Болезни Военный билет Призыв

Лекции по термодинамике и статистической физике. Статистическая физика

Термодинамика и статистическая физика

Методические указания и контрольные задания для студентов заочного обучения

Шелкунова З.В., Санеев Э.Л.

Методическое указания и контрольные задания для студентов заочного обучения инженерно-технических и технологических специальностей. Содержат разделы программ ”Статистическая физика”, ”Термодинамика”, примеры решения типовых задач и варианты контрольных заданий.

Ключевые слова: Внутренняя энергия, теплота, работа; изопроцессы, энтропия: функции распределения: Максвелла, Больцмана, Бозе – Эйнштейна; Ферми – Дирака; Энергия Ферми, теплоемкость, характеристическая температура Эйнштейна и Дебая.

Редактор Т.Ю.Артюнина

Подготовлено в печать г. Формат 6080 1/16

Усл.п.л. ; уч.-изд.л. 3,0; Тираж ____ экз. Заказ № .

___________________________________________________

РИО ВСГТУ, Улан-Удэ, Ключевская, 40а

Отпечатано на ротапринте ВСГТУ, Улан-Удэ,

Ключевская, 42.

Федеральное агентство по образованию

Восточно-Сибирский государственный

технологический университет

ФИЗИКА №4

(Термодинамика и статистическая физика)

Методические указания и контрольные задания

для студентов заочного обучения

Составитель: Шелкунова З.В.

Санеев Э.Л.

Издательство ВСГТУ

Улан-Удэ, 2009

Статистическая физика и термодинамика

Тема 1

Динамические и статистические закономерности в физике. Термодинамический и статистический методы. Элементы молекулярно-кинетической теории. Макроскопическое состояние. Физические величины и состояния физических систем. Макроскопические параметры как средние значения. Тепловое равновесие. Модель идеального газа. Уравнение состояния идеального газа. Понятие о температуре.

Тема 2

Явления переноса. Диффузия. Теплопроводность. Коэффициент диффузии. Коэффициент теплопроводности. Температуропроводность. Диффузия в газах, жидкостях и твердых телах. Вязкость. Коэффициент вязкости газов и жидкостей.

Тема 3

Элементы термодинамики. Первое начало термодинамики. Внутренняя энергия. Интенсивные и экстенсивные параметры.

Тема 4

Обратимые и необратимые процессы. Энтропия. Второе начало термодинамики. Термодинамические потенциалы и условия равновесия. Химический потенциал. Условия химического равновесия. Цикл Карно.

Тема 5

Функции распределения. Микроскопические параметры. Вероятность и флуктуации. Распределение Максвелла. Средняя кинетическая энергия частицы. Распределение Больцмана. Теплоемкость многоатомных газов. Ограниченность классической теории теплоемкости.

Тема 6

Распределение Гиббса. Модель системы в термостате. Каноническое распределение Гиббса. Статистический смысл термодинамических потенциалов и температуры. Роль свободной энергии.

Тема 7

Распределение Гиббса для системы с переменным числом частиц. Энтропия и вероятность. Определение энтропии равновесной системы через статистический вес микросостояния.

Тема 8

Функции распределения Бозе и Ферми. Формула Планка для разновесного теплового излучения. Порядок и беспорядок в природе. Энтропия как количественная мера хаотичности. Принцип возрастания энтропии. Переход от порядка к беспорядку о состоянии теплового равновесия.

Тема 9

Экспериментальные методы исследования колебательного спектра кристаллов. Понятие о фононах. Законы дисперсии для акустических и оптических фононов. Теплоемкость кристаллов при низких и высоких температурах. Электронные теплоемкость и теплопроводность.

Тема 10

Электроны в кристаллах. Приближение сильной и слабой связи. Модель свободных электронов. Уровень Ферми. Элементы зонной теории кристаллов. Функция Блоха. Зонная структура энергетического спектра электронов.

Тема 11

Поверхность Ферми. Число и плотность числа электронных состояний в зоне. Заполнения зон: металлы, диэлектрики и полупроводники. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n переходе. Транзистор.

Тема 12

Электропроводность металлов. Носители тока в металлах. Недостаточность классической электронной теории. Электронный ферми-газ в металле. Носители тока как квазичастицы. Явление сверхпроводимости. Куперовское спаривание электронов. Туннельный контакт. Эффект Джозефсона и его применение. Захват и квантование магнитного потока. Понятие о высокотемпературной проводимости.

СТАТИСТИЧЕСКАЯ ФИЗИКА. ТЕРМОДИНАМИКА

Основные формулы

1. Количество вещества однородного газа (в молях):

где N -число молекул газа; N A - число Авогадро; m -масса газа; -молярная масса газа.

Если система представляет смесь нескольких газов, то количество вещества системы

,

,

где i , N i , m i , i - соответственно количество вещества, число молекул, масса, молярная масса i -й компоненты смеси.

2. Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа):

где m - масса газа; - молярная масса; R - универсальная газовая постоянная; = m/ - количество вещества; T -термодинамическая температура Кельвина.

3. Опытные газовые законы, являющиеся частными случаями уравнения Клапейрона-Менделеева для изопроцессов:

    закон Бойля-Мариотта

(изотермический процесс - Т =const; m=const):

или для двух состояний газа:

где p 1 и V 1 - давление и объем газа в начальном состоянии; p 2 и V 2

    закон Гей-Люссака (изобарический процесс - p=const, m=const ):

или для двух состояний:

где V 1 и Т 1 - объем и температура газа в начальном состоянии; V 2 и Т 2 - те же величины в конечном состоянии;

    закон Шарля (изохорический процесс - V=const, m=const ):

или для двух состояний:

где р 1 и Т 1 - давление и температура газа в начальном состоянии; р 2 и Т 2 - те же величины в конечном состоянии;

    объединенный газовый закон (m=const ):

где р 1 , V 1 , Т 1 - давление, объем и температура газа в начальном состоянии; р 2 , V 2 , Т 2 - те же величины в конечном состоянии.

4. Закон Дальтона, определяющий давление смеси газов:

р = р 1 + р 2 + ... +р n

где p i - парциальные давления компонент смеси; n - число компонентов смеси.

5. Молярная масса смеси газов:

где m i - масса i -го компонента смеси; i = m i / i - количество вещества i -го компонента смеси; n - число компонентов смеси.

6. Массовая доля  i i -го компонента смеси газа (в долях единицы или процентах):

где m - масса смеси.

7. Концентрация молекул (число молекул в единице объема):

где N -число молекул, содержащихся в данной системе;  - плотность вещества. Формула справедлива не только для газов, но и для любого агрегатного состояния вещества.

8. Основное уравнение кинетической теории газов:

,

где <> - средняя кинетическая энергия поступательного движения молекулы.

9. Средняя кинетическая энергия поступательного движения молекулы:

,

где k - постоянная Больцмана.

10. Средняя полная кинетическая энергия молекулы:

где i - число степеней свободы молекулы.

11. Зависимость давления газа от концентрации молекул и температуры:

p = nkT.

12. Скорости молекул:

средняя квадратичная ;

средняя арифметическая ;

наиболее вероятная ,

Классическая и квантовая статистическая физика. Вывод соотношения Гиббса. Термодинамические принципы. Теорема Лиувилля и кинетические уравнения Больцмана и Циглера. Методы статистической физики в гетерогенных средах.

1. Вывод соотношения Гиббса

Вводные замечания . Центральное место в механике гетерогенных сред занимает вывод определяющих уравнений. Именно определяющие уравнения содержат в себе спецификацию, позволяющую различать среды с разными механическими свойствами. Существуют различные способы вывода определяющих уравнений – как строгие на основе методов осреднения, так и эвристические. Наиболее распространенным методом является сочетание мысленных экспериментом с учетом термодинамических принципов. Оба эти подхода являются феноменологическими, хотя термодинамический метод глубоко проработан и основан на фундаментальных физических законах. Очевидно, что феноменологический вывод определяющих соотношений нуждается в обосновании, исходя из общих физических принципов, в частности, с использованием статистических методов.

Статистическая физика изучает системы, состоящие из огромного числа одинаковых или близких по составу элементов (атомов, молекул, ионов, субмолекулярных структур и т.п.). В механике гетерогенных сред такими элементами являются микронеоднородности (поры, трещины, зерна и т.п.). Исследование их детерминированными методами практически невозможно. В то же самое время огромное количество этих элементов допускает проявление статистических закономерностей и исследование этой системы статистическими методами.

В основе статистических методов лежат понятия основной системы и подсистемы. Основная система (термостат) значительно больше подсистемы, но обе они находятся в состоянии термодинамического равновесия. Объектом исследования в статистической физике является именно подсистема, которая в механике сплошной среды отождествляется с элементарным объемом, а в в механике гетерогенной среде с объемом фаз в элементарном объеме.

В основе метода Гиббса в статистической физике лежит понятия фазового пространства и траектории в фазовом пространстве. Фазовое пространство представляет собой топологическое произведение координатного и импульсного пространств каждой частицы составляющей подсистему. Траектории в фазовом пространстве содержит много лишней информации, например, начальные значения и сведения о граничных условиях, когда траектория выходит на границу. При описании одной единственной траектории в фазовом пространстве обычно используется эргодическая гипотеза (или некоторый ее суррогат, который несколько видоизменяет ее, но зато поддается строгому доказательству). Тонкости доказательства эргодической гипотезы не имеют значения, и поэтому мы на них не останавливаемся. Она позволяет одну траекторию заменить целым ансамблем состояний. Эквивалентное описание с помощью ансамбля состояний позволяет избавиться от указанной излишней информации. Ансамбль состояний допускает простую и прозрачную интерпретацию. Его можно представить себе как некоторый фиктивный газ в фазовом пространстве, который описывается с помощью уравнения переноса.

Статистический подход включает в себя два уровня исследования – квантовый и классический. Каждая микроскопическая неоднородность гетерогенной среды описывается механикой сплошной среды как некоторое однородное гомогенное тело. Предполагается, что при исследовании механических и термодинамических свойств этих неоднородностей уже была использована теория квантовой статистической физики. Когда мы производим осреднение по случайным неоднородностям в гетерогенной среде, то указанные неоднородности мы рассматриваем уже как классические случайные объекты. Ход рассуждений в квантовой и классической статистической физике очень схож, хотя он и имеет некоторые различия. В квантовой статистике фазовый объем принимает дискретные значения. Однако это не единственное различие. В квантовой статистике фиктивный газ несжимаем и подвергается только переносу. В классической статистике в уравнении переноса фигурирует член, описывающий диссипативные процессы на молекулярном уровне. Формально он выглядит как источник. Дивергентный вид этого источника позволяет сохранить полную массу фиктивного газа, но допускает его локальное исчезновение и появление. Этот процесс напоминает диффузию в фиктивном фазовом пространстве.

Далее на основе классической статистики в дальнейшем излагается собственно термодинамика, в том числе и термодинамика необратимых процессов. Вводятся понятия термодинамических функций, с помощью которых выводятся определяющие уравнения. Пороупругие среды включают в себя консервативные и диссипативные процессы. В скелете происходят обратимые упругие деформации, которые представляют собой консервативную термодинамическую систему, а диссипативные процессы происходят во флюиде. В поровязкой среде обе фазы (скелетная и флюидная) являются диссипативными.

Микропроцессы и макропроцессы . В гетерогенных средах подсистемой является элементарный объем, который удовлетворяет постулатам гетерогенных сред. В частности он удовлетворяет условию локальной статистической однородности и локального термодинамического равновесия. Соответственно все объекты и процессы различаются по своим масштабам на микропроцессы и макропроцессы. Будем описывать макропроцессы с помощью обобщенных координати обобщенных сил. Здесь нижние индексы означают не только векторные и тензорные индексы, но и различные величины (в том числе и величины с разной тензорной размерностью). При рассмотрении микропроцессов будем пользоватьсяобобщенными координатами иобобщенными скоростями . Эти координаты описывают движение больших молекул, их ассоциаций и неоднородностей, которые рассматриваются как классические объекты. Фазовое пространство подсистемы образовано координатамии скоростямивсех частиц слагающих данный элементарный объем.

Следует отметить, что в квантовой механике природа частиц строго установлена. Число частиц конечно, а законы их движения известны и единообразны для каждого сорта частиц. Совсем другая ситуация возникает в механике гетерогенных сред. Как правило, мы имеем выведенные феноменологическими методами определяющие соотношения для каждой из фаз. Общие определяющие соотношения для всего элементарного объема на макроуровне обычно являются предметом исследования. По этой причине взаимодействие элементов на микроуровне в гетерогенных средах не поддается стандартным методам исследования.

В этой связи требуются новые методы и подходы, которые еще до конца не разработаны. Одним из таких подходов является обобщение теории Гиббса, сделанное Циглером. Суть его состоит в некотором видоизменении уравнения Лиувилля. Более детально этот подход будет изложен ниже. Вначале мы даем стандартное изложение теории Гиббса, а затем излагаем идеи, которые позволяют обобщить ее.

Энергия системы меняется за счет работы
на макроуровне, которая выражается соотношением

. Она также меняется за счет притока тепла
, связанного с движением молекул. Выпишем первое начало термодинамики в дифференциальной форме

. (1.1)

Будем описывать микропроцессы с помощью уравнений Лагранжа

, (1.2) где
функция Лагранжа ,– кинетическая, а– потенциальная энергия.

В теории Гиббса накладываются следующие ограничения. Предполагается, что потенциальная энергия зависит микрокоординат и макрокоординат, а кинетическая энергия – только от микрокоординат и их скоростей. При таких условиях функция Лагранжа не зависит от времени и от макроскоростей.

.

Подход, основанный на уравнениях движения в форме Лагранжа (1.2) можно заменить эквивалентным гамильтоновым формализмом, вводя обобщенные импульсы для микрокоординат

,
, ифункцию Гамильтона
, которая имеет смысл полной энергии частицы. Выпишем приращение функции Гамильтона

В силу определения импульсов и уравнений движения Лагранжа это выражение преобразуется

, (1.2) откуда следуютуравнения движения Гамильтона

,
. (1.3a) где
имеет смысл энергии системы, а также дополнительное тождество рас

. (1.3b)

Здесь следует заметить, что функции Лагранжа и Гамильтона выражены через разные аргументы. Поэтому последнее тождество имеет не совсем тривиальный смысл. Выпишем дифференциальное выражение (1.2) для одной частицы вдоль ее траектории

.

С помощью (1.3) преобразуем это выражение

.

Следовательно, энергия частицы зависит только от обобщенных макрокоординат. Если они со временем не меняются, то энергия сохраняется.

Статистический метод описания системы . Недостаток информации о начальных условиях для системы (1.3) и об ее поведении на границе тела можно преодолеть, если воспользоваться статистическим подходом к исследованию этой системы. Пусть данная механическая система имеетстепеней свободы, связанных с микроскопическими переменными. Другими словами, положение всех точек в обычном трехмерном пространстве характеризуетсяобобщенными координатами (
). Рассмотрим фазовое пространство большего числа переменных
. Фазовое состояние характеризуется точкой с координатами
в
-мерном евклидовом пространстве. На практике мы всегда исследуем какой-то конкретный объект, который является частью некоторой большой (по сравнению с данным объектом) системы (внешней средой ). Этот объект обычно взаимодействует с внешней средой. Поэтому в дальнейшем мы будем говорить оподсистеме (которая занимает часть фазового пространства), взаимодействующей с системой (занимающей все фазовое пространство).

При движение в
-мерном пространстве единственная траектория постепенно заполняет все это фазовое пространство. Положим
и обозначим посредством
ту часть объема фазового пространства, в котором данная подсистема проводит "почти все время". Здесь имеется в виду то время, в течение которого подсистема находится в квазиравновесном состоянии. За достаточно длительный промежутка времени фазовая траектория много раз пройдет через этот участок фазового пространства. Примем эргодическую гипотезу, согласно которой вместо одной движущейся точки в фазовом пространстве можно рассматривать множество точек, образующих статистический ансамбль. Переходя к бесконечно малому элементарному фазовому объему

, введем непрерывную функцию распределенияс помощью соотношения

. Здесь– число точек в элементе фазового объема
,
полное число точек во всем фазовом пространстве,– некоторый нормировочный коэффициент, который имеет размерность действия. Он характеризует статистический вес выбранного элемента объема фазового пространства. Функция распределения удовлетворяет условию нормировки

или
. (1.4)

Пусть
– суммарное время, которое система проводит в пределах элементарного объема
, аполное время движения материальной точки по своей траектории. В соответствии с эргодической гипотезой положим, что

. (1.5)

Рассуждая чисто формально, можно считать, что в фазовом пространстве находится некоторый фиктивный газ, плотность которого равна плотности числа точек фазового пространства. Сохранение числа фиктивных молекул газа выражается уравнением переноса в фазовом пространстве, аналогичным закону сохранения массы в обычном трехмерном пространстве. Этот закон сохранения называется теоремой Лиувилля

. (1.6)

В силу уравнений Гамильтона вытекает условие несжимаемости фазовой жидкости

(1.7)

Введем конвективную производную

.

Комбинируя (1.6) и (1.7), получаем уравнение переноса фазовой жидкости

или
. (1.8)

В силу эргодической гипотезы плотность числа частиц в фазовом пространстве пропорциональна плотности вероятности в ансамбле состояний. Поэтому уравнение (1.8) можно представить в виде

. (1.9)

В состоянии равновесия при неизменных внешних параметрах энергия микросистемы, представленная гамильтонианом, сохраняется вдоль траектории в фазовом пространстве. Точно также в силу (1.9) сохраняется и плотность вероятности. Отсюда следует, что плотность вероятности является функцией энергии.

. (1.10)

Зависимость отлегко получить, если заметить, что энергии подсистем складываются, а вероятности – перемножаются. Этому условию удовлетворяет единственная форма функциональной зависимости

. (1.11) Это распределение называется каноническим. Здесь– постоянная Больцмана, величины
и
имеют размерность энергии. Величины
иназываются свободной энергией и температурой.

Определим внутреннюю энергию как среднее значение истинной энергии

. (1.12)

Подставляя сюда (1.11), получаем

.

Энтропия определяется как

Соотношение (1.13) вводит новое понятие – энтропию. Второй закон термодинамики гласит, что в неравновесном состоянии системы ее энтропия стремится к возрастанию, а в состоянии термодинамического равновесия энтропия остается постоянной. Комбинируя (1.12) и (1.13), получаем

. (1.14) Соотношение (1.14) является основой для вывода других термодинамических функций, описывающих равновесное состояние подсистемы.

Предположим, что внутри фазового объема
данной подсистемы плотность вероятности почти постоянна. Другими словами, данная подсистема слабо связана с окружающей средой и находится в состоянии равновесия. Для нее справедливо соотношение

. (1.15) Здесь
– дельта функция.

Такое распределение называется микроканоническим в отличие от канонического распределения (1.11). На первый взгляд кажется, что оба распределения сильно отличаются и даже противоречат друг другу. На самом деле, между ними нет никакого противоречия. Введем радиус в многомерном фазовом пространстве очень большого числа измерений. В тонком эквидистантном (по энергии) сферическом слое число точек значительно превышает число точек внутри этой сферы. Именно по этой причине распределения (1.11) и (1.15) мало отличаются друг от друга.

Для того, чтобы удовлетворить последнему соотношению (1.4) необходимо, чтобы эта плотность вероятности была равна

. (1.16)

Подставим распределение (1.11) в последнее соотношение (1.4)

и продифференцируем его. Считая, что
является функцией макрокоординат, имеем

,
.

С помощью (1.14) преобразуем это выражение

. (1.17a) Здесь
– поток тепла,
– работа внешних сил. Это соотношение впервые вывел Гиббс, и оно носит его имя. Для газа оно имеет особенно простой вид

. (1.17b) Здесь– давление,– объем.

На феноменологическом уровне дается также и определение температуры. Заметим, что тепловой поток не является дифференциалом термодинамической функции, в то же время энтропия таковой является по определению. По этой причине в выражении (1.17) существует интегрирующий множитель , который и называется температурой. Можно взять некоторое рабочее тело (воду или ртуть) и ввести шкалу изменения температуры. Такое тело называетсятермометром . Запишем (1.17) в форме

. Температура в этом соотношении является некоторой интенсивной величиной.

Обобщенные силы и смещения являются термодинамически сопряженными величинами. Точно также температура и энтропия являются сопряженными величинами, из которых одна является обобщенной силой, а другая – обобщенным смещением. Из (1.17) следует

. (1.18)

В силу (1.14) для свободной энергии имеем аналогичное дифференциальное выражение

. (1.19) В этом соотношении температура и энтропия как сопряженные величины меняются местами, а выражение (1.18) видоизменяется

. (1.20)

Для того, чтобы использовать эти соотношения, необходимо задать независимые определяющие параметры и выражения для термодинамических функций.

Для температуры можно дать и более строгое определение. Рассмотрим, например, замкнутую (изолированную) систему, состоящую и из двух тел и находящуюся в состоянии термодинамического равновесия. Энергия и энтропия являются аддитивными величинами
,
. Заметим, что энтропия является функцией энергии, поэтому
. В равновесном состоянии энтропия является стационарной точкой относительно перераспределения энергии между двумя подсистемами, т.е.

.

Отсюда непосредственно следует

. (1.21)

Производная энтропии по энергии называется абсолютной температурой (или просто температурой ). Этот факт вытекает также непосредственно из (1.17). Соотношение (1.21) означает нечто большее: в состоянии термодинамического равновесия температуры тел равны

. (1.22)

Лекция 2.

Термодинамика, статистическая физика, информационная энтропия

1. Сведения из термодинамики и статистической физики. Функция распределения. Теорема Лиувилля. Микроканоническое распределение. Первое начало термодинамики. Адиабатические процессы. Энтропия. Статистический вес. Формула Больцмана. Второе начало термодинамики. Обратимые и необратимые процессы.

2. Информационная энтропия Шеннона. Биты, наты, триты и проч. Связь энтропии и информации.

Эта часть относится к лекции 1. Ее лучше рассматривать в разделе V (“Концепция “перепутывания” (entanglement) квантовых состояний”).

ЛЭ CNOT изображается в виде:

Сохраняем значение (ку)бита а, в то время как (ку)бит b меняется по закону XOR:

бит b (мишень = target) меняет свое состояние тогда и только тогда, когда состояние контрольного (control) бита a соответствует 1; при этом, состояние контрольного бита не меняется.

Логическая операция XOR (CNOT) иллюстрирует почему классические данные могут быть клонированы, а квантовые - нет. Заметим, что в общем случае под квантовыми данными мы будем понимать суперпозиции вида

, (1)

где и - комплексные числа или амплитуды состояний, причем, .

Согласно таблице истинности, если XOR применить к булевым данным, в которых второй бит находится в состоянии “0” (b), а первый -в состоянии “Х” (a), то первый бит не изменяется, а второй становится его копией:

U XOR (X, 0) = (X, X), где Х = “0” или “1”.

В квантовом случае, в качестве данных, обозначенных символом “Х”, нужно рассматривать суперпозицию (1):

.

Физически, данные можно закодировать, например, в поляризационном базисе |V> = 1, |H> = 0 (H,V)= (0,1):

и

Видно, что действительно имеет место копирование состояния. Теорема о запрете клонирования утверждает, что невозможно копирование произвольного квантового состояния. В рассмотренном примере копирование произошло, поскольку операция производилась в собственном базисе (|0>, |1>), т.е. в частном случае квантового состояния.

Казалось бы, что операцию XOR можно использовать и для копирования суперпозиций двух булевых состояний, таких как |45 0 > ? |V> + |H>:

Но это не так! Унитарность квантовой эволюции требует, чтобы суперпозиция входных состояний преобразовывалась в соответствующую суперпозицию выходных состояний:

(2)

Это т.н. перепутанное состояние (Ф +), в котором каждый из двух выходных кубитов не имеет определенного значенияданном случае - поляризации). Этот пример показывает, что логические операции, выполняемые над квантовыми объектами происходят по другим правилам, нежели в классических вычислительных процессах.

Возникает следующий вопрос : Вроде бы состояние в выходной моде а опять-таки можно представить в виде суперпозиции , как и состояние в моде b . Как показать, что это не так, т.е., что вообще нет смысла говорить о состояниях моды (бита) a и моды (бита) b ?

Воспользуемся поляризационной аналогией, когда

(3).

Есть два пути. Путь 1 - длинный, но более последовательный. Надо посчитать средние значения параметров Стокса для обеих выходных мод. Средние берутся по волновой функции (2). Если все , кроме окажутся равными нулю - то это состояние неполяризованное, т.е. смешанное и суперпозиция (3) смысла не имеет. Работаем в представлении Гейзенберга, когда преобразуются операторы, а волновая функция - нет.

Итак, находим в моде a .

- общая интенсивность пучка а,

- доля вертикальной поляризации,

- доля +45 0 -ой поляризации,

- доля право-циркулярной поляризации.

Волновая функция, по которой производится усреднение, берется в виде (2):

где операторы рождения и уничтожения в модах a и b действуют по правилам:

{Вычисления сделать в разделе V (см.тетрадь). Там же рассчитать и вероятность регистрации совпадений или коррелятор вида }

Путь II - более наглядный, но менее “честный”!

Найдем зависимость интенсивности света в моде a от угла поворота поляроида, помещенного в эту моду. Это стандартный квантово-оптический способ проверки состояния (2) - интенсивность не должна зависеть от поворота. В то же время, аналогичная зависимость числа совпадений имеет вид

. Впервые такие зависимости были получены Э.Фраем (1976) и А.Аспеком (1985) и часто интерпретируется как доказательство нелокальности квантовой механики.

Итак, экспериментальная ситуация изображена на рисунке:

По определению

где - оператор уничтожения в моде а. Известно, что преобразование операторов двух ортогонально поляризованных мод x и y при прохождении света через поляроид, ориентированный под углом имеет вид:

.

(только первое, четвертое, пятое и восьмое слагаемые отличны от нуля) =

(только первое и восьмое слагаемые отличны от нуля) = - не зависит от угла?!

Физически это происходит потому, что волновая функция (2) не факторизуется и нет смысла говорить о состояниях в модах а и b по отдельности. Таким образом, нельзя утверждать, что мода а находится в суперпозиционном состоянии (3)!

Замечание. Проделанные вычисления (Путь II) вовсе не доказывают, что состояние в моде а неполяризованное. Например, при наличии в этой моде циркулярно-поляризованного света, результат получился бы таким же. Строгое доказательство - например, через параметры Стокса (в разделе V).

Заметим, что действуя таки же образом, можно доказать, что состояние в моде а до элемента CNOT - поляризованное.

Здесь усреднение нужно проводить по волновой функции исходного состояния (3). Результат получается таким:

т.е. максимум отсчетов достигается при = 45 0 .

Информация и энтропия.

Не вводя пока “операционального” термина “информация” будем рассуждать, пользуясь “бытовым” языком. Т.е. информация - это некое знание об объекте.

За то, что понятия информация и энтропия тесно связаны, говорит следующий пример. Рассмотрим идеальный газ, находящийся в термодинамическом равновесии. Газ состоит из огромного количества молекул, которые двигаются в объеме V. Параметрами состояния являются давление, температура. Число состояний такой системы огромно. Энтропия газа при ТД равновесии максимальна и как следует из формулы Больцмана, определяется числом микросостояний системы. При этом мы ничего не знаем о том, какое конкретно состояние имеет система в данный момент времени у нас нет - информация минимальна. Допустим, что каким-то образом нам удалось с помощью очень быстрого прибора “подсмотреть состояние системы в данный момент времени. Значит мы получили о ней какую-то информацию. Можно даже представить, что мы сфотографировали не только координаты молекул, но и их скорости (например, сделав несколько фотографий одну за другой). При этом в каждые моменты времени, когда нам доступна информация о состоянии системы, энтропия стремится к нулю, т.к. система находится лишь в каком-то одном определенном состоянии из всего огромного их многообразия и это состояние сильно неравновесное. Этот пример показывает, что действительно информация и энтропия как-то связаны, причем уже вырисовывается характер связи: чем больше информация, тем меньше энтропия.

Сведения из термодинамики и статистической физики.

Физические величины, характеризующие макроскопические состояния тел (много молекул), называют термодинамическими (в том числе, энергия, объем). Существуют, однако, и величины, появляющиеся как результат действия чисто статистических закономерностей и имеющие смысл в применении только к макроскопическим системам. Такова, например, энтропия и температура.

Классическая статистика

*Теорема Лиувилля . Функция распределения постоянна вдоль фазовых траекторий подсистемы (речь идет о квазизамкнутых подсистемах, поэтому теорема справедлива только для не очень больших промежутков времени, в течение которых подсистема ведет себя как замкнутая).

Здесь - - функция распределения или плотность вероятности. Она вводится через вероятность w обнаружить подсистему в элементе фазового пространства в данный момент времени: dw = ( p 1 ,..., p s , q 1 ,..., q s ) dpdq , причем

Нахождение статистического распределения для любой подсистемы и является основной задачей статистики. Если статистическое распределение известно, то можно вычислить вероятности различных значений любых физических величин, зависящих от состояний этой подсистемы (т.е. от значений координат и импульсов):

.

*Микроканоническое распределение.

Распределение для совокупности двух подсистем (они полагаются замкнутыми, т.е. слабовзаимодействующими) равно. Поэтому - логарифм функции распределения - величина аддитивная . Из теоремы Лиувилля следует, что функция распределения должна выражаться через такие комбинации переменных p и q, которые при движении подсистемы, как замкнутой, должны оставаться постоянными (такие величины называются интегралами движения). Значит сама функция распределения является интегралом движения. Более того, ее логарифм - тоже интеграл движения, причем аддитивный . Всего в механике существует семь интегралов движения - энергия, три компоненты импульса и три компоненты момента импульса -(для подсистемы а: Е а (p , q ), P а (p , q ), М а (p , q )). Единственная аддитивная комбинация этих величин есть

причем коэффициенты (их семь штук)- должны оставаться одинаковыми для всех подсистем данной замкнутой системы, а выбирается из условий нормировки (4).

Чтобы выполнялось условие нормировки (4), необходимо, чтобы функция (p , q ) обращалась в точках Е 0 , Р 0 , М 0 в бесконечность. Более точная формулировка дает выражение

Микроканоническое распределение.

Наличие - функций обеспечивает обращение в нуль для всех точек фазового пространства, в которых хотя бы одна из величин Е, Р, М не равна своему заданному (среднему) значению Е 0 , Р 0 , М 0 .

От шести интегралов P и М можно избавится, заключив систему в твердый ящик, в котором она покоится.

.

Физическая энтропия

Опять используем понятие идеального газа.

Пусть одноатомный идеальный газ с плотностью n и температурой Т занимает объем V . Будем измерять температуру в энергетических единицах - не будет фигурировать постоянная Больцмана. Каждый атом газа имеет среднюю кинетическую энергию теплового движения, равную 3Т/2 . Поэтому полная тепловая энергия газа равна

Известно, что давление газа равно p = nT . Если газ может обмениваться теплом с внешней средой, то закон сохранения энергии газа выглядит так:

. (5)

Таким образом, изменение внутренней энергии газа может происходить как за счет совершаемой им работы, так и вследствие поступления некоторого количества тепла dQ извне. Это уравнение выражает первое начало термодинамики, т.е. закон сохранения энергии. При этом предполагается, что газ находится в равновесии, т.е. p = const по всему объему.

Если же допустить, что газ находится и в состоянии ТД равновесия, Т = const , то соотношение (5) можно рассматривать как элементарный процесс вариации параметров газа при их очень медленном изменении, когда ТД равновесие не нарушается. Именно для таких процессов и вводится понятие энтропии S с помощью соотношения

Таким образом, утверждается, что у равновесного газа кроме внутренней энергии есть еще одна внутренняя характеристика, связанная с тепловым движением атомов. Согласно (5, 6) при постоянном объеме dV = 0, изменение энергии пропорционально изменению температуры, а в общем случае

Так как где N = nV = const есть полное количество атомов газа, то последнее соотношение можно записать в виде

После интегрирования получаем

Выражение в квадратных скобках представляет собой энтропию, приходящуюся на одну частицу.

Таким образом, если и температура и объем изменяются таким образом, что VT 3/2 остается постоянным, то и энтропия S не изменяется. Согласно (6) это означает, что газ не обменивается теплом с внешней средой, т.е. газ отделен от нее теплоизолирующими стенками. Такой процесс называется адиабатическим .

Поскольку

где = 5/3 называется показателем адиабаты. Таким образом при адиабатическом процессе температура и давление изменяются с плотностью по закону

Формула Больцмана

Как следует из теоремы Лиувилля, функция распределения? имеет резкий максимум при Е = Е 0 (среднее значение) и отлична от нуля только в окрестности этой точки. Если ввести ширину Е кривой (Е), определив ее как ширину прямоугольника, высота которого равна значению функции (Е) в точке максимума, а площадь равна единице (при надлежащей нормировке). Можно перейти от интервала значений энергии к числу состояний Г с энергиями, принадлежащими Е (это, фактически, средняя флуктуация энергии системы). Тогда величина Г характеризует степень размазанности макроскопического состояния системы по ее микроскопическим состояниям. Другими словами, для классических систем Г - это размер той области фазового пространства, в которой данная подсистема проводит почти все время В квазиклассической теории устанавливается соответствие между объемом области фазового пространства и приходящимся на него числом квантовых состояний.. А именно, на каждое квантовое состояние в фазовом пространстве приходится клетка с объемом , где s - число степеней свободы

Величину Г называют статистическим весом макроскопического состояния, его можно записать в виде:

Логарифм статистического веса называется энтропией:

где - статистический вес = число микросостояний, охватываемых рассматриваемым макросостоянием системы.

.

В квантовой статистике показывается, что = 1. Тогда

Где под понимается статистическая матрица (плотности). Ввиду линейности логарифма функции распределения по энергии (*) , где усреднение проводится по функции распределения .

Поскольку число состояний во всяком случае не меньше единицы, то энтропия не может быть отрицательной. S определяет густоту уровней энергетического спектра макроскопической системы. Ввиду аддитивности энтропии можно сказать, что средние расстояния между уровнями макроскопического тела экспоненциально убывают с увеличением его размеров (т.е. числа частиц в нем). Наибольшее значение энтропии соответствует полному статистическому равновесию.

Характеризуя каждое макроскопическое состояние системы распределением энергии между различными подсистемами, можно сказать, что ряд последовательно проходимых системой состояний соответствует все более вероятному распределению энергии. Это возрастание вероятности велико в силу его экспоненциального характера e S - в экспоненте стоит аддитивная величина - энтропия. Т.о. процессы, протекающие в неравновесной замкнутой системе, идут таким образом, что система непрерывно переходит из состояний с меньшей энтропией в состояния с большей энтропией. В итоге энтропия достигает наибольшего возможного значения, соответствующего полному статистическому равновесию.

Таким образом, если замкнутая система в некоторый момент времени находится в неравновесном макроскопическом состоянии, то наиболее вероятным следствием в последующие моменты времени будет монотонное возрастание энтропии системы. Это - второй закон термодинамики (Р.Клаузиус, 1865г.). Его статистическое обоснование дано Л.Больцманом в 1870г. Другое определение:

если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает. Она увеличивается или в предельном случае остается постоянной. Соответственно этим двум возможностям все происходящие с макроскопическими телами процессы принято делить на необратимые и обратимые . Необратимые - те процессы, которые сопровождаются увеличением энтропии всей замкнутой системы (процессы, которые бы являлись их повторениями в обратном порядке, не могут происходить, так как при этом энтропия должна была бы уменьшаться). Заметим, что уменьшение энтропии может быть вызвано флуктуациями. Обратимыми называются процессы, при которых энтропия замкнутой системы остается постоянной и которые, следовательно, могут проходить и в обратном направлении. Строго обратимый процесс представляет собой идеальный предельный случай.

При адиабатических процессах система не поглощает и не отдает тепло ? Q = 0 .

Замечание: (существенное). Утверждение о том, что замкнутая система должна в течение достаточно длительного времени (большего, чем время релаксации) перейти в состояние равновесия относится лишь к системе, находящейся в стационарных внешних условиях. Пример - поведение доступной нашему наблюдению большой области Вселенной (свойства природы не имеют ничего общего со свойствами равновесной системы).

Информация.

Рассмотрим ленту, разбитую на ячейки - классический регистр. Если в каждой ячейке может быть помещен только один из двух символов, то говорят, что в ячейке содержится бит информации. Очевидно (см. лекцию 1), что в регистре, содержащем N ячеек содержится N бит информации и в нем можно записать 2 N сообщений. Итак, информационная энтропия измеряется в битах:

(7)

Здесь Q N = 2 N - полное число различных сообщений. Из (7) ясно, что информационная энтропия просто равна минимальному числу двоичных ячеек, с помощью которых можно записать некую информацию.

Определение (7) можно переписать по-другому. Пусть у нас имеется множество Q N различных сообщений. Найдем вероятность того, что необходимое нам сообщение совпадет со случайно выбранным из общего числа Q N различных сообщений. Она равна, очевидно, P N = 1/ Q N . Тогда определение (7) запишется как:

(8)

Чем больше число ячеек N , тем меньше вероятность P N и тем больше информационная энтропия H B , содержащейся в данном конкретном сообщении.

Пример . Число букв алфавита равно 32 (без буквы ё). Число 32 есть пятая степень двойки 32 = 2 5 . Чтобы каждой букве сопоставить определенную комбинацию двоичных чисел необходимо иметь 5 ячеек. Добавив к строчным буквам заглавные, мы удваиваем число символов, которые хотим закодировать - их станет 64 = 2 6 - т.е. добавляется лишний бит информации H B = 6. Здесь H B - объем информации, приходящийся на одну букву (строчную или заглавную). Однако такой прямой подсчет информационной энтропии не совсем точен, поскольку в алфавите есть буквы, которые встречаются реже или чаще. Тем буквам, которые встречаются реже, можно отдать большее количество ячеек, а на часто встречающихся буквах - сэкономить и отдать им те состояния регистра, которые занимают меньшее количество ячеек. Точное определение информационной энтропии было дано Шенноном:

(9)

Формально вывод этого соотношения можно обосновать следующим образом.

Мы показали выше, что

из-за аддитивности логарифма функции распределения и его линейности по энергии.

Пусть p - функция распределения какой-нибудь дискретной величины f i (например, буквы “о” в этом тексте). Если с помощью функции p построить функцию распределения вероятностей различных значений величины f = f 1 , f 2 ,... f N , то эта функция будет иметь максимум при , где и (нормировка). Тогда p()= 1 и (вообще говоря, это справедливо для класса функций, удовлетворяющих условию (*))

Суммирование ведется по всем символам (буквам алфавита), а p i означает вероятность появления символа с номером i . Как видно это выражение охватывает как часто используемые буквы, так и буквы, вероятность появления которых в данном сообщении мала.

Поскольку в выражении (9) используется натуральный логарифм, соответствующую единицу информации называют “нат”.

Выражение (9) можно переписать в виде

где скобки означают обычное классическое усреднение с помощью функции распределения p i .

Замечание . В следующих лекциях будет показано, что для квантовых состояний

где - матрица плотности. Формально выражения (10) и (11) совпадают, однако есть и существенная разница. Классическое усреднение производится по ортогональным (собственным) состояниям системы, в то время как для квантового случая состояния могут быть и неортогональные (суперпозиции). Поэтому всегда H quant H class !

В формулах (8) и (9) используются логарифмы при разных основаниях. В (8) - по основанию 2, а в (9) - по основанию е. Соответствующие этим формулам информационные энтропии можно легко выразить друг через друга. Воспользуемся соотношением, в котором M - произвольное число

.

Тогда, учтя, что а получаем

- число бит почти в полтора раза больше числа нат!

Рассуждая аналогично, можно получить соотношение между энтропиями, выраженными в тритах и битах:

В компьютерной технике пользуются информацией по двоичному основанию (в битах). Для рассуждений в физике удобнее пользоваться информацией по Шеннону (в натах), которой можно характеризовать любую дискретную информацию. Всегда можно найти число соответствующих бит.

СВЯЗЬ ЭНТРОПИИ И ИНФОРМАЦИИ. Демон Максвелла

Этот парадокс впервые был рассмотрен Максвеллом в 1871г (см. рис.1). Пусть некая “сверхъестественная” сила открывает и закрывает заслонку в сосуде, перегороженном на две части и содержащем газ. Заслонка управляется по правилу: она открывается, если быстрые молекулы, двигающиеся справа налево, соприкасаются с ней или, если медленные молекулы ударяют в нее, двигаясь в противоположном направлении. Таким образом демон вводит разницу температур между двумя объемами без совершения работы, что нарушает второе начало термодинамики.

Демон Максвелла. Демон устанавливает разность давления открывая заслонку, когда число молекул газа, ударивших в нее слева превышает число ударов справа. Это можно сделать полностью обратимым способом до тех пор, пока в памяти демона сохраняются случайные результаты его наблюдений за молекулами. Поэтому память демона (или его голова) нагревается. Необратимый шаг состоит не в том, что накапливается информация, а в том, что информация теряется, когда демон потом очищает память. Сверху: заполнение памяти демона битами информации – это случайный процесс. По правую сторону от пунктира – незаполненная область памяти (все ячейки находятся в состоянии 0, слева – случайные биты). Внизу – демон.

Был предпринят целый ряд попыток разрешить парадокс или изгнать демона. Например, предполагалось, что демон не может извлечь информацию без совершения работы или без возмущения (т.е. нагрева) газа – но, оказалось, что это не так! Другие попытки сводились к тому, что второе начало может нарушаться под действием неких «разумных» или “мыслящих” сил (существ). В 1929г. Лео Сцилард существенно «продвинул» решение проблемы, сведя ее к минимальной формулировке и выделив существенные компоненты. Главное, что нужно сделать Демону это установить находится ли единичная молекула справа или слева от скользящей заслонки, что позволило бы извлекать тепло. Такое устройство было названо двигателем Сциларда. Однако Сцилард не разрешил парадокса, поскольку его анализ не учитывал, как измерение, посредством которого демон узнает находится ли молекула справа или слева, влияет на увеличение энтропии (см рисунок Szilard_demon.pdf). Двигатель работает по шести-шагвому циклу. Двигатель представляет собой цилиндр, в торцах которого помещены поршни. В середину вставляется заслонка. Работа по вдвиганию перегородки может быть сведена к нулю (это показал Сциллард). Также имеется устройство памяти (УП). Оно может находиться в одном из трех состояний. «Пусто», «Молекула справа» и «Молекула слева». Исходное состояние: УП= «Пусто», поршни – отжаты, перегородка – выдвинута, у молекулы есть средняя скорость, которая определяется температурой термостата (слайд 1).

1. перегородка вставляется, оставляя молекулу справа или слева (слайд 2).

2. Устройство памяти определяет, где находится молекула и переходит в состояние «справа» или «слева».

3. Сжатие. В зависимости от состояния УП происходит вдвигание поршня со стороны, где нет молекулы. Этот этап не требует совершение работы. Поскольку сжимается вакуум (слайд 3).

4. Перегородка удаляется. Молекула начинает оказывать давление на поршень (слайд 4).

5. Рабочий ход. Молекула ударяется в поршень, заставляя его двигаться в обратном направлении. Энергия молекулы передается поршню. При движении поршня ее средняя скорость должна уменьшаться. Однако этого не происходит, поскольку стенки сосуда находятся при постоянной температуре. Поэтому тепло от термостата передается молекуле, поддерживая ее скорость постоянной. Таким образом во время рабочего хода происходит преобразование тепловой энергии, поступаемой из термостата в механическую работу, совершаемую поршнем (слайд 6).

6. Очищение УП, возвращая ее в состояние «Пусто» (слайд 7). Цикл завершен (слайд 8 = слайд 1).

Удивительно, что этот парадокс не был разрешен до 80-ых годов 20-го века. За это время было установлено, что в принципе, любой процесс можно сделать обратимым образом, т.е. без «оплаты» энтропией. Наконец, Беннетт в 1982г. установил окончательную связь между этим утверждением и парадоксом Максвелла. Он предложил, что демон на самом деле может узнать, где находится молекула в двигателе Сциларда без совершения работы или увеличения энтропии окружения (термостата) и таким образом, совершить полезную работу за один цикл работы двигателя. Однако, информация о положении молекулы должна оставаться в памяти демона (рси.1). По мере выполнения большего числа циклов все больше и больше информации накапливается в памяти. Для завершения термодинамического цикла демон должен стереть информацию, запасенную в памяти. Именно эту операцию стирания информации приходится классифицировать как процесс увеличения энтропии окружения, как требуется вторым началом. На этом завершается принципиально физическая часть устройства демона Максвелла.

Некоторое развитие этих идей получило в работах Д.Д.Кадомцева.

Рассмотрим идеальный газ, состоящий только из одной частицы (Кадомцев, «динамика и информация»). Это не абсурд. Если одна частица заключена в сосуде объемом V со стенками, находящимися при температуре Т, то рано или поздно она придет в равновесие с этими стенками. В каждый момент времени она находится во вполне определенной точке пространства и с вполне определенной скоростью. Будем проводить все процессы настолько медленно, что частица успеет в среднем заполнить весь объем и многократно поменять величину и направление скорости при неупругих столкновениях со стенками сосуда. Таким образом, частица оказывает на стенки среднее давление, имеет температуру Т и ее распределение по скоростям является максвелловским с температурой Т . Эту систему из одной частицы можно адиабатически сжимать, можно менять ее температуру, давая ей возможность прийти в равновесие со стенками сосуда.

Среднее давление на стенку при N = 1 , равно p = T/ V , а средняя плотность n = 1/ V . Рассмотрим случай изотермического процесса, когда Т = const . Из первого начала при Т = const . и p = T/ V получаем

, поскольку

Отсюда находим, что изменение энтропии не зависит от температуры, так что

Здесь введена постоянная интегрирования: “размер частицы”<

Работа при изотермическом процессе

работа определяется разностью энтропий.

Пусть у нас имеются идеальные перегородки, которыми можно поделить сосуд на части без затраты энергии. Разделим наш сосуд на две равные части с объемом V /2 каждая. При этом частица будет находиться в одной из половин - но мы не знаем в какой. Допустим, что у нас есть прибор, который позволяет определить в какой из частей находится частица, например, прецизионные весы. Тогда из симметричного распределения вероятностей 50% на 50% нахождения в двух половинках мы получаем 100% вероятности для одной из половин - происходит “коллапс” распределения вероятностей. Соответственно, новая энтропия окажется меньше исходной энтропии на величину

За счет уменьшения энтропии можно совершить работу. Для этого достаточно двигать перегородку в сторону пустого объема вплоть до его исчезновения. Работа будет равна Если бы во внешнем мире ничего не менялось, то повторяя эти циклы, можно построить вечный двигатель второго рода. Это и есть демон Максвелла в варианте Сцилларда. Но второй закон термодинамики запрещает получение работы только за счет тепла. Значит во внешнем мире должно что-то происходить. Что же это? Обнаружение частицы в одной из половин меняет информацию о частице - из двух возможных половинок указывается только одна, в которой находится частица. Это знание соответствует одному биту информации. Процесс измерения уменьшает энтропию частицы (перевод в неравновесное состояние) и ровно настолько же увеличивает информацию о системе (частице). Если совершать повторные деления пополам полученной ранее половинки, четвертушки, восьмушки и т.д., то энтропия будет последовательно уменьшаться, а информация - увеличиваться! Другими словами

Чем больше известно о физической системе, тем меньше ее энтропия. Если о системе известно все - это значит, что мы перевели ее в сильнонеравновесное состояние, когда ее параметры максимально удалены от равновесных значений. Если в нашей модели частицу удастся поместить в элементарную ячейку объема V 0 , то при этом S = 0 , а информация достигает своего максимального значения поскольку вероятность p min найти частицу в данной ячейке равна V 0 / V . Если в последующие моменты времени частица начнет заполнять больший объем, то информация будет утрачиваться, а энтропия - расти. Подчеркнем, что за информацию нужно платить (по второму началу) увеличением энтропии S e внешней системы, причем Действительно, если бы за один бит информации прибор (внешняя система) увеличивал свою энтропию на величину меньшую одного бита, то мы могли бы обратить тепловую машину. А именно, расширяя объем, занятый частицей, мы бы увеличивали ее энтропию на величину ln 2 , получая работу Tln 2 , а суммарная энтропия системы частица плюс прибор уменьшилась бы. Но это невозможно по второму началу. Формально, , поэтому уменьшение энтропии системы (частицы) сопровождается увеличением энтропии прибора .

Итак, информационная энтропия - это мера недостатка (или степень неопределенности) информации о действительном состоянии физической системы.

Информационная энтропия Шеннона:

, где (это относится к двухуровневым системам, типа бит: “0” и “1”. Если размерность равна n , то H = log n . Так, для n = 3, Н = log 3 причем, = 3.)

Количество информации I (или просто информация) о состоянии классической системы, получаемое в результате измерений внешним прибором, связанным с рассматриваемой системой некоторым каналом связи, определяется как разность информационной энтропии, соответствующей начальной неопределенности состояния системы H 0 , и информационной энтропии конечного состояния системы после измерения H . Таким образом,

I + H = H 0 = const .

В идеальном случае, когда отсутствуют шумы и помехи, создаваемые внешними источниками в канале связи, конечное распределение вероятностей после измерения сводится к одному определенному значению p n = 1, т.е. H = 0, а максимальное значение полученной при измерении информации будет определяться: I max = H 0 . Таким образом, информационная энтропия Шеннона системы имеет смысл максимальной информации, заключенной в системе; она может быть определена в идеальных условиях измерения состояния системы в отсутствие шумов и помех, когда энтропия конечного состояния равна нулю:

Рассмотрим классический логический элемент, который может находиться в одном из двух равновероятных логических состояний “0” и “1”. Такой элемент вместе с окружающей средой - термостатом и генерируемым внешним теплоизолированным объектом сигналом единую неравновесную замкнутую систему. Переход элемента в одно из состояний, например, в состояние “0”, соответствует уменьшению стат. веса его состояния по сравнению с начальным состоянием в 2 раза (для трехуровневых систем - в 3 раза). Найдем уменьшение информационной энтропии Шеннона, которое соответствует увеличению количества информации об элементе на единицу, которая называется битом :

Следовательно, информационная энтропия определяет число битов, которое требуется для кодирования информации в рассматриваемой системе или сообщении.

ЛИТЕРАТУРА

1. Д.Ландау, И.Лифшиц. Статистическая физика. Часть 1. Наука, М 1976.

2. М.А.Леонтович. Введение в термодинамику. Статистическая физика. Москва, Наука, 1983. - 416с.

3. Б.Б.Кадомцев. Динамика и информация. УФН, 164, №5, 449 (1994).

Методы Образование Об этом сайте Библиотека Мат. форумы

Библиотека > Книги по физике > Статистическая физика

Поиск в библиотеке по авторам и ключевым словам из названия книги:

Статистическая физика

  • Айзеншиц Р. Статистическая теория необратимых процессов. М.: Изд. Иностр. лит., 1963 (djvu)
  • Ансельм А.И. Основы статистической физики и термодинамики. М.: Наука, 1973 (djvu)
  • Ахиезер А.И., Пелетминский С.В. Методы статистической физики. М.: Наука, 1977 (djvu)
  • Базаров И.П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. Избранные труды по статистической физике. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. (мл.), Садовников Б.И. Некоторые вопросы статистической механики. М.: Высш. шк., 1975 (djvu)
  • Бонч-Бруевич В.Л., Тябликов С.В. Метод функций Грина в статистической механике. М.: Физматлит, 1961 (djvu, 2.61Mb)
  • Васильев А.М. Введение в статистическую физику. М.: Высш. школа, 1980 (djvu)
  • Власов А.А. Нелокальная статистическая механика. М.: Наука, 1978 (djvu)
  • Гиббс Дж.В. Основные принципы статистической механики (излагаемые со специальным применением к рациональному обоснованию термодинамики). М.-Л.: ОГИЗ, 1946 (djvu)
  • Гуров К.П. Основания кинетической теории. Метод Н.Н. Боголюбова. М.: Наука, 1966 (djvu)
  • Заславский Г.М. Статистическая необратимость в нелинейных системах. М.: Наука, 1970 (djvu)
  • Захаров А.Ю. Решёточные модели статистической физики. Великий Новгород: НовГУ, 2006 (pdf)
  • Захаров А.Ю. Функциональные методы в классической статистической физике. Великий Новгород: НовГУ, 2006 (pdf)
  • Иос Г. Курс теоретической физики. Часть 2. Термодинамика. Статистическая физика. Квантовая теория. Ядерная физика. М.: Просвещение, 1964 (djvu)
  • Исихара А. Статистическая физика. М.: Мир, 1973 (djvu)
  • Каданов Л., Бейм Г. Квантовая статистическая механика. Методы функций Грина в теории равновесных и неравновесных процессов. М.: Мир, 1964 (djvu)
  • Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965 (djvu)
  • Кац М. Несколько вероятностных задач физики и математики. М.: Наука, 1967 (djvu)
  • Киттелъ Ч. Элементарная статистическая физика. М.: ИЛ, 1960 (djvu)
  • Киттель Ч. Статистическая термодинамика. М: Наука, 1977 (djvu)
  • Козлов В.В. Тепловое равновесие по Гиббсу и Пуанкаре. Москва-Ижевск: Институт компьютерных исследований, 2002 (djvu)
  • Компанеец А.С. Законы физической статистики. Ударные волны. Сверхплотное вещество. М.: Наука, 1976 (djvu)
  • Компанеец А.С. Курс теоретической физики. Том 2. Статистические законы. М.: Просвещение, 1975 (djvu)
  • Коткин Г.Л. Лекции по статистической физике, НГУ (pdf)
  • Крылов Н.С. Работы по обоснованию статистической физики. М.-Л.: Из-во АН СССР, 1950 (djvu)
  • Кубо Р. Статистическая механика. М.: Мир, 1967 (djvu)
  • Ландсберг П. (ред.) Задачи по термодинамике и статистической физике. М.: Мир, 1974 (djvu)
  • Левич В.Г. Введение в статистическую физику (2-е изд.) М.: ГИТТЛ, 1954 (djvu)
  • Либов Р. Введение в теорию кинетических уравнений. М.: Мир, 1974 (djvu)
  • Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980 (djvu)
  • Минлос Р.А. (ред.) Математика. Новое в зарубежной науке-11. Гиббсовсиие состояния в статистической физике. Сборник статей. М.: Мир, 1978 (djvu)
  • Ноздрев В.Ф., Сенкевич А.А. Курс статистической физики. М.: Высш. школа, 1965 (djvu)
  • Пригожин И. Неравновесная статистическая механика. М.: Мир, 1964 (djvu)
  • Радушкевич Л.В. Курс статистической физики (2-е изд.) М.: Просвещение, 1966 (djvu)
  • Рейф Ф. Берклеевский курс физики. Том 5. Статистическая физика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика статистическая физика и кинетика (2-е изд.). М.: Наука, 1977 (djvu)
  • Рюэль Д. Статистическая механика. М.: Мир, 1971 (djvu)
  • Савуков В.В. Уточнение аксиоматических принципов статистической физики. СПб.: Балт. гос. техн. унив. "Военмех", 2006

Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям, любое тело - твердое, жидкое или газообразное - состоит из большого количества весьма малых обособленных частиц - молекул. Молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении. Его интенсивность зависит от температуры вещества.

Непосредственным доказательством существования хаотического движения молекул служит броуновское движение. Это явление заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного беспорядочного движения, которое не зависит от внешних причин и оказывается проявлением внутреннего движения вещества. Броуновские частицы совершают движение под влиянием беспорядочных ударов молекул.

Молекулярно-кинетическая теория ставит себе целью истолковать те свойства тел, которые непосредственно наблюдаются на опыте (давление, температуру и т. п.), как суммарный результат действия молекул. При этом она пользуется статистическим методом, интересуясь не движением отдельных молекул, а лишь такими средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название - статистическая физика.

Изучением различных свойств тел и изменений состояния вещества занимается также термодинамика.

Однако в отличие от молекулярно-кинетической теории термодинамики изучает макроскопические свойства тел и явлений природы, не интересуясь их микроскопической картиной. Не вводя в рассмотрение молекулы и атомы, не входя в микроскопическое рассмотрение процессов, термодинамика позволяет делать целый ряд выводов относительно их протекания.

В основе термодинамики лежит несколько фундаментальных законов (называемых началами термодинамики), установленных на основании обобщения большой совокупности опытных фактов. В силу этого выводы термодинамики имеют весьма общий характер.

Подходя к рассмотрению изменений состояния вещества с различных точек зрения, термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, образуя по существу одно целое.

Обращаясь к истории развития молекулярно-кинетических представлений, следует прежде всего отметить, что представления об атомистическом строении вещества были высказаны еще древними греками. Однако у древних греков эти идеи были не более чем гениальной догадкой. В XVII в. атомистика возрождается вновь, но уже не как догадка, а как научная гипотеза. Особенное развитие эта гипотеза получила в трудах гениального русского ученого и мыслителя М. В. Ломоносова (1711-1765), который предпринял попытку дать единую картину всех известных в его время физических и химических явлений. При этом он исходил из корпускулярного (по современной терминологии - молекулярного) представления о строении материи. Восставая против господствовавшей в его время теории теплорода (гипотетической тепловой жидкости, содержание которой в теле определяет степень егонагретости), Ломоносов «причину тепла» видит во вращательном движении частиц тела. Таким образом, Ломоносовым были по существу сформулированы молекулярно-кинетические представления.

Во второй половине XIX в. и в начале XX в. благодаря трудам ряда ученых атомистика превратилась в научную теорию.