия, которое наступает при значении pH, составляющем более чем 7, pH водной суспензии можно увеличивать до значения, превышающего 6, путем добавления основания после обработки диоксидом углерода. Можно использовать любое традиционное основание, в том числе гидроксид натрия или гидроксид калия.

Стадия e): обработка карбоната кальция

Согласно стадии e) способа, предложенного в настоящем изобретении, карбонат кальция вступает в контакт в среде водной суспензии с кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), с указанным газообразным CO 2 , согласно стадии c), и с указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d).

Указанный карбонат кальция согласно способу по изобретению вводят в контакт или обрабатывают, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, используемой на стадии b), и, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, используемой на стадии d), следующими путями:

путь IA: одновременное контактирование указанного карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), и, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d);

путь IIA: первоначальное контактирование указанного карбоната кальция, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d), и затем, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b);

путь IIIA: первоначальное контактирование указанного карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), причем во время ее добавления с карбонатом кальция также вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d).

В том случае, когда, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, одновременно добавляют к карбонату кальция (путь IA), слабую кислоту и/или ее кислую соль можно смешивать или объединять, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, перед добавлением.

Смесь кислот затем добавляют к водной суспензии однократно или непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 2 ч или менее, предпочтительно в течение периода времени, составляющего 1,5 ч или менее, предпочтительнее в течение периода времени, составляющего 1 ч или менее, и наиболее предпочтительно в течение периода времени, составляющего 30 мин или менее, и в особенно предпочтительном варианте осуществления в течение периода времени, составляющего 15 мин или менее.

Используя путь IA способа по изобретению, можно получить частицы карбоната кальция, имеющие повышенную удельную поверхность по БЭТ. Указанным способом можно получать частицы карбоната кальция, у которых удельная поверхность по БЭТ составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 20% больше и наиболее предпочтительно, по меньшей мере, на 30% больше, чем удельная поверхность по БЭТ, полученная при контакте того же карбоната кальция, используемого на стадии a), одновременно или на отдельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Если, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют к суспензии карбоната кальция до контактирования указанного карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5 (путь IIA), слабую кислоту и/или ее кислую соль можно, например, добавлять к водной суспензии однократно или непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 15 мин или менее, предпочтительно в течение периода времени, составляющего 10 мин или менее, предпочтительнее в течение периода времени, составляющего 5 мин или менее.

После полного добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, добавляют к водной суспензии однократно или непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 2 ч или менее, предпочтительно в течение периода времени, составляющего 1,5 ч или менее, предпочтительнее в течение периода времени, составляющего 1 ч или менее, и наиболее предпочтительно в течение периода времени, составляющего 30 мин или менее, и в особенно предпочтительном варианте осуществления в течение периода времени, составляющего 15 мин или менее.

Используя путь IIA способа по изобретению, можно получить частицы карбоната кальция, имеющие особенно большой средневзвешенный диаметр. Указанным способом можно получать частицы карбоната кальция, имеющие медианный диаметр, который составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 20% больше и наиболее предпочтительно, по меньшей мере, на 50% больше, чем медианный диаметр частиц, полученных использованием того же карбоната кальция, используемого в пути IA; т.е. обработкой указанного карбоната кальция одновременно смесью, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Все медианные диаметры материалов из карбоната кальция с подвергнутой реакционной обработке поверхностью, указанные в настоящем изобретении, измерены согласно способу измерения, приведенному далее в разделе примеров.

Кроме того, используя путь IIA способа по изобретению, можно получить частицы карбоната кальция, имеющие повышенную удельную поверхность по БЭТ. Указанным способом по пути IIA можно получить частицы карбоната кальция, имеющие удельную поверхность по БЭТ, которая составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 20% больше и еще предпочтительнее, по меньшей мере, на 50% больше, чем удельная поверхность по БЭТ, полученная контактированием того же карбоната кальция, используемого на стадии a), одновременно или на раздельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Если, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют к водной суспензии во время контактирования или обработки указанного карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5 (путь IIIA), по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, можно, например, добавлять к водной суспензии непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 2 ч или менее, предпочтительно в течение периода времени, составляющего 1,5 ч или менее, предпочтительнее в течение периода времени, составляющего 1 ч или менее, и наиболее предпочтительно в течение периода времени, составляющего 30 мин или менее, и в особенно предпочтительном варианте осуществления в течение периода времени, составляющего 15 мин или менее.

Во время добавления, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, предпочтительно через 5%, через 10%, через 20%, через 30%, через 50% или через 80% периода времени, требуемого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, к суспензии карбоната кальция, карбонат кальция может вступать в контакт, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты. Специалистам должно быть понятно, что, например, 5% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, практически соответствует добавлению 5% полного количества добавляемой указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, так как кислоту согласно настоящему изобретению предпочтительно добавляют при такой же скорости (отношении количества и времени).

Указанную слабую кислоту и/или ее кислую соль можно, например, добавлять к водной суспензии непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 15 мин или менее, предпочтительно в течение периода времени, составляющего 10 мин или менее, предпочтительнее в течение периода времени, составляющего 5 мин или менее.

Когда используют путь IIIA способа по изобретению, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты можно добавлять приблизительно в начале процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5. Например, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты можно добавлять через 5% или через 10% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5. Используя путь IIIA, можно получить частицы карбоната кальция, имеющие повышенный средневзвешенный диаметр. Указанным способом можно получать частицы карбоната кальция, имеющие медианный диаметр, который составляет, по меньшей мере, на 5% больше, предпочтительнее, по меньшей мере, на 10% больше и наиболее предпочтительно, по меньшей мере, на 20% больше, чем медианный диаметр частиц, полученных контактированием того же карбоната кальция, используемого на стадии a), с газообразным диоксидом углерода и, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты в конце процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, т.е., например, через 80% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5.

Соответственно, можно получить частицы карбоната кальция, имеющие пониженный медианный диаметр, используя путь IIIA способа по изобретению, если, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют приблизительно в конце процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, например, через 80% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5 (и практически соответствующего добавлению 80% полного количества указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5).

Кроме того, используя путь III способа по изобретению, можно также получать частицы карбоната кальция, имеющие повышенную удельную поверхность по БЭТ. Данным способом можно получать частицы карбоната кальция, у которых удельная поверхность по БЭТ составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 15% больше и еще предпочтительнее, по меньшей мере, 20% больше, чем удельная поверхность по БЭТ частиц, полученных контактированием того же карбоната кальция, который использовали на стадии a), по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты приблизительно во время окончания процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, т.е., например, через 80% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5.

Соответственно, можно селективно контролировать или регулировать определенные параметры или свойства карбоната кальция, в том числе удельную поверхность по БЭТ и медианный диаметр, используя путь IIIA способа по изобретению. Добавление, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты при окончании процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, к дисперсии карбоната кальция может привести к образованию частиц карбоната кальция, имеющих сниженную или уменьшенную удельную поверхность по БЭТ и уменьшенный средневзвешенный диаметр, в то время как добавление, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты в начале процесса добавления кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, например, после добавления 5 мас.% кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, может привести к образованию частиц карбоната кальция, имеющих повышенную удельную поверхность по БЭТ и повышенный или увеличенный средневзвешенный диаметр.

В предпочтительном варианте осуществления стадию e) осуществляют при температурах выше комнатной температуры, предпочтительнее выше 50°C и еще предпочтительнее выше 60°C.

В предпочтительном варианте осуществления суспензию перемешивают таким образом, чтобы обеспечивать практически ламинарный поток.

В необязательном варианте осуществления стадия e) проходит в присутствии, по меньшей мере, одного соединения, выбранного из группы, состоящей из силиката одновалентного металла, в том числе силиката натрия, силиката калия, силиката лития, силиката алюминия, синтетического диоксида кремния, силиката кальция, гидроксида алюминия, алюмината натрия, алюмината калия и их смесей. Соль одновалентного металла предпочтительно представляет собой силикат натрия.

Согласно следующему варианту осуществления настоящего изобретения, стадия e) проходит в присутствии инертного газа, который барботируют через суспензию.

Стадии обработки кислотами и/или стадию обработки диоксидом углерода можно осуществлять однократно или повторять несколько раз, если это целесообразно.

В предпочтительном варианте осуществления настоящего изобретения полученная суспензия, включающая карбонат кальция с подвергнутой реакционной обработке поверхностью, имеет содержание твердых частиц, которое измеряют согласно способу измерения, описанным ниже в разделе примеров, составляющее до 25 мас.%, предпочтительно от 5% до 20 мас.%.

В предпочтительном варианте осуществления водную фазу полученной суспензии карбоната кальция с подвергнутой реакционной обработке поверхностью можно заменять деионизированной водой. В более предпочтительном варианте осуществления водную фазу указанной суспензии карбоната кальция с подвергнутой реакционной обработке поверхностью собирают и возвращают в технологический процесс согласно настоящему изобретению в качестве способа обеспечения всех или части солюбилизированных ионов кальция. Это представляет особый интерес, когда в способе согласно настоящему изобретению используют непрерывный процесс.

Полученную суспензию карбоната кальция с подвергнутой реакционной обработке поверхностью можно концентрировать, необязательно до точки получения в качестве продукта карбоната кальция с подвергнутой реакционной обработке поверхностью продукта. Если описанную выше водную суспензию сушат, полученный твердый (т.е. сухой или содержащий такое малое количество воды, которое не позволяет находиться в виде текучей среды) карбонат кальция с подвергнутой реакционной обработке поверхностью может существовать в виде гранул или порошка. В случае сухого продукта, этот продукт можно дополнительно обрабатывать жирными кислотами. В случае сухого продукта, этот продукт можно дополнительно промывать водой.

Таким образом, получают суспензию карбоната кальция с подвергнутой реакционной обработке поверхностью, в которой указанный карбонат кальция с подвергнутой реакционной обработке поверхностью включает нерастворимую, по меньшей мере, частично кристаллическую кальциевую соль с анионом, являющимся производным, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и/или, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, которая предпочтительно занимает, по меньшей мере, часть поверхности карбоната кальция, используемого на стадии a).

Данный карбонат кальция с подвергнутой реакционной обработке поверхностью имеет удельную поверхность по БЭТ, которая составляет, по меньшей мере, 5% больше, чем удельная поверхность по БЭТ, полученная после контактирования того же карбоната кальция, используемого на стадии a), одновременно или на раздельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

В предпочтительном варианте осуществления полученный карбонат кальция с подвергнутой реакционной обработке поверхностью имеет удельную поверхность по БЭТ, которая составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 20% больше и наиболее предпочтительно, по меньшей мере, на 50% больше, чем удельная поверхность по БЭТ карбоната кальция, полученного контактированием того же карбоната кальция, одновременно или на раздельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный способом по изобретению, может, кроме того, иметь удельную поверхность по БЭТ, которая равняется удельной поверхности по БЭТ, полученной контактированием того же карбоната кальция, одновременно или на раздельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты. В данном случае требуемое количество, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, уменьшается, по меньшей мере, на 5 мас.%, предпочтительнее, по меньшей мере, на 10 мас.%, еще предпочтительнее, по меньшей мере, на 15 мас.% и наиболее предпочтительно, по меньшей мере, на 20 мас.%, в расчете на массу указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5.

В предпочтительном варианте осуществления карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный способом по изобретению, имеет удельную поверхность, составляющую более чем 20 м 2 /г, например, от 20 м 2 /г до 200 м 2 /г, предпочтительно более чем 30 м 2 /г, например, от 30 м 2 /г до 150 м 2 /г, предпочтительнее более чем 40 м 2 /г, еще предпочтительнее более чем 50 м 2 /г, еще предпочтительнее более чем 60 м 2 /г, еще предпочтительнее более чем 70 м 2 /г и наиболее предпочтительно более чем 80 м 2 /г, при измерении с использованием азота и метода БЭТ способом, который описан ниже в разделе примеров.

Кроме того, предпочтительно, чтобы природный или синтетический карбонат кальция с подвергнутой реакционной обработке поверхностью имел средневзвешенный диаметр зерен, составляющий от 0,1 мкм до 50 мкм, предпочтительно от 1 мкм до 25 мкм, предпочтительнее от 3 мкм до 15 мкм и наиболее предпочтительно от 5 мкм до 12 мкм, который измеряют согласно способу измерения, приведенному ниже в разделе примеров.

В предпочтительном варианте осуществления карбонат кальция с подвергнутой реакционной обработке поверхностью имеет удельную поверхность по БЭТ в интервале от 20 м 2 /г до 150 м 2 /г или 30 м 2 /г до 200 м 2 /г и средневзвешенный диаметр зерен в интервале от 0,1 мкм до 50 мкм.

Карбонат кальция с подвергнутой реакционной обработке поверхностью по изобретению или суспензию указанного карбоната кальция с подвергнутой реакционной обработке поверхностью можно использовать (в виде суспензии или в виде сухих продуктов) для производства бумаги, тонкой бумаги, пластмасс, красок, или в качестве агента контролируемого высвобождения или обработки воды.

Карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный способом согласно настоящему изобретению, предпочтительно вводят в контакт с подлежащей очистке водой, включая, например, промышленные сточные воды, питьевую воду, воды городской канализации, сточные воды от пивоваренных заводов или воду в бумажной промышленности, любыми традиционными средствами, которые известны специалистам.

Карбонат кальция с подвергнутой реакционной обработке поверхностью можно добавлять в виде водной суспензии, например, суспензии, которая описана выше. В качестве альтернативы, его можно добавлять в подлежащую очистке воду в любой соответствующей твердой форме, например, в виде гранул или порошка, или в виде брикетов.

Вода может содержать органические примеси, например, образующиеся от отходов деятельности человека, органические материалы, почву, поверхностно-активные вещества, а также неорганические примеси, в частности, примеси тяжелых металлов, в том числе содержащих железо или марганец соединений. Вредные компоненты, которые можно удалить из воды способом очистки согласно настоящему изобретению, также включают микроорганизмы, в том числе бактерии, грибы, археи или протисты.

Следующие примеры предназначены для иллюстрации настоящего изобретения без ограничения его объема:

Примеры

Способы измерений

Следующие способы измерений использованы для оценки параметров, приведенных в примерах и пунктах формулы изобретения.

Удельная поверхность (УП) материала

Удельную поверхность измеряли способом БЭТ согласно стандарту ISO 9277, используя азот, после выдерживания образца при температуре 250°C в течение периода, составляющего 30 минут. Перед указанными измерениями образец фильтровали на воронке Бюхнера (Büchner), промывали деионизированной водой и сушили ночь при 90-100°C в печи. После этого сухой осадок тщательно измельчали в ступке, и полученный порошок помещали на рычажные весы со шкалой, проградуированной в процентах влажности, при 130°C до достижения постоянной массы.

Распределение частиц по размеру (массовая процентная доля частиц с диаметром, меньшим X) и средневзвешенный диаметр зерен (d 50 ) порошка карбоната кальция с подвергнутой реакционной обработке поверхностью (т.е. исходного материала на основе карбоната кальция)

Средневзвешенный диаметр зерен и распределение массы по диаметру зерен порошка, в том числе карбоната кальция, определяли, используя седиментационный способ, т.е. анализ поведения при осаждении в поле силы тяжести. Измерения проводили с помощью седиграфа Sedigraph 5120.

Данный способ и прибор известны специалистам и обычно используются для определения размера зерен наполнителей и пигментов. Измерение осуществляли в водном растворе 0,1 мас.% Na 4 P 2 O 7 . Образцы диспергировали, используя высокоскоростной смеситель и ультразвук.

Медианный диаметр зерен (d 50 ) материала на основе карбоната кальция с подвергнутой реакционной обработке поверхностью

Медианный диаметр зерен карбоната кальция с подвергнутой реакционной обработке поверхностью материала определяли, используя лазерную дифракционную систему Malvern Mastersizer 2000.

Рентгенофазовый анализ (РФА)

Кристаллографические структуры материалов определяли на основе аналитического метода РФА, используя дифрактометр Brucker AXS:D8 Advance, сканирование в интервале углов 2 от 2 до 70° при скорости сканирования 0,5 сек/шаг и шагом 2 =0,01°. Анализ полученных дифрактограмм осуществляли на основе базы данных PDF 2 эталонных дифрактограмм, издаваемой Международным центром дифракционных данных.

Значение pH водной суспензии

Значение pH водной суспензии измеряли, используя стандартный измеритель pH при температуре около 25°C.

Пример 1

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу по настоящему изобретению в сравнении с контактированием того же карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и контактированием того же карбоната кальция, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и газообразным CO 2 , но без добавления, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5.

a. Суспензия карбоната кальция V1 (предшествующий уровень техники)

Суспензию карбоната кальция V1 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После этого добавления суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

b. Суспензия карбоната кальция V2

Суспензию карбоната кальция V2 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После окончания добавления лимонной кислоты, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После этого добавления суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

c. Суспензия карбоната кальция V3

Суспензию карбоната кальция V3 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После этого добавления суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 1 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ и скорости кратковременной абсорбции:

Таблица 1

Пример 2

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где изменяется концентрация, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V4

Суспензию карбоната кальция V4 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 30 мас.% в расчете на массу карбоната кальция и приблизительно 3 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 15% времени, предназначенного для добавления H 3 PO 4 (2 мин), лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V5

Суспензию карбоната кальция V5 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 20 мас.% в расчете на массу карбоната кальция и приблизительно 2 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 15% времени, предназначенного для добавления H 3 PO 4 (2 мин), лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

c. Суспензия карбоната кальция V6

Суспензию карбоната кальция V6 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 2 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 2

Пример 3

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где изменялась концентрация, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V7

Суспензию карбоната кальция V7 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 50% времени, предназначенного для добавления H 3 PO 4 (7,5 мин), лимонную кислоту в количестве, соответствующем 1 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V8

Суспензию карбоната кальция V8 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 3 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 3

Пример 4

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где карбонат кальция вступает в контакт с 30%, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и изменяется момент времени добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V9

Суспензию карбоната кальция V9 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. Когда завершалось добавление лимонной кислоты, H 3 PO 4 в количестве, соответствующем 30 мас.% в расчете на массу карбоната кальция и приблизительно 3 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 4 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 4

Пример 5

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V10

Суспензию карбоната кальция V10 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, смешанного с лимонной кислотой в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V11

Суспензию карбоната кальция V11 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 15% времени, предназначенного для добавления H 3 PO 4 (2 мин), лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 5 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 5

Пример 6

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где карбонат кальция вступает в контакт с 10%, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и изменяется момент времени добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V12

Суспензию карбоната кальция V12 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 50% времени, предназначенного для добавления H 3 PO 4 (7,5 мин), лимонную кислоту в количестве, соответствующем 2,5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V13

Суспензию карбоната кальция V13 приготовляли добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 6 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 6

Пример 7

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где карбонат кальция вступает в контакт с 10%, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и изменяется момент времени добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V14

Суспензию карбоната кальция V14 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 80% времени, предназначенного для добавления H 3 PO 4 (12 мин), лимонную кислоту в количестве, соответствующем 2,5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V15

Суспензию карбоната кальция V15 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 15% времени, предназначенного для добавления H 3 PO 4 (2 мин), лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 7 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 7

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью в водной среде, который включает следующие стадии:

a) предоставление карбоната кальция;

B) предоставление от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, где анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли;

c) предоставление газообразного CO 2 ;

d) предоставление, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты; и

e) контактирование указанного карбоната кальция с указанной, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), с указанным газообразным CO 2 , согласно стадии c), и с указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты согласно стадии d);

Где, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота имеет значение pK a , составляющее более чем 2,5, и где анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли.

2. Способ по п.1, в котором, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, выбрана из группы, состоящей из сильных кислот, у которых значение pK a составляет менее чем или равно нулю при 25°C, и кислот средней силы, у которых значение pK a составляет между нулем и 2,5 при 25°C.

3. Способ по п.2, в котором кислота средней силы выбрана из группы, состоящей из H 3 PO 4 , щавелевой кислоты и их смесей.

4. Способ по любому из пп.1-3, в котором, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, представляет собой H 3 PO 4 , предпочтительно H 3 PO 4 в концентрации от 20% до 40 об.%.

5. Способ по любому из пп.1-3, в котором, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты имеет молекулярную массу, составляющую менее чем 1000 г/моль, предпочтительно менее чем 750 г/моль и предпочтительнее менее чем 500 г/моль.

6. Способ по любому из пп.1-3, в котором указанная, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты выбрана из группы, состоящей из борной кислоты, лимонной кислоты, дигидроцитрата натрия, дигидроцитрата калия, гидроцитрата натрия, гидроцитрата калия, дигидробората натрия, дигидробората калия, гидробората натрия, гидробората калия и их смесей.

7. Способ по любому из пп.1-3, в котором указанную, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют в количестве, составляющем от 0,1 мас.% до 20 мас.%, предпочтительно от 1 мас.% до 15 мас.%, предпочтительнее от 1 мас.% до 10 мас.% и наиболее предпочтительно от 1 мас.% до 5 мас.%, в расчете на массу карбоната кальция.

8. Способ по любому из пп.1-3, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и затем, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5.

9. Способ по любому из пп.1-3, в котором с карбонатом кальция одновременно вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5.

10. Способ по любому из пп.1-3, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и во время ее добавления с карбонатом кальция также вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

11. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 5% от общего количества, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

12. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 10% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

13. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 20% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

14. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 30% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

15. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 50% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

16. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 80% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

17. Способ по любому из пп.1-3, в котором, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, используют в виде:

(i) по меньшей мере, одного источника ионов H 3 O + , у которого значение pK a составляет менее чем или равное 2,5, где анион соответствующей кислоты способен образовывать водорастворимую кальциевую соль, и

(ii) по меньшей мере, одного аниона, используемого в виде водорастворимой соли или кислой соли, где соответствующая кислота данного, по меньшей мере, одного аниона имеет значение pK a , составляющее менее чем или равное 2,5, и где указанный анион способен образовывать водонерастворимые кальциевые соли.

18. Способ по п.1, в котором с карбонатом кальция затем вступает в контакт соединение, выбранное из группы, состоящей из силиката натрия, силиката калия, силиката лития, силиката алюминия, синтетического диоксида кремния, силиката кальция, гидроксида алюминия, алюмината натрия, алюмината калия и их смесей.

19. Способ по любому из пп.1-3, в котором карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный данным способом, имеет удельную поверхность по БЭТ, составляющую, по меньшей мере, 20 м 2 /г, предпочтительно, по меньшей мере, 30 м 2 /г, предпочтительнее, по меньшей мере, 40 м 2 /г, еще предпочтительнее, по меньшей мере, 50 м 2 /г, еще предпочтительнее, по меньшей мере, 60 м 2 /г, еще предпочтительнее, по меньшей мере, 70 м 2 /г и наиболее предпочтительно, по меньшей мере, 80 м 2 /г.

20. Способ по любому из пп.1-3, в котором водную суспензию, полученную после стадии е), сушат.

21. Карбонат кальция с подвергнутой реакционной обработке поверхностью в соответствии со способом по любому из пп.1-19, имеющий удельную поверхность по БЭТ, составляющую более чем 50 м 2 /г, предпочтительнее более чем 60 м 2 /г и наиболее предпочтительно более чем 80 м 2 /г.

22. Применение способа по любому из пп.1-19 для регулирования удельной поверхности по БЭТ карбоната кальция с подвергнутой реакционной обработке поверхностью.

23. Применение карбоната кальция с подвергнутой реакционной обработке поверхностью, получаемого способом по любому из пп.1-20, для производства бумаги, тонкой бумаги, пластмасс, красок или в качестве агента контролируемого высвобождения или обработки воды.