Болезни Военный билет Призыв

Метаболизм бактериальной клетки. Метаболизм, или за счет чего живут бактерии

Микробиология: конспект лекций Ткаченко Ксения Викторовна

3. Метаболизм бактериальной клетки

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо– и эндоферментов метаболизма.

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательных мезосомах):

а) дыхание;

б) брожение.

В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.

В микробной клетке ферменты являются биологическими катализаторами. По строению выделяют:

1) простые ферменты (белки);

2) сложные; состоят из белковой (активного центра) и небелковой частей; необходимы для активизации ферментов.

Различают также:

1) конституитивные ферменты (синтезируются постоянно независимо от наличия субстрата);

2) индуцибельные ферменты (синтезируются только в присутствии субстрата).

Набор ферментов в клетке строго индивидуален для вида. Способность микроорганизма утилизировать субстраты за счет своего набора ферментов определяет его биохимические свойства.

По месту действия выделяют:

1) экзоферменты (действуют вне клетки; принимают участие в процессе распада крупных молекул, которые не могут проникнуть внутрь бактериальной клетки; характерны для грамположительных бактерий);

2) эндоферменты (действуют в самой клетке, обеспечивают синтез и распад различных веществ).

В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

2) трансферазы (осуществляют межмолекулярный перенос химических групп);

3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

4) лиазы (присоединяют химические группы по двум связям, а также осуществляют обратные реакции);

5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

1. Особенности строения бактериальной клетки. Основные органеллы и их функции Отличия бактерий от других клеток1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.2. В клеточной стенке бактерий содержится особый пептидогликан – муреин.3. В

Из книги Краткая история биологии [От алхимии до генетики] автора Азимов Айзек

Глава 12 Метаболизм ХимиотерапияБорьба с бактериальными заболеваниями во многом проще, чем с вирусными. Как уже было показано, бактерии проще размножаются в культуре. Бактерии более уязвимы. Живя вне клетки, они производят ущерб организму, отнимая у него питание либо

Из книги Тесты по биологии. 6 класс автора Бенуж Елена

КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ СТРОЕНИЕ КЛЕТКИ. ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ СТРОЕНИЯ КЛЕТКИ 1. Выберите один наиболее правильный ответ.Клетка – это:A. Мельчайшая частица всего живогоБ. Мельчайшая частица живого растенияB. Часть растенияГ. Искусственно созданная единица для

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Клетки-коллективисты и клетки-одиночки В основе тесной кооперации клеток, входящих в состав многоклеточного организма, лежат по меньшей мере две важнейшие причины. Во-первых, каждая отдельно взятая клетка, будучи сама по себе на редкость умелым и исполнительным

Из книги Путешествие в страну микробов автора Бетина Владимир

Анатомия бактериальной клетки В предыдущей главе мы познакомились с тремя главнейшими типами бактериальных клеток. Одни из них имеют форму шариков, другие - палочек или цилиндриков, а третьи представляют подобие спирали.Какова же внешняя и внутренняя структура

Из книги Распространненость жизни и уникальность разума? автора Мосевицкий Марк Исаакович

5.3.1 Концепция формирования митохондрий и хлоропластов путем симбиоза бактериальной клетки и раннего эукариота Около 2 млрд лет тому назад на Земле создалась критическая для дальнейшего развития жизни ситуация. Фотосинтезирующие бактерии, размножившись, стали

Из книги Размножение организмов автора Петросова Рената Арменаковна

3. Деление клетки Способность к делению - это важнейшее свойство клетки. В результате деления из одной клетки возникают две новые. Одно из основных свойств жизни - самовоспроизведение - проявляется уже на клеточном уровне. Наиболее распространенным способом деления

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 8. Введение в метаболизм Обмен веществ или метаболизм – это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Процесс метаболизма, сопровождающийся образованием более простых

Из книги автора

Метаболизм фруктозы Значительное количество фруктозы, образующее при расщеплении сахарозы, прежде чем поступить в систему воротной вены, превращается в глюкозу уже в клетках кишечника. Другая часть фруктозы всасывается с помощью белка-переносчика, т.е. путем

Из книги автора

Метаболизм галактозы Галактоза образуется в кишечнике в результате гидролиза лактозы.Нарушение метаболизма галактозы проявляется при наследственном заболевании – галактоземии. Оно является следствием врожденного дефекта фермента

Из книги автора

Метаболизм лактозы Лактоза, дисахарид содержится только в молоке и состоит из галактозы и глюкозы. Лактоза синтезируется только секреторными клетками желез млекопитающих в период лактации. Она присутствует в молоке в количестве от 2 % до 6 % в зависимости от вида

Из книги автора

Глава 22. Метаболизм холестерола. Биохимия атеросклероза Холестерол – стероид, характерный только для животных организмов. Основное место его образования в организме человека – печень, где синтезируется 50% холестерола, в тонком кишечнике его образуется 15–20%, остальное

Из книги автора

Глава 25. Метаболизм отдельных аминокислот Метаболизм метионина Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий

Из книги автора

Метаболизм метионина Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий акцептор называют трансметилированием,

Из книги автора

Метаболизм фенилаланина и тирозина Фенилаланин – незаменимая аминокислота, так как в клетках животных не синтезируется ее бензольное кольцо. Метаболизм метионина осуществляется по 2-м путям: включается в белки или превращается в тирозин под действием специфической

Жизнь организма человека представляет собой очень сложное и уникальное явление, однако, в нем есть такие механизмы, которые поддерживают его существование и при этом их можно разобрать до самых простых составляющих, которые являются доступными для всех. Здесь, в первую очередь, нужно сказать о метаболизме бактерий, который сложным является только условно, на самом деле такой процесс, как метаболизм бактерий, является достаточно простым. Подробно ознакомиться с процессом обмена веществ микроорганизмов, помогает наука микробиология. Изучаемые процессы помогают формировать новые формы лечения самых разных недугов.

Если говорить об общей картине метаболического бактериального процесса, то речь идет об определенным реакционном цикле, причем на одних реакциях лежит задача обеспечивать организм человека энергией, а что касается других, то они способы пополнять организм материей, то есть, по сути, являются своеобразным строительным материалом. Если говорить о метаболизме бактериальных клеток, то нельзя найти отличия от биологических начал общего типа. Именно бактерии являются основой обеспечительного механизма жизненного процесса живых клеток.

Бывает 2 вида такого процесса, которые зависят от метаболических продуктов:

  1. Катаболизм разрушительного типа или разрушительная реакция. Такая разновидность метаболизма может быть обеспечена дыханием окислительного характера. Дело в том, что когда осуществляется дыхательный процесс, в организм человека притекают элементы окислительного типа, которые начинают окислять химические соединения определенного типа, когда выделяется энергия АТФ. Такая энергия имеется в клетках в форме связей фосфатного типа.
  2. Анаболизм конструктивного типа или реакция созидательного характера. Речь идет о процессе биосинтеза, которым подвергаются органические молекулы, они носят необходимый характер для того, чтобы в клетке поддерживалась жизнь. Весь процесс проходит, как реакции химического типа, в таких реакциях принимают участие вещества и продукты внутриклеточного типа. Такие реакции получают энергию за счет того, что потребляется запас энергии, который накоплен в АТФ.

Большая часть процессов метаболического типа проходит в клетке прокариотического типа, причем такой процесс носит единовременный характер, все это имеет форму цикла замкнутого типа. Когда проходит метаболический процесс, начинают образовываться продукты, которые сопровождаются структурами клеточного типа, потом начинает запускаться биосинтическая реакция, в которой принимают участие определенные ферменты, они осуществляют процесс синтеза энергетического характера. Такие типы метаболизма микроорганизмов не являются единственными, есть и другие.

Метаболизм микроорганизмов относится к субстрату, здесь речь идет о нескольких этапах:

  • этап периферического типа , когда субстрат обрабатывается ферментами, которые выработаны бактериями;
  • этап промежуточного типа , когда в клетке начинают синтезироваться продукты промежуточного типа;
  • этап заключительный — в нем начинается процесс выделения конечных продуктов в среду, которая его окружает.

Все особенности этого процесса обусловлены тем, что есть два типа ферментов (речь идет о молекулах белкового типа, которые способны ускорять реакции в клеточной структуре:

  1. Прежде всего надо сказать об экзоферментах, которые являются молекулами белкового типа, когда клетка начинает продуцироваться наружу, а наружный субстрат начинает процесс разрушения до молекул исходного типа.
  2. Отдельно говориться об эндоферментах, которые также являются молекулами белкового типа, что действует внутри клетки, а потом начинается совместная реакция с субстратными молекулами, которые поступили снаружи.

Надо отметить, что есть ряд ферментов, которые способы вырабатываться клеточной структурой на постоянной основе (конститутивного характера), а имеются и такие, которые осуществляют выработку в виде реакции на то, когда появляется определенный субстрат.

Метаболизм энергетического типа

Такой процесс у бактерий осуществляется определенными способами биологического типа:

  1. Первый путь является хемотрофным, когда энергия получается в процесс протекания реакций химического характера.
  2. Второй путь является фототрофным (здесь уже речь идет об энергии фотосинтеза).

Если говорить о том, как дышат бактерии хемотрофным образом, то здесь может быть 3 способа:

  • окисление кислородного характера;
  • окисление без применения кислорода;
  • процесс брожения.

Особенности метаболизма бактерий

  • Такие процессы отличаются чрезвычайной быстротой и интенсивностью. В течении всего одних суток одна бактерия способна переработать такое количество питательных веществ, которое превышает её собственный вес в 40 раз!
  • Ко всем внешним условиям, даже самым неблагоприятным бактерия приспосабливаются очень быстро.
  • Что касается питательного процесса, то он происходит через всю клеточную поверхность. Примечательно, что проглотить питательные вещества прокариоты не способы, внутри клеточной структуры они не способны перевариться, их расщепление осуществляется за пределам клетки, наблюдается и хемосинтез цианобактерий.

Как растут и размножаются микроорганизмы

Необходимо отметить, что ростом является процесс, когда отдельная особь увеличивается в размерах, а что касается непосредственно процесса размножения, то это когда популяция начинает увеличиваться.

Примечательно, что бактерии способны размножаться таким образом, что просто осуществляется бинарное деление, однако такой способ является далеко не единственным, бывает ещё и почкование. Если бактерии имеют грамположительную форму, то здесь имеет место образование перегородки из стенки клеточного типа и мембраны цитоплазматического типа, которая способна врастать внутрь. Если бактерии грамоотрицательные, то начинает образовываться перетяжка, после чего клетка расщепляется на пару особей.

Примечательна скорость размножительного процесса, она может быть разной. Если говорить о подавляющем большинстве бактерий, то они делятся через каждые полчаса. А есть туберкулезные микобактерии, процесс деления которых носит более медленный характер, достаточно сказать, что для одного деления может понадобиться не менее 18 часов. Спирохеты также делятся не быстро, около 10 часов, так что видно, как различается метаболизм микроорганизмов.

Если посеять бактерии в жидкой питательной среде, взяв при этом определенный объем, а потом через каждый час брать пробу то бактериальный рост имеет форму кривой линии.

Такие вещества растут в нескольких фазах:

  • фаза латентного типа, при которой бактерии имеют возможность быстро адаптироваться к среде питания, а что касается их количества, то оно не увеличивается;
  • фаза роста логарифмического характера, когда бактериальное количество начинает увеличиваться в геометрической прогрессии;
  • фаза роста стационарного типа, когда новых веществ появляется столько же, сколько и погибает, причем живые микроорганизмы остаются постоянными, все это может достигать максимального уровня. Здесь применяется такой термин, как М-концентрация, это такая величина, которая характерна для всех бактериальных типов;
  • отмирающая фаза представляет собой процесс, при котором число погибших клеток становится больше, чем клеток, обладающих жизнеспособностью. Это получается потому, что в организме накапливаются метаболические продукты и среда истощается.

В заключении следует отметить, что обмен веществ у всех бактерий и микробов может иметь определенные различия, здесь могут иметь место самые разные факторы. Большое значение имеют индивидуальные особенности организма человека. А что касается такого процесса, как регуляция метаболизма, то его начали изучать ещё у прокариот, и именно у прокариот (это опероны палочки кишечника).

На сегодняшний день методы изучения имеются самые разные. Если изучаются серобактерии, то исследование имеет свои особенности, а для изучения бактериальных изменений могут использовать и другие методы. А отдельно внимания заслуживают железобактерии, которые имеют уникальную особенность окислять железо двухвалентного типа.

3. Метаболизм бактерий

Метаболизм (обмен веществ) бактерий представляет собой совокупность двух взаимосвязанных противоположных процессов катаболизма и анаболизма .

Катаболизм (диссимиляция) – распад веществ в процессе ферментативных реакций и накопление выделяемой при этом энергии в молекулах АТФ.

Анаболизм (ассимиляция) – синтез веществ с затратой энергии.

Особенности метаболизма у бактерий состоят в том, что :

Его интенсивность имеет достаточно высокий уровень , что возможно обусловлено гораздо большим соотношением поверхности к единице массы, чем у многоклеточных;

Процессы диссимиляции преобладают над процессами ассимиляции;

субстратный спектр потребляемых бактериями веществ очень широк – от углекислого газа, азота, нитритов, нитратов до органических соединений, включая антропогенные вещества – загрязнители окружающей среды (обеспечивая тем самым процессы ее самоочищения);

Бактерии имеют очень широкий набор различных ферментов – это также способствует высокой интенсивности метаболических процессов и широте субстратного спектра.

Ферменты бактерий по локализации делятся на 2 группы :

экзоферменты – ферменты бактерий, выделяемые во внешнюю среду и действующие на субстрат вне клетки (например, протеазы, полисахариды, олигосахаридазы);

эндоферменты – ферменты бактерий, действующие на субстраты внутри клетки (например, ферменты, расщепляющие аминокислоты, моносахара, синтетазы).

Синтез ферментов генетически детерминирован, но регуляция их синтеза идет за счет прямой и обратной связи , т. е. для одних – репрессируется, а для других – индуцируется субстратом. Ферменты, синтез которых зависит от наличия соответствующего субстрата в среде (например, бета-галактозидаза, бета-лактамаза), называются индуцибельными .

Другая группа ферментов, синтез которых не зависит от наличия субстрата в среде, называется конститутивными (например, ферменты гликолиза). Их синтез имеет место всегда, и они всегда содержатся в микробных клетках в определенных концентрациях.

Изучают метаболизм бактерий с помощью физико-химических и биохимических методов исследования в процессе культивирования бактерий в определенных условиях на специальных питательных средах, содержащих то или иное соединение в качестве субстрата для трансформации. Такой подход позволяет судить об обмене веществ путем более детального изучения процессов различных видов обмена (белков, углеводов) у микроорганизмов.

Вопрос 5. Особенности белкового и углеводного обмена у бактерий

1. Белковый обмен

Белковый обмен у бактерий – это, с одной стороны, – процесс синтеза собственных аминокислот и белков путем ассимиляции необходимых компонентов из внешней среды, а с другой, – внеклеточное расщепление белков под воздействием различных ферментов. Если расщепление белков происходит в анаэробных условиях , то этот процесс называется гниение , а если он идет в аэробных условиях – тление.

При наличии у бактерий протеаз белки расщепляются ими до промежуточных продуктов распада – пептонов, а при наличии у бактерий пептидаз пептоны расщепляются ими до аминокислот и продуктов их распада (аммиака, сероводорода, индола). Протеолитические (способность расщеплять белки) и пептолитические (способность расщеплять пептоны) свойства выражены далеко не у всех бактерий, поэтому их изучение в совокупности с другими ферментативными свойствами помогает идентифицировать бактерии.

2. Углеводный обмен

Углеводный обмен у бактерий также носит двоякий характер – это процесс синтеза и распада углеводов . Расщепление углеводов бактериями (сахаролитические свойства) в аэробных условиях с образованием углекислого газа и воды называется горением , а расщепление ими углеводов в анаэробных условиях – брожением .

В зависимости от характера конечных продуктов разложения углеводов в анаэробных условиях различают брожение:

Спиртовое,

Молочнокислое,

Пропионовокислое,

Муравьинокислое,

Маслянокислое,

Уксуснокислое.

Молекулярный кислород в процессах брожения не участвует. Большинство бактерий, осуществляющих брожение – облигатные анаэробы . Однако некоторые из них – факультативные анаэробы , способны осуществлять процесс брожения в присутствии кислорода, но без его участия. Более того, этот кислород подавляет процесс брожения. И оно сменяется горением (дыханием – конечный акцептор водорода – кислород). Этот эффект был назван эффектом Пастера и является одним из классических примеров смены метаболизма у бактерий в зависимости от условий среды .

3. Типы биологического окисления у бактерий

Синтез биополимеров бактериальной клетки требует энергии. Она образуется в ходе биологического окисления и запасается в виде молекул макроэргов – АТФ и АДФ.

Органеллами дыхания у большинства бактерий являются производные цитоплазматической мембраны – мезосомы , на которых локализуются специальные дыхательные ферменты типа цитохромоксидаз. Тип биологического окисления является одним из ключевых признаков, позволяющих дифференцировать различные микроорганизмы. По этому признаку выделяют три группы бактерий :

Первая группа – облигатные аэробы , которые способны получать энергию только путем дыхания и нуждаются в молекулярном кислороде как конечном акцепторе электронов. Для них как тип окислительно-восстановительных процессов характерно окисление, при котором конечным акцептором электронов является кислород.

Вторая группа – облигатные анаэробы – бактерии, способные расти только в среде, лишенной кислорода . Для них как тип окислительно-восстановительных процессов характерна ферментация, при которой происходит перенос электронов от субстрата-донора к субстрату-акцептору.

Третья группа – факультативные анаэробы – бактерии, способные расти как в присутствии, так и в отсутствии кислорода , и использовать в качестве терминальных акцепторов электронов как молекулярный кислород, так и органические соединения.

Среди них могут быть факультативно-анаэробные бактерии , способные переключаться с окисления на ферментацию (энтеробактерии), а также аэротолерантные факультативно-анаэробные бактерии , которые могут расти в присутствии атмосферного кислорода, но не используют его, а получают энергию исключительно с помощью брожения (например, молочнокислые бактерии).

Вопрос 6. Рост и размножение. Генетика бактерий

1. Рост и размножение бактерий

Для микробиологической диагностики, изучения микроорганизмов и в биотехнологических целях микроорганизмы культивируют на искусственных питательных средах.

Под ростом бактерий понимают увеличение массы клеток без изменения их числа в популяции как результат скоординированного воспроизведения всех клеточных компонентов и структур.

Увеличение числа клеток в популяции микроорганизмов обозначают термином «размножение» . Оно характеризуется временем генерации (интервал времени, за который число клеток удваивается) и таким понятием, как концентрация бактерий (число клеток в 1 мл).

В отличии от митотического цикла деления у эукариотов, размножение большинства прокариотов (бактерий) идет путем бинарного деления , а актиномицетов – почкованием . При этом все прокариоты существуют в гаплоидном состоянии, поскольку молекула ДНК представлена в клетке в единственном числе.

2. Бактериальная популяция. Колония

При изучении процесса размножения бактерий необходимо учитывать, что бактерии всегда существуют в виде более или менее многочисленных популяций , и развитие бактериальной популяции в жидкой питательной среде в периодической культуре можно рассматривать как замкнутую систему. В этом процессе выделяют 4 фазы :

1-я – начальная, или лаг-фаза , или фаза задержки размножения, она характеризуется началом интенсивного роста клеток , но скорость их деления остается невысокой;

2-я – логарифмическая, или лог-фаза , или экспоненциальная фаза, она характеризуется постоянной максимальной скоростью деления клеток и значительным увеличением числа клеток в популяции;

3-я – стационарная фаза , она наступает тогда, когда число клеток в популяции перестает увеличиваться. Это связано с тем, что наступает равновесие между числом вновь образующихся и гибнущих клеток . Число живых бактериальных клеток в популяции на единицу объема питательной среды в стационарной фазе обозначается как М-концентрация . Этот показатель является характерным признаком для каждого вида бактерий;

4-я – фаза отмирания (логарифмической гибели), которая характеризуется преобладанием в популяции числа погибших клеток и прогрессивным снижением числа жизнеспособных клеток популяции.

Прекращение роста численности (размножения) популяции микроорганизмов наступает в связи с истощением питательной среды и/или накоплением в ней продуктов метаболизма микробных клеток. Поэтому, удаляя продукты метаболизма и/или заменяя питательную среду, регулируя переход микробной популяции из стационарной фазы в фазу отмирания, можно создать открытую биологическую систему, стремящуюся к устранению динамического равновесия на определенном уровне развития популяции. Такой процесс выращивания микроорганизмов называется проточным культивированием (непрерывная культура). Рост в непрерывной культуре позволяет получать большие массы бактерий при проточном культивировании в специальных устройствах (хемостатах и турбидистатах) и используется при производстве вакцин, а также в биотехнологии для получения различных биологически активных веществ, продуцируемых микроорганизмами.

Для изучения метаболических процессов на протяжении цикла клеточного деления возможно также использование синхронных культур. Синхронные культуры – культуры бактерий, все члены популяции которых находятся в одной фазе цикла. Это достигается с помощью специальных методов культивирования, однако через несколько одновременных делений синхронизированная клеточная суспензия постепенно снова переходит к асинхронному делению, так что число клеток увеличивается в дальнейшем уже не ступенчато, а непрерывно.

При культивировании на плотных питательных средах бактерии образуют колонии . Это – видимое невооруженным глазом скопление бактерий одного вида, являющееся чаще всего потомством одной клетки. Колонии бактерий разных видов отличаются :

Величиной,

Прозрачностью,

Высотой,

Характером поверхности,

Консистенцией.

Характер колоний – один из таксономических признаков бактерий.

3. Генетика бактерий

Важнейшим признаком живых организмов являются изменчивость и наследственность . Основу наследственного аппарата бактерий, как и всех других организмов, составляет ДНК (у РНК-содержащих вирусов – РНК ).

Наряду с этим наследственный аппарат бактерий и возможности его изучения имеют ряд особенностей. Прежде всего, бактерии – гаплоидные организмы , т. е. они имеют одну хромосому . В связи с этим при наследовании признаков отсутствует явление доминантности . Бактерии обладают высокой скоростью размножения, в связи с чем за короткий промежуток времени (сутки) сменяется несколько десятков поколений бактерий. Это дает возможность изучать огромные по численности популяции и достаточно легко выявлять даже редкие по частоте мутации.

Наследственный аппарат бактерий представлен хромосомой . У бактерий она одна. Если и встречаются клетки с двумя, четырьмя хромосомами, то они одинаковые. Хромосома бактерий – это молекула ДНК . Длина этой молекулы достигает 1,0 мм и, чтобы «уместиться» в бактериальной клетке, она не линейная, как у эукариотов, а суперспирализована в петли и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране.

На бактериальной хромосоме располагаются отдельные гены . У кишечной палочки, например, их более 2 тысяч. Однако генотип (геном ) бактерий представлен не только хромосомными генами. Функциональными единицами генома бактерий, кроме хромосомных генов являются IS-последовательности, транспозоны и плазмиды .

Вопрос 7. Функциональные единицы генома. Изменчивость бактериальной клетки

1. Функциональные единицы генома

IS-последовательности – короткие фрагменты ДНК. Они не несут структурных (кодирующих тот или иной белок) генов, а содержат только гены, ответственные за транспозицию (способность IS-последовательностей перемещаться по хромосоме и встраиваться в различные ее участки). IS-последовательности одинаковы у разных бактерий.

Транспозоны . Это молекулы ДНК – более крупные, чем IS-последовательности. Помимо генов, ответственных за транспозицию, они содержат и структурный ген , кодирующий тот или иной признак. Транспозоны легко перемещаются по хромосоме. Их положение сказывается на экспрессии как их собственных структурных генов, так и соседних хромосомных. Транспозоны могут существовать и вне хромосомы, автономно, но не способны к автономной репликации.

Плазмиды - это кольцевые суперспиралевидные молекулы ДНК . Их молекулярная масса колеблется в широких пределах и может быть в сотни раз больше, чем у транспозонов. Плазмиды содержат структурные гены , наделяющие бактериальную клетку разными, весьма важными для нее свойствами :

R-плазмиды – лекарственной устойчивостью,

Col-плазмиды – синтезировать колицины,

F-плазмиды – передавать генетическую информацию,

Hly-плазмида – синтезировать гемолизин,

Tox-плазмида – синтезировать токсин,

Плазмиды биодеградации – разрушать тот или иной субстрат и другие.

Плазмиды могут быть интегрированы в хромосому (в отличие от IS-последовательностей и транспозонов, встраиваются в строго определенные участки ), а могут существовать автономно . В этом случае они обладают способностью к автономной репликации, и именно поэтому в клетке может быть 2, 4, 8 копий такой плазмиды.

Многие плазмиды имеют в своем составе гены трансмиссивности и способны передаваться от одной клетки к другой при конъюгации (обмене генетической информацией). Такие плазмиды называются трансмиссивными.

2. Фактор фертильности

Наличие F-плазмиды (фактор фертильности, половой фактор ) придает бактериям функции донора, и такие клетки способны передавать свою генетическую информацию другим, F-клеткам . Таким образом, наличие F-плазмиды является генетическим выражением пола у бактерий . С F-плазмидой связана не только донорская функция, но и некоторые другие фенотипические признаки. Это, в первую очередь, наличие F-пилей (половых ресничек ), с помощью которых и устанавливается контакт между донорскими и реципиентными клетками. Через их канал и передается донорская ДНК при рекомбинации. На половых ресничках расположены рецепторы для мужских fi-фагов. F-клетки не имеют таких рецепторов и не чувствительны к таким фагам.

Таким образом, наличие F-ресничек и чувствительность к fi-фагам можно рассматривать как фенотипическое выражение (проявление) пола у бактерий.

3. Изменчивость

У бактерий различают два вида изменчивости – фенотипическую и генотипическую .

Фенотипическая изменчивость модификации – не затрагивает генотип . Модификации затрагивают большинство особей популяции. Они не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу через большее (длительные модификации) или меньшее (кратковременные модификации) число поколений.

Генотипическая изменчивость затрагивает генотип . В ее основе лежат мутации и рекомбинации.

Мутации бактерий принципиально не отличаются от мутаций эукариотических клеток. Особенностями мутаций у бактерий является относительная легкость их выявления , так как имеется возможность работать с большими по численности популяциями бактерий. По происхождению мутации могут быть :

спонтанными,

индуцированными .

По протяженности :

Точечные,

Хромосомные мутации.

По направленности :

Обратные мутации.

Рекомбинации у бактерий отличаются от рекомбинаций у эукариот :

Во-первых, у бактерий имеется несколько механизмов рекомбинаций (обмена генетическим материалом).

Во-вторых, при рекомбинациях у бактерий образуется не зигота, как у эукариот, а мерозигота (несет полностью генетическую информацию реципиента и часть генетической информации донора в виде дополнения).

В третьих, при рекомбинациях у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации .

Трансформация введения в бактериальную клетку-реципиент готового препарата ДНК (специально приготовленного или непосредственно выделенного из клетки-донора). Чаще всего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора.

Для восприятия донорской ДНК при трансформации клетка-реципиент должна находится в определенном физиологическом состоянии (компетентности ), которое достигается специальными методами обработки бактериальной популяции. При трансформации передаются единичные (чаще один) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК.

Трансдукция – это обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих ) бактериофагов.

Трансдуцирующие фаги могут переносить один или более генов (признаков). Трансдукция бывает :

Специфической (переносится всегда один и тот же ген),

Неспецифической (передаются разные гены).

Это связано с локализацией трансдуцирующих фагов в геноме донора. В первом случае они располагаются всегда в одном месте хромосомы, во втором – их локализация непостоянна.

Конъюгация – это обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту при их прямом контакте .

После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть донорской ДНК может быть передана реципиенту. Основываясь на прерывании конъюгации через определенные промежутки времени, можно определить порядок расположения генов на хромосоме бактерий – построить хромосомные карты бактерий (картирование бактерий ). Донорской функцией обладают F + клетки.

Вопрос 8. Нормальная микрофлора тела человека

1. Понятие о микробиоценозе

Нормальная микрофлора сопутствует своему хозяину на протяжении всей его жизни. О существенном ее значении в поддержании жизнедеятельности организма свидетельствуют наблюдения за животными-гнотобионтами (лишенными собственной микрофлоры), жизнь которых существенно отличается от таковой нормальных особей, а порою просто невозможна. В этой связи учение о нормальной микрофлоре человека и ее нарушениях представляет собой весьма существенный раздел медицинской микробиологии.

В настоящее время твердо установленным является положение о том, что организм человека и населяющие его микроорганизмы – это единая экосистема . С современных позиций нормальную микрофлору следует рассматривать как совокупность множества микробиоценозов , характеризующихся определенным видовым составом и занимающих тот или иной биотип в организме. В любом микробиоценозе следует различать постоянно встречающиеся виды микроорганизмов – характерные (индигенная, автохтонная флора), добавочные и случайные – транзиторные (аллохтонная флора). Количество характерных видов относительно невелико, но численно они всегда представлены наиболее обильно. Видовой состав транзиторных микроорганизмов разнообразен, но они немногочисленны.

Поверхности кожи и слизистых оболочек тела человека обильно заселены бактериями. При этом количество бактерий, населяющих покровные ткани (кожу, слизистые оболочки), во много раз превосходит число собственных клеток хозяина. Количественные колебания бактерий в биоценозе могут достигать для некоторых бактерий нескольких порядков и, тем не менее, укладываются в принятые нормативы. Сформировавшийся микробиоценоз существует как единое целое , как сообщество объединенных пищевыми цепями и связанных микроэкологией видов.

Совокупность микробных биоценозов, встречающихся в организме здоровых людей, составляет нормальную микрофлору человека. В настоящее время нормальную микрофлору рассматривают как самостоятельный экстракорпоральный орган. Он имеет характерное анатомическое строение (биопленка ) и ему присущи определенные функции. Установлено, что нормальная микрофлора обладает достаточно высокой видовой и индивидуальной специфичностью и стабильностью.

Аннотация

Введение

1. Общие понятия об обмене веществ и энергии

2. Конструктивный метаболизм

3.1 Источники углерода

4. Типы метаболизма микроорганизмов

7. Энергетический метаболизм хемоорганотрофов, использующих процесс дыхания

8. Энергетический метаболизм хемолитоавтотрофов

Заключение

Данная курсовая работа содержит основные сведенья о конструктивном и энергетическом метаболизме бактерий. Работа выполнена на 37 листах. Содержит 5 рисунков и 1 таблицу.


Совокупность процессов превращения материи в живом организме, сопровождающихся постоянным ее обновлением, называется обменном веществ или метаболизмом.

Важнейшими свойствами живых организмов являются способность, к самовоспроизведению и теснейшая взаимосвязь их с окружающей средой. Любой организм может существовать только при условии постоянного притока питательных веществ из внешней среды и выделения в нее продуктов жизнедеятельности.

Питательные вещества, поглощаемые клеткой, в результате сложных биохимических реакций превращаются в специфические клеточные компоненты. Совокупность биохимических процессов поглощения, усвоения питательных веществ и создания за их счет структурных элементов клетки называется конструктивным обменом или анаболизмом. Конструктивные процессы идут с поглощением энергии. Энергию, необходимую для процессов биосинтеза других клеточных функций, таких, как движение, осморегуляция и т. д., клетка получает за счет потока окислительных реакций, совокупность которых представляет собой энергетический обмен, или катаболизм (рис. 1).


Все живые организмы могут использовать только химически связанную энергию. Каждое вещество обладает определенным запасом потенциальной энергии. Главные материальные носители ее химические связи, разрыв или преобразование которых приводит к освобождению энергии.

Энергетический уровень химических связей неодинаков. Для одних он имеет величину порядка 8-10 кДж. Такие связи называют нормальными. В других связях заключена значительно большая энергия - 25-40 кДж. Это так называемые макроэргические связи. Почти все известные соединения, обладающие такими связями, включают атомы фосфора и серы, участвующие в образовании этих связей.

Важнейшую роль в жизнедеятельности клетки играет аденозинтрифосфорная кислота (АТФ). В состав ее молекулы входят аденин, рибоза и три остатка фосфорной кислоты: (Приложения Рис 2)

АТФ занимает центральное место в энергетическом обмене клетки. Макроэргические связи в молекуле АТФ очень непрочны. Гидролиз этих связей приводит к освобождению значительного количества свободной энергии:

АТФ + Н20→АДФ + Н3Р04- 30,56 кДж

Гидролиз протекает с участием специфических ферментов, обеспечивая энергией биохимические процессы, идущие с поглощением энергии. В этом случае АТФ играет роль поставщика энергии. Имея малый размер, молекула АТФ и диффундирует в различные участки клетки. Запас АТФ в клетках непрерывно возобновляется за счет реакций присоединения остатка фосфорной кислоты к молекуле аденозиндифосфорной кислоты (АДФ):

АДФ + Н3Р04 → АТФ + Н20

Синтез АТФ, как и гидролиз, идет при участии ферментов но сопровождается поглощением энергии, способы получения которой у микроорганизмов хотя и разнообразны, но могут быть сведены к двум типам:

1) использование энергии света;

2) использование энергии химических реакций.

При этом тот и другой виды энергии трансформируются в энергию химических связей АТФ. Таким образом, АТФ выполняет в клетке роль трансформатора.

Анаболизм и катаболизм неразрывно связаны, составляя единое целое, поскольку продукты энергетического обмена (АТФ и некоторые низкомолекулярные соединения) непосредственно используются в конструктивном обмене клетки (рис. 6.1).

В клетках микроорганизмов соотношение между энергетическими и конструктивными процессами зависит от ряда конкретных условий, в частности от характера питательных веществ. Тем не менее по объему катаболические реакции обычно превосходят биосинтетические процессы. Взаимосвязь и сопряженность этих двух видов метаболизма проявляется прежде всего в том, что суммарный объем конструктивных процессов полностью зависит от количества доступной энергии, получаемой в ходе энергетического обмена.


Конструктивный метаболизм направлен на синтез четырех основных типов биополимеров: белков, нуклеиновых кислот, полисахаридов и липидов.

Ниже показана обобщенная условная схема биосинтеза сложных органических соединений, где выделены следующие основные этапы: образование из простейших неорганических веществ органических предшественников (I), из которых на следующем этапе синтезируются «строительные блоки» (II). В дальнейшем строительные блоки, связываясь друг с другом ковалентными связями, образуют биополимеры (III): Приложения (рис. № 3)

Представленная схема биосинтетических процессов не отражает всей сложности превращения низкомолекулярных предшественников в строительные блоки с большой молекулярной массой. На самом деле синтез протекает как серия последовательных реакций с образованием разнообразных промежуточных продуктов метаболизма. Кроме того, уровни развития биосинтетических способностей микроорганизмов очень различны. У одних микробов конструктивный метаболизм включает все показанные на схеме этапы, у других ограничен вторым и третьим или только третьим этапом. Именно поэтому микроорганизмы резко отличаются друг от друга по своим пищевым потребностям. Однако элементный состав пищи одинаков для всех живых организмов и должен включать все компоненты, входящие в клеточное вещество: углерод, азот, водород, кислород и др.

В зависимости от используемых в конструктивном обмене источников углерода микроорганизмы делятся на две группы: автотрофы и гетеротрофы.

Автотрофы (от греч. «autos» - сам, «trophe» - пища) в качестве единственного источника углерода используют диоксид углерода и из этого простого неорганического соединения-предшественника синтезируют все необходимые биополимеры. Способность к биосинтезу у автотрофов самая высокая.

Гетеротрофы (от греч. «heteros» - другой) нуждаются в органических источниках углерода. Их пищевые потребности чрезвычайно разнообразны. Одни из них питаются продуктами жизнедеятельности других организмов или используют отмершие растительные и животные ткани. Такие микроорганизмы называются сапрофитами (от греч. «sapros» - гнилой и «phyton» - растение). Число органических соединений, используемых ими в качестве источников углерода, чрезвычайно велико - это углеводы, спирты, органические кислоты, аминокислоты и т. д. Практически любое природное соединение может быть использовано тем или иным видом микроорганизмов в качестве источника питания или энергии.

Для синтеза клеточных белков микроорганизмам необходим азот. По отношению к источникам азотного питания среди микроорганизмов можно выделить автоаминотрофов и гетероаминотрофов. Первые способны использовать азот неорганический (аммонийный, нитратный, молекулярный) или простейшие формы органического (мочевина) и из этих соединений строить разнообразные белки своего тела. При этом все формы азота сначала переводятся в аммонийную форму. Эта наиболее восстановленная форма азота легко трансформируется в аминогруппу. Гетероаминотрофы нуждаются в органических формах азота - белках и аминокислотах. Некоторым из них требуется полный набор аминокислот, другие создают необходимые белковые соединения из одной - двух аминокислот путем их преобразования.

Многие гетеротрофные по отношению к углероду микроорганизмы являются автоаминотрофами. К ним относятся я бактерии, участвующие в очистке сточных вод.

Потребность в кислороде и водороде для конструктивного обмена микроорганизмы удовлетворяют за счет воды и органических питательных веществ. Источниками зольных элементов (P, S, K, Mg, Fe) служат соответствующие минеральные соли. Потребность в этих элементах невелика, но присутствие в среде обязательно. Помимо того, для нормальной жизнедеятельности микробов необходимы микроэлементы – Zn, Co, Cu, Ni и др. Часть их входит в состав естественного питания микробов, часть усваивается ими из минеральных солей.

Способы получения пищи, т. е. способы питания микроорганизмов, отличаются большим разнообразием. Различают три основных способа питания: голофитное, сапрозойное, голозойное.

Голофитное питание (от греч. «голо» - целиком, «фит» - растение) совершается по типу фотосинтеза растений. Такое питание присуще только автотрофам. Среди микроорганизмов этот способ свойствен водорослям, окрашенным формам жгутиковых и некоторым бактериям.

Гетеротрофные микроорганизмы питаются либо твердыми пищевыми частицами, либо поглощают растворенные органические вещества.

Голозойное питания предопределяет развитие у микроорганизмов специальных органоидов для переваривания пищи, а у некоторых - и для ее захвата. Например, неокрашенные жгутиковые и ресничные инфузории имеют ротовое отверстие, к которому пища подгоняется соответственно жгутиками или ресничками. Наиболее высокоорганизованные инфузории образуют околоротовыми ресничками ток воды в виде воронки, направленной узким концом в рот. Пищевые частицы осаждаются на дне воронки и заглатываются инфузорией. Такие инфузории называют седиментаторами. Амебы питаются путем фагоцитоза.

Микроорганизмы с голозойным способом питания для конструктивного метаболизма используют главным образом цитоплазму других организмов - бактерий, водорослей и т. д. и имеют специальные органоиды для пищеварения. Пищеварительный процесс у простейших осуществляется в пищеварительных вакуолях.

Переваривание заключается в гидролитическом расщеплении сложных органических веществ до более простых соединений. При этом углеводы гидролизуются до простых сахаров, белки - до аминокислот, а при гидролизе липидов образуются глицерин и высшие жирные кислоты. Продукты пищеварения всасываются в цитоплазму и подвергаются дальнейшему преобразованию.

Бактерии, микроскопические грибы, дрожжи не имеют специальных органоидов для захвата пищи, и она поступает в клетку через всю поверхность. Такой способ питания называется сапрозойным.

Чтобы проникнуть в клетку, питательные вещества должны находится в растворенном состоянии и иметь соответствующий размер молекул. Для многих высокомолекулярных соединений цитоплазматическая мембрана непроницаема, а некоторые из них не могут проникнуть даже через клеточную оболочку. Однако это не означает, что высокомолекулярные соединения не используются микроорганизмами как питательные вещества. Микроорганизмы синтезируют внеклеточные пищеварительные ферменты, гидролизующие сложные соединения. Таким образом, процесс пищеварения, протекающий у простейших в вакуолях, у бактерий осуществляется вне клетки (Приложения рис. 4).

Размер молекул - не единственный фактор, обусловливающий проникновение питательных веществ в клетку.

Цитоплазматическая мембрана способна пропускать одни соединения и задерживать другие.

Известно несколько механизмов переноса веществ через мембрану клетки: простая диффузия, облегченная диффузия и Активный перенос (Приложения рис. 5).

Простая диффузия - это проникновение молекул вещества в клетку без помощи каких-либо переносчиков.

В насыщении клетки питательными веществами простая диффузия большого значения не имеет. Однако именно таким путем в клетку поступают молекулы воды. Немаловажную роль в этом процессе играет осмос - диффузия молекул растворителя через полупроницаемую перепонку в направлении более концентрированного раствора.

Роль полупроницаемой перепонки в клетке выполняет цитоплазматическая мембрана. В клеточном соке растворено огромное количество молекул разнообразных веществ, поэтому клетки микроорганизмов обладают довольно высоким осмотическим давлением. Величина его у многих микробов достигает 0,5-0,8 МПа. В окружающей среде осмотическое давление обычно ниже. Это вызывает приток воды внутрь клетки и создает в ней определенное напряжение называемое тургором.

При облегченной диффузии растворенные вещества поступают в клетку с участием специальных ферментов-переносчиков, носящих название пермеаз. Они как бы захватывают молекулы растворенных веществ и переносят их к внутренней поверхности мембраны.

Простая и облегченная диффузия представляет собой варианты пассивного транспорта веществ. Движущей силой переноса веществ в клетку в этом случае служит градиент концентраций по обе стороны мембраны. Однако большинство веществ поступает в клетку против градиента концентрации. В этом случае на такой перенос затрачивается энергия и перенос называется активным. Активный перенос протекает с участием специфических белков, сопряжен с энергетическим обменом клетки и позволяет накапливать в клетке пительные вещества в концентрации во много раз больше, чем концентрация их во внешней среде. Активный перенос - основной механизм поступления питательных веществ в клетки с сапрозойным питанием.


3. Потребность прокариот в питательных веществах

Мономеры, необходимые для построения основных клеточных компонентов, могут быть синтезированы клеткой или поступать в готовом виде из среды. Чем больше готовых соединений должен получать организм извне, тем ниже уровень его биосинтетических способностей, так как химическая организация всех свободноживущих форм одинакова.

3.1 Источники углерода

В конструктивном метаболизме основная роль принадлежит углероду, поскольку все соединения, из которых построены живые организмы, - это соединения углерода. Их известно около миллиона. Прокариоты способны воздействовать на любое известное углеродное соединение, т. е. использовать его в своем метаболизме. В зависимости от источника углерода для конструктивного метаболизма все прокариоты делятся на две группы: автотрофы, к которым принадлежат организмы, способные синтезировать все компоненты клетки из углекислоты, и гетеротрофы, источником углерода для конструктивного метаболизма которых служат органические соединения. Понятия "авто-" и "гетеротрофия" характеризуют, таким образом, тип конструктивного метаболизма. Если автотрофия - довольно четкое и узкое понятие, то гетеротрофия - понятие весьма широкое и объединяет организмы, резко различающиеся своими потребностями в питательных веществах.

Следующую крупную группу прокариот составляют так называемые сапрофиты - гетеротрофные организмы, которые непосредственно от других организмов не зависят, но нуждаются в готовых органических соединениях. Они используют продукты жизнедеятельности других организмов или разлагающиеся растительные и животные ткани. К сапрофитам относится большая часть бактерий. Степень требовательности к субстрату у сапрофитов весьма различна. В эту группу входят организмы, которые могут расти только на достаточно сложных субстратах (молоко, трупы животных, гниющие растительные остатки), т. е. им нужны в качестве обязательных элементов питания углеводы, органические формы азота в виде набора аминокислот, пептидов, белков, все или часть витаминов, нуклеотиды или готовые компоненты, необходимые для синтеза последних (азотистые основания, пятиуглеродные сахара). Чтобы удовлетворить потребность этих гетеротрофов в элементах питания, их обычно культивируют на средах, содержащих мясные гидролизаты, автолизаты дрожжей, растительные экстракты, молочную сыворотку.

Есть прокариоты, требующие для роста весьма ограниченное число готовых органических соединений в основном из числа витаминов и аминокислот, которые они не в состоянии синтезировать сами, и наконец, гетеротрофы, нуждающиеся только в одном органическом источнике углерода. Им может быть какой-либо сахар, спирт, кислота или другое углеродсодержащее соединение. Описаны бактерии из рода Pseudomonas, способные использовать в качестве единственного источника углерода и энергии любое из 200 различных органических соединений, и бактерии, для которых источником углерода и энергии может служить узкий круг довольно экзотических органических веществ. Например, Bacillus fastidiosus может использовать только мочевую кислоту и продукты ее деградации, а некоторые представители рода Clostridium растут только в среде, содержащей пурины. Использовать другие органические субстраты для роста они не могут. Биосинтетические способности этих организмов развиты в такой степени, что они сами могут синтезировать все необходимые им углеродные соединения.

Особую группу гетеротрофных прокариот, обитающих в водоемах, составляют олиготрофные бактерии, способные расти при низких концентрациях в среде органических веществ. Организмы, предпочитающие высокие концентрации питательных веществ, относят к копиотрофам. Если у типичных копиотрофов оптимальные условия для роста создаются при содержании в среде питательных веществ в количестве примерно 10 г/л, то для олиготрофных организмов - в пределах 1-15мг углерода/л. В средах с более высоким содержанием органических веществ такие бактерии, как правило, расти не могут и погибают.

Азот является одним из четырех основных элементов, участвующих в построении клетки. В расчете на сухие вещества его содержится приблизительно 10%. Природный азот бывает в окисленной, восстановленной и молекулярной формах. Подавляющее большинство прокариот усваивают азот в восстановленной форме. Это соли аммония, мочевины, органические соединения (аминокислоты или пептиды). Окисленные формы азота, главным образом нитраты, также могут потребляться многими прокариотами. Так как азот в конструктивном клеточном метаболизме используется в форме аммиака, нитраты перед включением в органические соединения должны быть восстановлены.

Восстановление нитратов до аммиака осуществляется посредством последовательного действия двух ферментов - нитрат- и нитритредуктазы.

Давно была обнаружена способность отдельных представителей прокариотного мира использовать молекулярный азот атмосферы. В последнее время показано, что этим свойством обладают многие прокариоты, принадлежащие к разным группам: эу- и архебактерии, аэробы и анаэробы, фототрофы и хемотрофы, свободноживущие и симбиотические формы. Фиксация молекулярного азота также приводит к восстановлению его до аммиака.

3.3 Потребности в источниках серы и фосфора

Сера входит в состав аминокислот (цистеин, метионин), витаминов и кофакторов (биотин, липоевая кислота, кофермент А и др.), а фосфор - необходимый компонент нуклеиновых кислот, фосфолипидов, коферментов. В природе сера находится в форме неорганических солей, главным образом сульфатов, в виде молекулярной серы или входит в состав органических соединений. Большинство прокариот для биосинтетических целей потребляют серу в форме сульфата, который при этом восстанавливается до уровня сульфида. Однако некоторые группы прокариот не способны к восстановлению сульфата и нуждаются в восстановленных соединениях серы. Основной формой фосфора в природе являются фосфаты, которые и удовлетворяют потребности прокариот в этом элементе.

3.4 Необходимость ионов металлов

Всем прокариотным организмам необходимы металлы, которые могут использоваться в форме катионов неорганических солей. Некоторые из них (магний, кальций, калий, железо) нужны в достаточно высоких концентрациях, потребность в других (цинк, марганец, натрий, молибден, медь, ванадий, никель, кобальт) невелика. Роль перечисленных выше металлов определяется тем, что они входят в состав основных клеточных метаболитов и, таким образом, участвуют в осуществлении жизненно важных функций организма.

3.5 Потребность в факторах роста

Некоторые прокариоты обнаруживают потребность в одном каком-либо органическом соединении из группы витаминов, аминокислот или азотистых оснований, которое они по каким-то причинам не могут синтезировать из используемого источника углерода. Такие органические соединения, необходимые в очень небольших количествах, получили название факторов роста. Организмы, которым в дополнение к основному источнику углерода необходим один или больше факторов роста, называют ауксотрофами, в отличие от прототрофов, синтезирующих все необходимые органические соединения из основного источника углерода.


Для полной характеристики микроорганизмов используют понятие тип метаболизма. Различия в типах метаболизма определенных групп микроорганизмов обусловлены особенностями конструктивного и спецификой энергетического обменов. В зависимости от используемого источника энергии для получения АТФ микроорганизмы делят на фототрофов (используют энергию света) и хемотрофов (используют энергию химических реакций).

Процесс образования АТФ называется фосфорилированием; он осуществляется в митохондриях (у эукариот) и ферментных системах, локализованных на цитоплазмаческой мембране (у прокариот). Механизм образования, АТФ у разных групп микроорганизмов неодинаков. Различают субстратное, окислительное и фотофосфорилирование. Любой тип фосфорилирования обязательно сопряжен с переносом электронов в ходе окислительно-восстановительных реакций энергитического обмена. При этом одни микроорганизмы в качестве доноров электронов (водорода) используют неорганические, другие - органические соединения. Соответственно первые называются литотрофами, вторые - органотрофами.

Таким образом, принимая во внимание тип питания (авто- или гетеротрофное), природу донора электронов источник энергии (свет или химическая реакция), возможные сочетания вариантов конструктивного и энергетического обменов можно представить в виде следующей схемы.

Каждый из представленных вариантов характеризует определенный тип метаболизма. В табл. 1 приведены представители микроорганизмов каждого типа метаболизма

Большинство микроорганизмов, обитающих в природных источных водах и играющих важную роль в формировавании качества воды и ее очистке, относятся к восьмому и первому типам метаболизма. В связи с этим при дальнейшем изложении материала именно им уделено основное внимание.


Схема 1. Варианты конструктивного и энергетических обменов.

5. Энергетический метаболизм фототрофов

Все указанные в табл. 1 фотосинтезирующие микроорганизмы приспособлены к использованию света видимого (длинна волны 400-700 нм) и ближней инфракрасной части спектра (700-1100 нм). Эта способность существовать за счет энергии света обусловлена присутствием в клетках органоидов со специфическими светочувствительными пигментами. Каждому виду микроорганизмов свойствен характерный и постоянный набор пигментов.

Таблица 1

Тип метаболизма Представители
1) Фотолитоавтотрофия Водоросли, цианобактерии, большинство пурпурных бактерий и зеленых серобактерий.
2) Фотолитогетеротрофия Частично цианобактерии пурпурные и зеленые серобактерии
3) Фотоорганоавтотрофия Некоторые пурпурные бактерии
4) Фотоорганогетеротрофия Большинство несерных пурпурных бактерий
5) Хемолитоавтотрофия Нитрифицирующие, тионовые, некторые железобатерии.
6) Хемолитогетеротрофия Бесцветные серобактерии
7) Хемоорганоавтотрофия Некоторые бактерии окисляющие муравьиную кислоту
8) Хемоорганогетеротрофия Простейшие, грибы, большинство бактерий.

Для некоторых представителей группы цианобактерий наряду с фотолитоавтотрофией показана способность к фотолито- или хемоорганогетеротрофии. Ряд хемолитоавтотрофных видов Thiobacillus способы существовать за счет использования в качестве источников энергии и углерода органических соединений, т. е. хемоорганогетеротрофно.

Некоторые прокариоты могут существовать только на базе одного какого-нибудь способа питания. Например, одноклеточная цианобактерия Synechococcus elongatus может использовать в качестве источника энергии только свет, а как основной источник углерода в конструктивном метаболизме - углекислоту. Характеризуя способ существования (образ жизни, тип метаболизма) этого организма, мы говорим, что он облигатный фотолитоавтотроф. Многие бактерии, относящиеся к роду Thiobacillus, - облигатные хемолитоавтотрофы, т. е. источником энергии для них служат процессы окисления различных соединений серы, а источником углерода для построения веществ тела, - углерод углекислоты. Подавляющее большинство бактерий - облигатные хемоорганогетеротрофы, использующие в качестве источника углерода и энергии органические соединения.

Световая энергия улавливается системой поглощающих пигментов и передается в реакционный центр, который возбуждает молекулы хлорофилла. В темноте молекула хлорофилла находится в стабильном невозбужденном состоянии, когда свет падает на эту молекулу, она возбуждается и один из электронов на более высокий энергитический уровень. Молекулы хлорофилла тесно связаны с системой транспорта электронов. Каждый квант поглощенного света обеспечивает отрыв от молекулы хлорофилла одного электрона, который, проходя по цепи переноса электронов, отдает свою энергию системе АДФ-АТФ, в результате чего энергия света трансформируется в энергию макроэргической связи молекулы АТФ. Такой способ образования АТФ называется фотосинтетическим фосфорилированием.

Однако для осуществления биосинтетических процессов продуктивного обмена микроорганизмам кроме энергии необходим восстановитель - донор водорода (электронов). Для водорослей и цианобактерий таким экзогенным донором водорода служит вода. Восстановление диоксида углерода в процессе фотосинтеза и превращение его в структурные компоненты клетки у этих видов микроорганизмов протекает аналогично фотосинтезу высших растений:

СО2+Н2О→(СН2О)+О2


Формула СН2О символизирует образование органического соединения, в котором уровень окисленности углерода примерно соответствует окисленности углерода в органических веществах клетки.

У фотосинтезирующих бактерий донорами водорода реакций синтеза могут быть как неорганические, так органические вещества. Большинство пурпурных и зеленых серобактерий, относящихся к группе фотолитоавтоавтотрофов восстанавливает СО2, используя Н2S как донор водорода:

СО2+2Н2S→(CH2O)+H2O+2S

Такой тип фотосинтеза получил название фоторедукцищ Основное отличие бактериальной фоторедукции от фотосинтеза и зеленых растений и водорослей заключается в том, что донором водорода служит не вода, а другие соединения и фоторедукция не сопровождается выделением кислорода.

В отличие от неорганических восстановителей, которые выполняют роль только доноров водорода, экзогенные органические восстановители могут одновременно служить и источниками углерода (фотоорганогетеротрофия).

Способность использовать органические соединения той или иной степени присуща всем фотосинтезирующим бактериям. Для фотолитогетеротрофов они служат только источниками углеродного питания, для фотоорганоавтотрофов - только донорами водорода. Например, несерные пурпурные бактерии рода Rhodopseudomonas sp. могут осуществлять фотосинтез, используя в качестве донора водорода изопропанол, восстанавливая при этом диоксид углерода и продуцируя ацетон:

энергия АТФ


СО2 +2СН3СНОНСН3→(СН2О)+ 2СН3СОСН3 +Н2О


6. Энергетический метаболизм хемотрофов, использующих процессы брожения

Из трех путей образования АТФ субстратное фосфорилиронание наиболее простой. Такой тип энергетического метаболизма характерен для многих бактерий и дрожжей, осуществляющих различные виды брожения.

Брожение идет в анаэробных условиях и может быть определено как процесс биологического окисления сложных органических субстратов для получения энергии, при котором конечный акцептор водорода (также органическое вещество) образуется в ходе распада исходного субстрата. При этом одни органические вещества служат донорами водорода и окисляются, другие - акцепторами водорода и в результате восстанавливаются. Перенос водорода от доноров к акцепторам осуществляется с помощью окислительно - восстановительных ферментов.

Кроме углеводов многие бактерии способны сбраживать самые разнообразные соединения: органические кислоты, аминокислоты, пурины и т. д. Условие, определяющее способность вещества к сбраживанию, - наличие в его структуре не полностью окисленных (восстановленных) атомов углерода. Только в этом случае возможна внутри - и межмолекулярная перестройка субстрата за счет сопряжения окислительных и восстановительных реакций без участия кислорода.

В результате процессов брожения в среде накапливаются вещества, в которых степень окисления углерода может быть как выше, так и ниже, чем в исходном субстрате. Однако строгое равновесие окислительных и восстановительных процессов при брожении приводит к тому, что средняя степень окисления углерода остается такой же, как и у субстрата.

Существует несколько типов брожений, названия которым даются по конечному продукту: спиртовое (осуществляют дрожжи и некоторые виды бактерий), пропионовокислое (пропионовые бактерии), метановое (метанобразующие бактерии), маслянокислое (маслянокислые бактерии) и т.д.

Многие микроорганизмы, осуществляющие процессы брожения,- облигатные анаэробы, не способные развиваться в присутствии кислорода и даже более слабых окислителей. Другие - факультативные анаэробы - могут расти как в кислородной среде, так и в бескислородной. Это отличительное свойство факультативных анаэробов объясняется тем, что они могут изменять способ образования АТФ переключаться с окислительного фосфорилирования при наличии в среде кислород на субстратное его отсутствии. Характерная особенность процессов биологического окисления - их многостадийность. обеспечивающая постепенное выделение свободной энергии, заключенной в сложных органических субстратах.

Многостадийность энергетического метаболизма принципиально необходима для жизнедеятельности любого организма. Если бы в клетке окисление сложных веществ протекало в одну стадию, то одновременное освобождение нескольких сотен килоджоулей привело бы к выделению большого количества тепла, резкому повышению температуры и к гибели клетки, поскольку эффективность использования энергии ограничена возможностями системы АДФ-АТФ.

Простейший пример анаэробного окисления глюкозы - молочнокислое брожение. Оно вызывается молочнокислыми бактериями, факультативными анаэробами, не образующими спор. Превращение ПВК при молочнокислом брожении протекает следующим образом:

СН3СОСООН + НАД*Н2, - СН3СНОНСООН + НАД

Значительно сложнее механизм пропионовокислого брожения, служащего источником энергии группе пропионовых бактерий, факультативных анаэробов, неподвижных не спорообразующих бактерий рода Propionibacterium. Эти бактерии синтезируют конечный акцептор, присоединяя к молекуле ПВК СО2. Процесс известен под названием гететеротрофной ассимиляции СО2. В результате образуется щавелевоуксусная кислота - акцептор водорода для НАД*Н2. Дальнейшие ферментативные реакции приводят к образованию пропионовой кислоты.

Маслянокислое брожение осуществляют бактерии род Clostridium. Таким образом, энергетический выход процесса брожения невелик, поскольку органические вещества не окисляются полностью и часть энергии исходного субстрата сохраняется в достаточно сложных продуктах брожения. В большинстве случаев при сбраживании глюкозы клетка запасает две молекулы АТФ на 1 моль глюкозы.

Для получения энергии, необходимой для синтеза клечного вещества и других жизненных функций, микроорганизмам, осуществляющим процессы брожения, приходится перерабатывать большое количество органических веществ.

Именно в силу этих причин на очистных станциях систем водоотведения анаэробные процессы брожения используют для обработки концентрированных субстратов – осадков сточных вод.

Большинство гетеротрофных организмов получают энергию в процессе дыхания - биологического окисления сложных органических субстратов, являющихся донорами водорода. Водород от окисляемого вещества поступает в дыхательную цепь ферментов. Дыхание называют аэробным, если роль конечного акцептора водорода выполняет свободный кислород. Микроорганизмы, способные существовать только в присутствии кислорода, называются облигатными аэробами.

В качестве источников энергии - доноров водорода -хемоорганогетеротрофы в процессе дыхания могут использовать разнообразные окисляемые органические соединения: углеводы, жиры, белки, спирты, органические кислоты и т. д. Суммарно процесс дыхания при окислении углеводов выражается следующим уравнением:

С6Н12О6 + 6О→ 6СО2 + 6Н2О + 2820 кДж

Начальная стадия превращения углеводов вплоть до образования ПВК полностью идентична ферментативным реакциям окисления углеводов в процессе брожения.

В клетках аэробов ПВК может быть окислена полностью в результате ряда последовательных реакций. Совокупность этих превращений составляет цикл, именуемый циклом Кребса или циклом ди- и трикарбоновых кислот (ЦТК).

Водород, отнятый дегидрогеназами в цикле, передается в дыхательную цепь ферментов, которая у аэробов кроме НАД включает ФАД, систему цитохромов и конечный акцептор водорода - кислород. Передача водорода по этой цепи сопровождается образованием АТФ.

Первый этап фосфорилирования связан с передачей водорода от первичной дегидрогеназы на ФАД. Второе фосфорилирование происходит при переходе электрона с цитохрома b на цитохром, третье - при передаче электрона кислороду. Таким образом, на каждые два атома водорода (электрона), поступивших в дыхательную цепь, синтезируется три молекулы АТФ. Образование АТФ одновременно с процессом переноса протона и электрона по дыхательной цепи ферментов называется окислительным фосфорилированием. В некоторых случаях электрон включается в дыхательную цепь на уровне ФАД или даже цитохромов. При этом соответственно уменьшается количество синтезируемых молекул АТФ.

Суммарный энергетический итог процесса окисления 1 моля глюкозы составляет 38 молекул АТФ, из них 24 - при окислении ПВК в цикле Кребса с передачей водорода в дыхательную цепь ферментов. Таким образом, основное количество энергии запасается именно на этой стадии. Замечательно то, что цикл Кребса универсален, т.е. характерен и для простейших, и для бактерий, и для клеток высших животных и растений.

Промежуточные соединения цикла частично используются для синтеза клеточного вещества.

Окисление питательных веществ не всегда идет до конца. Некоторые аэробы окисляют органические соединения частично, при этом в среде накапливаются промежуточные продукты окисления.

Некоторые микроорганизмы в процессе дыхания в качестве конечного акцептора водорода используют не кислород, а окисленные соединения азота (нитриты, нитраты) хлора (хлораты и перхлораты), серы (сульфаты, сульфит тиосульфата), углерода (СО2), хрома (хроматы и бихроматы). Такой тип дыхания называется анаэробным.

Микроорганизмы, осуществляющие процесс дыхания за счет окисленных соединений азота и хлора, относятся факультативным анаэробам. Они имеют две ферментативные системы, позволяющие им переключаться с аэробного дыхния на анаэробное и наоборот в зависимости от присутствия в среде того или иного конечного акцептора.

Если в среде одновременно присутствуют нитраты и молекулярный кислород, то в первую очередь будет использоваться акцептор, позволяющий получить большее количество энергии. Аэробное дыхание сопровождает тремя фосфорилированиями, анаэробное - двумя. Тем не менее, если концентрация кислорода в среде невелика, а концентрация нитратов намного превышает ее, микроорганизмы используют нитраты. Решающим условием в этом случае является свободная энергия реакции восстановления акцептора, которая зависит от его концентрации. Анаэробное дыхание за счет нитратов называется денитрификацией

Окисленные соединения серы, хрома, углерода играют роль конечных акцепторов для разных видов микроорганизмов относящихся к облигатным анаэробам.

У сульфатредуцирующих микроорганизмов обнаружена цепь переноса электронов, включающая несколько ферментов но последовательность их действия остается неясной.

При употреблении сульфатов в качестве конечного акцептора водорода микроорганизмы восстанавливают их до сульфидов:

(органическое вещество - донор водорода) + SO4→Н2S+4Н2О

Анаэробное дыхание с использованием диоксида углерода сопровождается образованием метана.

Окисление восстановленных минеральных соединений азота, серы, железа служит источником энергии для хемолитотрофных микроорганизмов. Деление хемолитотрофных микроорганизмов на группы основано на специфичности каждой группы по отношению к окисляемому соединению. Различают нитрифицирующие бактерии, железобактерии, бактерии, окисляющие соединения серы.

Нитрифицирующие бактерии окисляют аммонийный азот до нитратов. Процесс называется нитрификацией и идет в две фазы, за каждую из которых ответственны свои возбудители:

NH4+2O2→NO2+2H2O+557кДж/моль (1)

2NO2+O2→2NO3+146 кДж/моль (2)

Окисление аммиака до нитритов с передачей электронов в дыхательную цепь служит энергетическим процессом для группы нитрозобактерий. Окисление аммонийного азота - многостадийный процесс, при котором в качестве промежуточных продуктов образуются гидроксиламин (NН2ОН) и гипонитрит (NОН). Энергетическим субстратом, окисляемым в дыхательной цепи, служит гидроксиламин.

Железобактерии (хемолитоавтотрофы) не представляют собой единой таксономической единицы. Этим термином объединяют микроорганизмы, окисляющие восстановленные соединения железа для получения энергии:

4FеСО3 + O2 + 6Н2O→4Fе(ОН)3 + 4СО2+ 167 кДж/моль (6.9)

В транспорте электронов от двухвалентного железа к кислороду принимают участие хиноны и цитохромы. Перенос электронов сопряжен с фосфорилированием.

Эффективность использования энергии у этих бактерий настолько мала, что для синтеза 1 г клеточного вещества им приходится окислять около 500 г углекислого железа.

Бактерии, окисляющие соединения серы и способные к автотрофной ассимиляции СО2, относятся к группе тионовых бактерий. Энергию для конструктивного метаболизма тионовых бактерий получают в результате окисления сульфидов, молекулярной серы, тиосульфатов и сульфитов до сульфатов:

S2-+2O2→SO4+794 кДж/моль (6.10)

S0+H2O+1,5O2→H2SO4+ 585 кДж/моль (6.11)

S2O3+H2O+2O2→2SO4+2H+936 кДж/моль (6.12)

SO3 + 0,5O2→SO4 +251 кДж/моль (6.13)

Дыхательная цепь тионовых бактерий содержит флавопротеиды, убихиноны, цитохромы.

Механизм ассимиляции СО2 в конструктивных целях у всех хемолитоавтотрофов сходен с таковым у фотосинтезитезирующих автотрофов, использующих в качестве донора водорода воду. Основное отличие состоит в том, что в процессе хемосинтеза кислород не выделяется.


Таким образом конструктивные и энергетические процессы протекают в клетке одновременно. У большинства прокариот они тесно связаны между собой. Метаболизм прокариот, как энергетический, так и конструктивный, отличается чрезвычайным разнообразием, которое является результатом способности этих форм жизни использовать в качестве источников энергии и исходных субстратов для построения веществ тела самый широкий набор органических и неорганических соединений.

Энергетический метаболизм в целом сопряжен с биосинтетическими и другими энергозависимыми процессами, происходящими в клетке, для протекания которых он поставляет энергию, восстановитель и необходимые промежуточные метаболиты. Сопряженность двух типов клеточного метаболизма не исключает некоторого изменения их относительных масштабов в зависимости от конкретных условий.

Энергетические процессы прокариот по своему объему (масштабности) значительно превосходят процессы биосинтетические, и протекание их приводит к существенным изменениям в окружающей среде. Разнообразны и необычны в этом отношении возможности прокариот, способы их энергетического существования. Все это вместе взятое сосредоточило внимание исследователей в первую очередь на изучении энергетического метаболизма прокариот.


1. Бакулов И. А. «Энергетический метаболизм прокариот» /Ветеринария/, 2006 №1 стр 38.

2. Бейли, Дж. Э, Оллис, Дэвид Ф Основы биохимической инженерии. М.1989.

3. Воробьев А.А. с соавт. Микробиология. М.: Медицина. 1994.

4. Гусев М.В., Минеева Л.А. Микробиология: Учебник. М.: Изд-во МГУ,1992.

5. Емельяненко П.А. с соавт. Ветеринарная микробиология. М.: Колос. 1982.

6. Колешко О.И. Микробиология. М.: Высшая школа. 1982.

7. Мишустин Е.Н., Емцев В.Т. Микробиология. М.:Колос.1978.

8. Радчук Н.А. Ветеринарная микробиология и иммунология. М.: Агропромиздат. 1991

9. Н. А. Судаков «Обмен веществ и энергии» /Ветеринар/ 2003 №5 стр26.

10. В. Н. Сюрин «Конструктивный метаболизм бактерий» /Практик/ 2005г №4 стр 12.

11. Шлегель Г. Общая микробиология. М.: Мир.1987.

Окислительный метаболизм. Бактерии, об­ладающие окислительным метаболизмом, энергию получают путем дыхания.

Дыхание - процесс получения энергии в реакциях окисления-восстановления, сопряженных с реакциями окислительного фосфорилирования, при котором донора­ми электронов могут быть органические (у органотрофов) и неорганические (у литотрофов) соединения, а акцептором - только неорганические соединения.
У бактерий, обладающих окислительным ме­таболизмом, акцептором электронов (или водорода (Н +)) является молекулярный кислород. В этом случае пируват полностью окисляется в цикле трикарбоновых кислот до С 2 . Цикл трикарбоновых кислот выполняет функции как поставщика предшественников для биосинтетических процессов, так и атомов водорода, который в форме восстановленного НАД пе­реносится на молекулярный кислород через серию переносчиков, обладающих сложной структурно оформленной мультиферментной системой - дыхательной цепью. Дыхательная цепь у бактерий локализована в ЦПМ и во внут­риклеточных мембранных структурах.
Переносчики, осуществляющие транспорт водорода (электронов) на молекулярный кислород, относятся к 4 классам дегидрогеназ, коферментами которых являются НАД, флавопротеины, хиноны и цитохромы. Протоны (электроны) передвигаются от одного носителя к другому в направлении увеличивающегося окислительно-восстановительного потенциала. Типичная цепь выглядит следующим образом:

ЦТК -> НАД(Н 2) -> флавопротеид -> хинон ---> цитохромы: в -> с --> а - O 2

Среди бактериальных цитохромов различа­ют цитохромы в, с, а и а 3 . Конечным этапом переноса электронов (протонов) по дыхательной цепи является восстановление цитохромов а - а3 (цитохромоксидазы). Цитохромоксидаза является конечной оксидазой, передающей электроны на кислород. В процессе переноса электронов по цитохромам меняется валентность входящего в состав железопорфирированной группы железа. Завершается перенос электронов реакцией O 2 + 4F 2+ 2О 2 + 4F 3+ . Образующиеся при окислении ФАД или хинонов протоны связываются ионами О 2 " с образованием воды.

Образование АТФ вдыхательной цепи связы­вают с хемоосмотическим процессом. Особая ориентация переносчиков в ЦПМ приводит к тому, что передача водорода происходит с внутренней на внешнюю поверхность мем­браны, в результате чего создается градиент атомов водорода, проявляющийся в наличии мембранного потенциала. Энергия мембранного потенциала используется для синтеза ло­кализованной в мембране АТФазой АТФ.

В это время у эукариотов ферменты дыха­тельной цепи имеют относительно постоян­ный состав, у бактерий встречаются вариации в составе дыхательной цепи. Так, у многих бактерий вместо убихинонов имеются нафтохиноны, состав цитохромов может зависеть от условий роста бактерий. У некоторых бакте­рий цитохромы отсутствуют, и при контакте с кислородом происходит непосредственный перенос водорода на кислород с помощью флавопротеидов, конечным продуктом при этом оказывается перекись водорода - Н 2 О 2 .

Помимо углеводов прокариоты способны использовать другие органические соедине­ния, в частности белки, в качестве источника энергии, окисляя их полностью до СО 2 и Н 2 О.

Аминокислоты и белки также могут высту­пать в качестве энергетических ресурсов. Их использование связано, в первую очередь, с определенными ферментативными преобразованиями подготовительного характера. Белки вначале вне клетки расщепляются протеолитическими ферментами на пептиды, ко­торые поглощаются клеткой и расщепляются внутриклеточными пептидазами до амино­кислот. Аминокислоты могут использоваться в конструктивном метаболизме, а могут у ам­монифицирующих бактерий служить основ­ным материалом в энергетических процессах при окислительном дезаминировании, в резуль­тате которого происходит выделение аммиака и превращение аминокислоты в кетокислоту, которая через цикл трикарбоновых кислот вступает в конструктивный метаболизм:

2R-CHNH 2 -СООН + O 2 -> 2R-СО-COOH + 2NH 3

Процесс аммонификации известен как «гниение», при этом происходит накопление продуктов, обладающих неприятным специ­фическим запахом образующихся при этом первичных аминов.

Гнилостные бактерии осуществляют мине­рализацию белка, разлагая его до СО 2 , NH 3 , H 2 S. К гнилостным бактериям относятся Proteus, Pseudomonas, Bacillus cereus.

Бродильный (ферментативный) метаболизм.

Ферментация, или брожение, - процесс получения энергии, при котором отщеплен­ный от субстрата водород переносится на органические соединения.

Кислород в процессе брожения участия не принимает. Восстановленные органические соединения выделяются в питательную среду и накапливаются в ней. Ферментироваться могут углеводы, аминокислоты (за исключе­нием ароматических), пурины, пиримидины, многоатомные спирты. Не способны сбра­живаться ароматические углеводороды, стероиды, каротиноиды, жирные кислоты. Эти вещества разлагаются и окисляются только в присутствии кислорода, в анаэробных усло­виях они стабильны. Продуктами брожения являются кислоты, газы, спирты.

При ферментации гексоз (глюкозы) пируват лишь частично окисляется в цикле трикарбоновых кислот. Последний выпол­няет только функции поставщика предшественников для биосинтетических процессов. Энергия в форме 2 молекул АТФ образуется в результате субстратного фосфорилирования, протекающего при окислении триозофосфата в пируват. Отщепившийся от субстра­та водород, находящийся в форме восста­новленного НАД, переносится на пируват, превращая его в цепи реакций в этанол, кислоты, газы. Исходя из природы конечных продуктов, различают несколько типов ферментации углеводов.

Спиртовое брожение. Встречается, в основ­ном, у дрожжей. Конечными продуктами яв­ляются этанол и СО 2 . Сбраживание глюко­зы происходит по ФДФ-пути в анаэробных условиях. При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание. Подавление спиртового брожения кислородом называется эффектом Пастера.

Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.

Молочнокислое брожение. Различают два ти­па молочнокислого брожения: гомоферментативное и гетероферментативное.

При гомоферментативном типе расщеп­ление глюкозы проходит по ФДФ-пути. Водород от восстановленного НАД переда­ется на пируват при помощи лактатдегидрогеназы, при этом образуется молочная кислота. Гомоферментативное молочно­кислое брожение происходит у S. pyogenes, E.faecalis, S. salivarius у некоторых видов рода Lactobacillus: L. dulgaricus, L. lactis.

Гетероферментативное молочнокислое бро­жение присутствует у бактерий, у которых от­сутствуют ферменты ФДФ-пути: альдолаза и триозофосфатизомераза. Расщепление глю­козы происходит по ПФ-пути с образовани­ем фосфоглицеринового альдегида, который превращается далее в пируват по ФДФ-пути ив последующем восстанавливается в лактат. Дополнительными продуктами этого типа бро­жения являются также этанол, уксусная кисло­та. Гетероферментативное молочнокислое бро­жение встречается у различных представителей бактерий родов Lactobacillus и Bifidobacterium.

Продукты молочнокислого брожения игра­ют большую роль в формировании колонизационной резистентности бактериями рода Lactobacillus и Bifidobacterium, составляющих облигатную флору кишечника.

Молочнокислые бактерии широко исполь­зуются в молочной промышленности для получения молочнокислых продуктов, а также в создании пробиотиков.

Муравьинокислое (смешанное) броже­ние. Встречается у представителей семейств Enterobacteriaceae Vibrionaceae. Глюкоза рас­щепляется по ФДФ-пути, глюконат расщепляется по КДФГ-пути.

В зависимости от продуктов брожения, вы­деляющихся в анаэробных условиях, различа­ют два типа процессов:
1. В одном случае происходит расщепление пирувата с образованием ацетилкофермента А и муравьиной кислоты, которая, в свою очередь, может расщепляться на двуокись углерода и молекулярный водород. Другими продуктами брожения, образующимися через цепь реакций, являются этанол, янтарная и молочная кислоты. Сильное кислотообразование можно выявить реакцией с индикато­ром метил-рот, который меняет окраску в сильно кислой среде.
2. При другом типе брожения образуется це­лый ряд кислот, однако главным продуктом брожения являются ацетоин и 2,3-бутандиол. Ацетоин образуется из двух молекул пирувата с последующим двукратным декарбоксилированием. При последующем восстановлении ацетоина образуется 2,3-бутандиол. Эти вещества при взаимодействии аl-нафтол в щелочной среде вызывают образование окраски бурого цвета, что выявляется реакцией Фогеса-Проскауэра, используемой при идентификации бактерий.

Маслянокислое брожение. Масляная кислота, бутанол, ацетон, изопропанол и ряд других ор­ганических кислот, в частности уксусная, капро­новая, валерьяновая, пальмитиновая, являются продуктами сбраживания углеводов сахароли-тическими строгими анаэробами. Спектр этих кислот, определяемый при помощи газожид­костной хроматографии, используется как экс­пресс-метод при идентификации анаэробов.

Ферментация белков. Если для бактерий с бродильным метаболизмом источником энергии служат белки, то такие бактерии называ­ются пептолитическими. Пептолитическими являются некоторые клостридии, в частности С. histolyticum, С. botulinum. Пептолитические бактерии гидролизуют белки и сбраживают аминокислоты. Многие аминокислоты сбра­живаются совместно с другими, при этом од­на выполняет функцию донора, а другая фун­кцию - акцептора водорода. Аминокислота-донор дезаминируется в кетокислоту, которая в результате окислительного декарбоксилирования превращается в жирную кислоту.
5 классификация бактерий по отношению к кислороду. Особенности культивирования анаэробов.

Кислород, широко распространенный в при­роде, находится в свободном и связанном состоянии. В клетках он находится в связанном состоянии в составе воды и органических со­единений. В атмосфере он присутствует в сво­бодном состоянии в виде молекулярной фор­мы, объемная доля которого составляет 21 %.

По отношению к кислороду, а также по использованию его в процессах получения энергии микроорганизмы подразделяются на 3 группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы.

Облигатные аэробы.
Растут и размножаются только в присутствии кислорода. Используют кислород для получе­ния энергии путем кислородного дыхания.

Энергию получают оксидативным метабо­лизмом, используя кислород как терминаль­ный акцептор электронов в реакции, катали­зируемой цитохромоксидазой.

Облигатные аэробы подразделяются на строгие аэробы, которые растут при парци­альном давлении атмосферы воздуха, и микроаэрофилы, которые, используя кислород в процессах получения энергии, растут при его пониженном парциальном давлении.

Это связано с тем, что у микроаэрофилов имеются ферменты, которые инактивируются при контакте с сильными окислителями и активны только при низких значениях парциального давления кислорода, например, фер­мент гидрогеназа.

Облигатные анаэробы.
Не используют кислород для получения энергии.
Тип метаболизма у них - бродильный, за исключением метаболизма у двух видов бактерий: Desulfovibrio и Desulfotomaculum, которые относятся к хемолитотрофам и обладают сульфатным дыханием. Облигатные анаэробы подразделяются на две группы: строгие анаэробы и аэротолерантные.

Строгие анаэробы характеризуются тем, что молекулярный кислород для них токси­чен: он убивает микроорганизмы или огра­ничивает их рост.

Энергию строгие анаэробы получают маслянокислым брожением. К строгим анаэро­бам относятся, например, некоторые клостридии (С. botulinum, С, tetani), бактероиды.

Аэротолерантные микроорганизмы не ис­пользуют кислород для получения энергии, но могут существовать в его атмосфере.

К этой группе относятся молочнокислые бактерии, получающие энергию гетероферментативным молочнокислым брожением.

Методы культивирования анаэробов.
Для культивирования анаэробов необходимо понизить окислительно-восстановительный потенциал среды, соз­дать условия анаэробиоза, т. е. пониженного содержания кислорода в среде и окружающем ее пространстве. Это достигается применением физических, химических и био­логических методов.

Физические методы. Основаны на выращивании мик­роорганизмов в безвоздушной среде, что достигается:
1) посевом в среды, содержащие редуцирующие и легко окисляемые вещества;
2) посевом микроорганизмов в глубину плотных пи­тательных сред;
3) механическим удалением воздуха из сосудов, в ко­торых выращиваются анаэробные микроорганизмы;
4) заменой воздуха в сосудах каким-либо индиффе­рентным газом.

В качестве редуцирующих веществ обычно использу­ют кусочки (около 0,5 г) животных или растительных тканей (печень, мозг, почки, селезенка, кровь, картофель, вата). Эти ткани связывают растворенный в среде кис­лород и адсорбируют бактерии. Чтобы уменьшить содер­жание кислорода в питательной среде, ее перед посевом кипятят 10-15 мин, а затем быстро охлаждают и зали­вают сверху небольшим количеством стерильного вазе­линового масла. Высота слоя масла в пробирке около 1 см.

В качестве легко окисляемых веществ используют глю­козу, лактозу и муравьинокислый натрий.

Лучшей жидкой питательной средой с редуцирующи­ми веществами является среда Китта - Тароцци, кото­рая используется с успехом для накопления анаэробов при первичном посеве из исследуемого материала и для поддержания роста выделенной чистой культуры анаэ­робов.

Посев микроорганизмов в глубину плотных сред про­изводят по способу Виньяль - Вейона, который состоит в механической защите посевов анаэробов от кислорода воздуха. Берут стеклянную трубку длиной 30 см и диа­метром 3-6 мм. Один конец трубки вытягивают в ка­пилляр в виде пастеровской пипетки, а у другого конца делают перетяжку. В оставшийся широкий конец трубки вставляют ватную пробку. В пробирки с расплавленным и охлажденным до 50°С питательным агаром засевают исследуемый материал. Затем насасывают засеянный агар в стерильные трубки Виньяль - Вейона. Капилляр­ный конец трубки запаивают в пламени горелки и трубки помещают в термостат. Так создаются благоприятные условия для роста самых строгих анаэробов. Для выде­ления отдельной колонии трубку надрезают напильни­ком, соблюдая правила асептики, на уровне колонии, ло­мают, а колонию захватывают стерильной петлей и переносят в пробирку с питательной средой для дальней­шего выращивания и изучения в чистом виде.

Удаление воздуха производят путем его механическо­го откачивания из специальных приборов - анаэростатов, в которые помещают чашки с посевом анаэробов. Переносный анаэростат представляет собой толстостен­ный металлический цилиндр с хорошо притертой крыш­кой (с резиновой прокладкой), снабженный отводящим краном и вакуумметром. После размещения засеянных чашек или пробирок воздух из анаэростата удаляют с помощью вакуумного насоса.

Замену воздуха индифферентным газом (азотом, во­дородом, аргоном, углекислым газом) можно производить в тех же анаэростатах путем вытеснения его газом из баллона.

Химические методы. Основаны на поглощении кисло­рода воздуха в герметически закрытом сосуде (анаэростате, эксикаторе) такими веществами, как пирогаллол или гидросульфит натрия Na 2 S2О 4 .
Биологические методы. Основаны на совместном вы­ращивании анаэробов со строгими аэробами. Для этого из застывшей агаровой пластинки по диаметру чашки вырезают стерильным скальпелем полоску агара шири­ной около 1 см. Получается два агаровых полудиска в одной чашке. На одну сторону агаровой пластинки засе­вают аэроб, например, часто используют S.aureus или Serratiamarcescens. На другую сторону засевают ана­эроб. Края чашки заклеивают пластилином или заливают расплавленным парафином и помещают в термостат. При наличии подходящих условий в чашке начнут размно­жаться аэробы. После того, как весь кислород в прост­ранстве чашки будет ими использован, начнется рост анаэробов (через 3-4 сут). В целях сокращения воздуш­ного пространства в чашке питательную среду наливают возможно более толстым слоем.
Комбинированные методы. Основаны на сочетании фи­зических, химических и биологических методов создания анаэробиоза.

6 ферменты бактерий. Их классификация. Ферментативная активность микробов и ее использование для идентификации бактерий.
В основе всех метаболических реакций в бактериальной клетке лежит деятельность ферментов, которые принадлежат к 6 клас­сам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Ферменты, образу­емые бактериальной клеткой, могут локали­зоваться как внутри клетки - эндоферменты, так и выделяться в окружающую среду - экзоферменты. Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь ис­точниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепля­ют крупные молекулы пептидов, полисаха­ридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализо­ваны в периплазматическом пространстве бактериальной клетки. Они участвуют в про­цессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и - в некоторых слу­чаях - для видов. Поэтому определением спектра ферментативной активности поль­зуются при установлении таксономического положения бактерий. Наличие экзофермен­тов можно определить при помощи диффе­ренциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.

Идентификация бактерий по фер­ментативной активности.

Наиболее ча­сто определяют ферменты класса гидролаз и оксидоредуктаз, используя специальные методы и среды.

Для определения протеолитической активности мик­роорганизмы засевают в столбик желатина уколом. Че­рез 3-5 дней посевы просматривают и отмечают харак­тер разжижения желатина. При разложении белка некоторыми бактериями могут выделяться специфические продукты - индол, сероводород, аммиак. Для их опреде­ления служат специальные индикаторные бумажки, ко­торые помещают между горлышком и ватной пробкой в пробирку с МПБ или (и) пептонной водой, засеянными изучаемыми микроорганизмами. Индол (продукт разло­жения триптофана) окрашивает в розовый цвет полоску бумаги, пропитанной насыщенным раствором щавелевой кислоты. Бумага, пропитанная раствором ацетата свинца, в присутствии сероводорода чернеет. Для определения аммиака используют красную лакмусовую бумажку.

Для многих микроорганизмов таксономическим при­знаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продук­тов . Для выявления этого используют среды Гисса, со­держащие различные углеводы (глюкозу, сахарозу, маль­тозу, лактозу и др.). Для обнаружения кислот в среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2-6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом».

Для обнаружения газообра­зования в жидкие среды опускают поплавки или исполь­зуют полужидкие среды с 0,5% агара.

Для того чтобы оп­ределить интенсивное кислотообразование , характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный -при более низких значениях рН.

Гидролиз мочевины определяют по выделению ам­миака (лакмусовая бумажка) и подщелачиванию среды.

При идентификации многих микроорганизмов исполь­зуют реакцию Фогеса - Проскауэра на ацетоин - проме­жуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свиде­тельствует о наличии бутандиолового брожения.

Обнаружить каталазу можно по пузырькам кислорода, которые начинают выделяться сразу же после смешива­ния микробных клеток с 1 % раствором перекиси водоро­да.

Для определения цитохромоксидазы применяют ре­активы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный раствор N-диметил-р-фенилендиамина дигидрохлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появ­ляющемуся через 2-5 мин.

Для определения нитритов используют реак­тив Грисса: По­явление красного окрашивания свидетельствует о нали­чии нитритов.

7 рост и размножение бактерий. Температурные границы роста. Фазы размножения бактерий на жидких питательных средах.
Жизнедеятельность бактерий характеризуется ростом
- фор­мированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, атакже размноже­нием - самовоспроизведением, приводящим к увеличению ко­личества бактериальных клеток в популяции.
Бактерии размножаются путем бинарного деления пополам, реже путем почкования. Актиномицеты, как и грибы, могут раз­множаться спорами. Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтези­рующихся перегородок деления внутрь клетки, а грамотрицательные - путем перетяжки, в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки.
Делению клеток предшествует репликация бактериальной хро­мосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается, и каждая нить достраивается комплементарной ни­тью), приводящая к удвоению молекул ДНК бактериального ядра - нуклеоида.
Репликация ДНК происходит в три этапа: инициация, элон­гация, или рост цепи, и терминация.
Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питатель­ной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и пре­кращению роста бактерий. Культивирование бактерий в такой си­стеме называют периодическим культивированием, а культуру - периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивиро­вание называется непрерывным, а культура - непрерывной.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов :
1. лаг-фаза;
2. фаза логарифмического роста;
3. фаза стационарного роста, или максимальной концентрации бактерий;
4. фаза гибели бактерий.
Эти фазы можно изобразить графически в виде отрезков кри­вой размножения бактерий, отражающей зависимость логариф­ма числа живых клеток от времени их культивирования.

Лаг-фаза - период между по­севом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4-5 ч. Бактерии при этом увеличиваются в раз­мерах и готовятся к делению; нарастает количество нуклеино­вых кислот, белка и других компонентов.
Фаза логарифмического (экспоненциального) роста является периодом ин­тенсивного деления бактерий. Продолжительность ее около 5- 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20-40 мин. Во время этой фазы бактерии наиболее ра­нимы, что объясняется высокой чувствительностью компонен­тов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.
Затем наступает фаза стационарного роста , при которой количество жиз­неспособных клеток остается без изменений, составляя макси­мальный уровень (М-концентрация). Ее продолжительность вы­ражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.
Завершает процесс роста бактерий фаза гибели , характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжи­тельность её колеблется от 10 ч до нескольких недель. Интен­сивность роста и размножения бактерий зависит от многих факторов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.
Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолирован­ные колонии округлой формы с ровными или неровными кра­ями (S- и R-формы), различной консистенции и цве­та, зависящего от пигмента бактерий.

Пигменты, растворимые в воде, диффундируют в питатель­ную среду и окрашивают её. Дру­гая группа пигментов нерастворима в воде, но растворима в орга­нических растворителях. И, нако­нец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

Наиболее распространены среди микроорганизмов такие пиг­менты, как каротины, ксантофиллы и меланины. Меланины яв­ляются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксидцисмутазой и пероксидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают ан­тимикробным, антибиотикоподобным действием.

8 принципы культивирования бактерий. Методы выделения чистых культур бактерий, цель.
Универсальным инструментом

Посевы «газоном»

Чистой культурой называется популяция бактерий од­ного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты - биовары . Биовары, различающие­ся по биохимическим свойствам, называют хемоварами , по анти­генным свойствам -сероварами , по чувствительности к фагу - фаговарами . Культуры микроорганизмов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами , которые обычно обозначаются номерами или какими-либо сим­волами. Чистые культуры бактерий в диагностических бактерио­логических лабораториях получают из изолированных колоний, пересевая их петлей в пробирки с твердыми или, реже, жидкими питательными средами.

Колония представляет собой видимое изолированное скоп­ление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей мор­фологии, цвету и другим признакам.

Чистую культуру бактерий получают для проведения диагно­стических исследований - идентификации, которая достигается путем определения морфологических, культуральных, биохимиче­ских и других признаков микроорганизма.

Морфологические и тинкториальные признаки бактерий изучают при микроскопическом исследовании мазков, окрашенных разными методами, и нативных препаратов.

Культуральные свойства характеризуются питатель­ными потребностями, условиями и типом роста бактерий на плот­ных и жидких питательных средах. Они устанавливаются по мор­фологии колоний и особенностям роста культуры.

Биохимические признаки бактерий определяются на­бором конститутивных и индуцибельных ферментов, присущих определенному роду, виду, варианту. В бактериологической прак­тике таксономическое значение имеют чаще всего сахаролитические и протеолитические ферменты бактерий, которые определя­ют на дифференциально-диагностических средах.

При идентификации бактерий до рода и вида обращают вни­мание на пигменты, окрашивающие колонии и культуральную среду в разнообразные цвета. Например, красный пигмент обра­зуют Serratia marcescens, золотистый пигмент - Staphylococcus aureus (золотистый стафилококк), сине-зеленый пигмент - Pseu-domonas aeruginosa.

Для установления биовара (хемовара, серовара, фаготипа) проводят дополнительные исследования по выявлению соответствующего маркера – определению фермента, антигена, чувствительности к Фанам.

Методы выделения чистых культур бакте­рий.

Универсальным инструментом для производства посевов явля­ется бактериальная петля. Кроме нее, для посева уколом при­меняют специальную бактериальную иглу, а для посевов на чашках Петри - металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пасте­ровские и градуированные пипетки. Первые предварительно из­готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка­пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за­крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая дру­гими пальцами той же руки петлю, набирают ею посевной ма­териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней ча­сти среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надписывают, указывая дату посева и характер посевного мате­риала (номер исследования или название культуры).

Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, пет­лей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горел­ки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

  • Модуль 2. Понятие метаболизма, гомеостаза, физиологической адаптации человека.
  • Морфо-функциональная характеристика нейрона (сомы, дендритов, аксона, аксонного транспорта, метаболизма). Типы нервных клеток. Функциональная классификация нейронов.