Болезни Военный билет Призыв

Квантовая запутанность объяснение. Квантовая запутанность простыми словами. Чудеса продолжаются. Аналогия и понимание

Квантовая запутанность - явление, при котором подсистемы некоторой ранее единой квантовомеханической системы, будучи разнесенными на расстояние друг от друга, продолжают оказывать влияние друг на друга. В этом случае изменение состояния одной системы сказывается на другой системе. Явление носит существенно квантовый характер и не имеет классического аналога.

Кофе остывает, здания рушатся, яйца бьются, а звезды выдыхаются во Вселенной, которой, кажется, суждено деградировать в состояние равномерной серости, известной как тепловое равновесие. Астроном-философ сэр Артур Эддингтон в 1927 году привел постепенное распространение энергии в качестве доказательства необратимой «стрелы времени».

Но к недоумению поколений физиков, стрела времени, похоже, не вытекает из основных законов физики, по которым двигаться вперед во времени - это то же самое, что и назад. По этим законам, если бы кто-то знал пути всех частиц во вселенной и повернул их вспять, энергия накапливалась бы, а не распылялась: холодный кофе спонтанно нагревался бы, здания собирались бы из обломков, а солнечный свет собирался обратно в солнце.

«В классической физике мы сильны, - говорит Санду Попеску, профессор физики Бристольского университета в Великобритании в интервью журналу QuantaMagazine. - Если бы я знал больше, мог бы я переломить ход события, собрать воедино все молекулы разбитого яйца?». Конечно, профессор говорит, что стрела времени не управляется человеческим незнанием. И все же, с момента рождения термодинамики в 1850-х годах, единственным известным подходом для расчета распространения энергии оставалось сформулировать статистическое распределение неизвестных траекторий частицы и показать, что с течением времени незнание смазывает картину вещей.

Теперь физики определили фундаментальный источник стрелы времени. Энергия рассеивается и объекты приходят в равновесие, говорят они, потому что элементарные частицы переплетаются, когда взаимодействуют - странный эффект под названием «квантовая запутанность». «Наконец мы можем понять, почему чашка кофе уравновешивается в комнате, - говорит Тони Шорт, квантовый физик из Бристоля. - Запутанность накапливается между состоянием чашки кофе и состоянием комнаты». Попеску, Шорт и их коллеги Ной Линден и Андреас Уинтер сообщили об открытии журналу Physical Review E в 2009 году, утверждая, что объекты достигают равновесия, или состояния равномерного распределения энергии, в течение бесконечного количества времени за счет квантово-механического запутывания с окружающей средой. Похожее открытие опубликовал Питер Рейман из Билефельдского университета в Германии несколькими месяцами раньше в Physical Review Letters. Шорт и коллеги укрепили аргументацию в 2012 году, показав что запутанность вызывает уравновешенность за конечное время. Также, в работе, опубликованной на arXiv.org в феврале, две отдельных группы предприняли следующий шаг, рассчитав, что большинство физических систем быстро уравновешиваются, за время, пропорциональное их размеру.

Если новая линия исследований верна, история стрелы времени начинается с квантово-механической идеи о том, что в своей основе природа по своей сути неопределенна. Элементарной частице не хватает конкретных физических свойств и она определяется только вероятностями нахождения в определенных состояниях. К примеру, в определенный момент частица может с 50-процентным шансом вращаться по часовой стрелке и с 50-процентным - против часовой. Экспериментально проверенная теорема северо-ирландского физика Джона Белла гласит, что нет «истинного» состояния частицы; вероятности - единственное, что можно использовать для его описания. Квантовая неопределенность неизбежно приводит к запутанности, предполагаемому источнику стрелы времени.

Когда две частицы взаимодействуют, их больше нельзя описывать отдельными, независимо развивающимися вероятностями под названием «чистые состояния». Вместо этого, они становятся запутанными компонентами более сложного распределения вероятностей, которые описываются двумя частицами вместе. Система в целом находится в чистом состоянии, но состояние каждой из индивидуальных частиц «смешанное». Обе частицы можно отдалить на световые годы друг от друга, но спин каждой частицы будет коррелировать с другим. Альберт Эйнштен хорошо описал это как «жуткое действие на расстоянии». «Запутанность - это некотором смысле суть квантовой механики», или законы, регулирующие взаимодействия на субатомных масштабах, говорит Бруннер. Это явление лежит в основе квантовых вычислений, квантовой криптографии и квантовой телепортации.

Идея того, что запутанность может объяснить стрелу времени, впервые пришла в голову Сету Ллойду тридцать лет назад, когда он был 23-летним выпускником факультета философии Кембриджского университета с Гарвардской степенью по физике. Ллойд понял, что квантовая неопределенность и то, как она распространяется по мере того, что частицы становятся все более запутанными, может заменить человеческую неуверенность (или незнание) в старых классических доказательствах как истинный источник стрелы времени. Используя известный квантово-механический подход, в котором единицы информации являются основными строительными блоками, Ллойд провел несколько лет, изучая эволюцию частиц с точки зрения перетасовки единиц (1) и нулей (0). Он выяснил, что поскольку частицы все больше запутываются друг с другом, информация, которая их описывала (1 - для спина по часовой стрелке, и 0 - против часовой, например), перейдет на описание системы запутанных частиц в целом. Как если бы частицы постепенно потеряли свою индивидуальную автономию и стали пешками коллективного состояния. В этот момент, как обнаружил Ллойд, частицы переходят в состояние равновесия, их состояния перестают меняться, словно чашка с кофе остывает до комнатной температуры. «Что происходит на самом деле? Вещи становятся более взаимосвязаны. Стрела времени - это стрела роста корреляций».

«Когда Ллойд высказал идею в своей диссертации, мир был не готов, - говорит Ренато Реннер, глава Института теоретической физики в ETH Zurich. - Никто не понимал его. Иногда нужно, чтобы идеи приходили в нужное время». В 2009 году доказательство группы бристольских физиков вызвало отклик у квантовых информационных теоретиков, открывая новые способы применения их методов. Оно показало, что по мере того, как объекты взаимодействуют со своим окружением - как частицы в чашке кофе взаимодействуют с воздухом, например, - информация об их свойствах «утекает и смазывается со средой», поясняет Попеску. Эта локальная потеря информации приводит к тому, что состояние кофе приходит к стагнации, даже если чистое состояние всей комнаты продолжает развиваться. За исключением редких случайных флуктуаций, говорит ученый, «его состояние перестает меняться со временем». Получается, холодная чашка с кофе не может спонтанно нагреться. В принципе, по мере эволюции чистого состояния комнаты, кофе может внезапно «стать не смешанным» с воздухом и войти в чистое состояние. Но кофе доступно настолько больше смешанных состояний, чем чистых, что это практически никогда не произойдет - скорее вселенная закончится, чем мы сможем это засвидетельствовать. Эта статистическая маловероятность делает стрелу времени необратимой.

«По сути, запутанность открывает для вас огромное пространство, - комментирует Попеску. - Представьте, что вы находитесь в парке, перед вами ворота. Как только вы войдете в них, вы попадете в огромное пространство и потеряетесь в нем. К воротам тоже не вернетесь никогда».
В новой истории стрелы времени информация теряется в процессе квантовой запутанности, а не из-за субъективного отсутствия человеческих знаний, что приводит к уравновешиванию чашки кофе и комнаты. Комната в конце концов уравновешивается с внешней средой, а среда - еще более медленно - дрейфует к равновесию с остальной частью вселенной. Гиганты термодинамики 19 века рассматривали этот процесс как постепенное рассеяние энергии, которое увеличивает общую энтропию, или хаос, вселенной. Сегодня же, Ллойд, Попеску и другие в этой сфере видят стрелу времени по-другому. По их мнению, информация становится все более диффузной, но никогда не исчезает полностью. Хотя локально энтропия растет, общая энтропия вселенной остается постоянной и нулевой.

«В целом вселенная находится в чистом состоянии, - говорит Ллойд. - Но отдельные ее части, будучи запутанными с остальной частью вселенной, остаются смешанными».

«В этих работах нет ничего, что объяснит, почему вы начинаете с ворот, - говорит Попеску, возвращаясь к аналогии с парком. - Другими словами, они не объясняют, почему изначальное состояние вселенной было далеко от равновесия». Ученый намекает на то, что этот вопрос относится к природе Большого Взрыва.
Несмотря на недавний прогресс в расчете времени уравновешивания, новый подход до сих пор не может стать инструментом для расчета термодинамических свойств конкретных вещей, вроде кофе, стекла или экзотических состояний материи.

«Дело в том, что нужно найти критерии, при которых вещи ведут себя как оконное стекло или чашка чая, - говорит Реннер. - Я думаю, что увижу новые работы в этом направлении, но впереди еще много работы».
Некоторые исследователи выразили сомнение в том, что этот абстрактный подход к термодинамике когда-нибудь сможет точно объяснить, как ведут себя конкретные наблюдаемые объекты. Но концептуальные достижения и новый математический формализм уже помогают исследователям задаваться теоретическими вопросами из области термодинамики, например о фундаментальных пределах квантовых компьютеров и даже о конечной судьбе Вселенной.

Двадцать шесть лет спустя грандиозного провала идеи Ллойда о стреле времени, он рад быть свидетелем ее подъема и пытается применить идеи последней работы к парадоксу информации, попадающей в черную дыру.

По мнению ученых, наша способность помнить прошлое, но не будущее, другое проявление стрелы времени, также может рассматриваться как возрастание корреляций между взаимодействующими частицами. Когда читаешь что-то с листа бумаги, мозг коррелирует с информацией через фотоны, которые достигают глаз. Только с этого момента вы будете способны вспомнить, что написано на бумаге. Как отмечает Ллойд: «Настоящее может быть определено как процесс связывания (или установления корреляций) с нашим окружением». Фоном для устойчивого роста запутанностей по всей вселенной является, конечно, само время. Физики подчеркивают, что несмотря на большие успехи в понимании того, как происходят изменения во времени, они ни на йоту не приблизились к пониманию природы самого времени или почему оно отличается от трех других измерений пространства. Попеску называет эту загадку «одной из величайших непоняток в физике».

«Мы можем обсудить факт того, что час назад наш мозг был в состоянии, которое коррелировало с меньшим числом вещей, - говорит он. - Но наше восприятие того, что время идет - это совсем другое дело. Скорее всего, нам понадобится революция в физике, которая откроет нам эту тайну».

Это изящная и мощная концепция. Она предполагает, что время – это возникающий феномен, который появляется в реальности благодаря природе квантового спутывания. И оно существует только для наблюдателей внутри нашей вселенной. Любой богоподобный наблюдатель за её пределами будет видеть статичную неизменяющуюся вселенную, как прежде предсказывало более раннее квантовое уравнение Уилера-ДеВитта. Разумеется, у нас нет никакой возможности получить наблюдателя за пределами нашей вселенной и у нас нет и никаких шансов когда-либо подтвердить эту теорию. По крайней мере, так было до сегодняшнего дня. Недавно Екатерина Морева из Istituto Nazionale di Ricerca Metrologica в Турине, Италия, и несколько её коллег сумели впервые экспериментально проверить идеи Пейджа и Вутерса. И они продемонстрировали, что время действительно является возникающим феноменом для внутренних наблюдателей, но его не существует для наблюдателей внешних.

Этот эксперимент включает в себя создание игрушечной вселенной, состоящей из пары спутанных фотонов и наблюдателя, который может измерять их состояние одним из двух способов. В первом наблюдатель измеряет эволюцию системы, спутывая себя с ней. Во втором богоподобный наблюдатель измеряет эволюцию в сравнении с внешними часами, которые полностью независимы от игрушечной вселенной.


Сам эксперимент достаточно прямолинеен. Каждый из спутанных фотонов имеет поляризацию, которая может быть изменена прохождением через двулучепреломляющую пластинку. В первом случае наблюдатель измеряет поляризацию одного фотона, таким образом, спутываясь с ним. Затем он сравнивает результат с поляризацией второго фотона. Полученная им разница и будет мерой времени.

Во втором случае оба фотона также проходят через двулучепреломляющие пластинки, которые изменяют их поляризацию. Однако в этом случае наблюдатель измеряет только глобальные свойства обоих фотонов, сравнивая их с независимыми часами.

В этом случае наблюдатель не может заметить какой-либо разницы между фотонами, не приходя в состоянии спутанности с одним из них. А если нет никакой разницы, система предстаёт перед ним статичной. Другими словами – время в ней не возникает.

Это весьма впечатляющий эксперимент. Появление чего-либо является популярной концепцией в науке. В частности, недавно физики заинтересовались идеей, что гравитация также является таким возникающим феноменом. А отсюда до идеи о сходном механизме возникновения времени оставался всего один шаг. Чего не хватает возникающей гравитации – это, разумеется, экспериментальной демонстрации, которая показывала бы, как это работает на практике. Именно поэтому работа Моревы имеет такое важное значение – она впервые в мире помещает абстрактную и экзотическую идею на устойчивое экспериментальное основание. А возможно самым важным результатом этой работы является то, что ей впервые удалось продемонстрировать, что квантовая механика и общая теория относительности не так уж несовместимы.

Следующим шагом станет дальнейшее развитие идеи, в частности – на макроскопическом уровне. Одно дело показать, как время возникает в фотонах, и другое – понять, как оно возникает для людей. Квантовая механика уже достаточно глубоко проникла в смежные научные области. В попытке объяснить в терминах квантовой теории саму жизнь она даже породила свою собственную биологию. Но до сих пор никто не решался прямо утверждать, что эффект запутанности лежит в самой сердцевине живых существ – внутри спирали ДНК.

Новорождённая квантовая биология (quantum biology) официально не признана научной дисциплиной. Однако она уже превратилась в одну из самых интересных и захватывающих тем передовых исследований. Например, раскрывающих важную роль квантовых эффектов в ряде биологических процессов, как в фотосинтезе . Новое исследование провела группа физиков из Национального университета Сингапура (NSU). Элизабет Рипер (Elizabet Rieper) и её коллеги исходили из того, что двойная спираль ДНК не распадается именно благодаря принципу квантовой запутанности (сцепленности).

Чтобы проверить свою смелую теорию, учёные построили упрощённую теоретическую модель ДНК на компьютере. В ней каждый нуклеотид состоит из облака электронов вокруг центрального положительно заряженного ядра. Это «негативное» облако может двигаться относительно ядра, создавая диполь. При этом смещение облака туда и обратно приводит к образованию гармонического осциллятора.

Рипер с коллегами заинтересовались, что же произойдёт с колебаниями облаков (фононами), когда пары оснований создадут двойную спираль ДНК. По мнению учёных, при формировании пар нуклеотидов их объединённые облака теоретически должны колебаться в противоположном направлении с облаком от соседней пары, чтобы обеспечить стабильность всей структуры. Поскольку фононы по сути являются квантовыми объектами, они могут существовать в виде суперпозиции состояний и умеют «запутываться». Учёные начали с того, что предположили отсутствие любых тепловых эффектов, влияющих на спираль извне. «Очевидно, что цепочки попарно связанных гармонических осцилляторов могут быть запутаны лишь при нулевой температуре», – говорит Рипер. В своей пока неопубликованной научными изданиями статье физики приводят доказательство, что эффект запутывания в принципе, может возникнуть и при комнатной температуре. А возможно это потому, что длина волны у описанных фононов близка к размерам спирали ДНК. Это позволяет формироваться так называемым стоячим волнам (феномен, известный как фононный захват). После этого фононы не могут «сбежать». Данный эффект не будет иметь особенного значения для гигантской молекулы, если только он не распространяется на всю спираль. Однако компьютерное моделирование, проведённое Рипер со товарищи, демонстрирует – эффект и вправду колоссален.

Каждое электронное облако в паре оснований не просто колеблется согласованно с движениями соседей - фононы при этом находятся в суперпозиции состояний. А общая картина всех таких колебаний в ДНК описывается квантовыми законами: вдоль всей цепочки нуклеотиды-осцилляторы колеблются синхронно – это проявление квантовой сцепленности. Общее же движение спирали оказывается равным нулю.


Модель спирали ДНК, на которой увеличен фрагмент с двумя соседними парами оснований. Синим выделены электронные облака в двух крайних позициях своих колебаний, направления которых отмечают стрелки (иллюстрация Rieper et al.). Если пытаться описать эту модель исключительно в рамках классической физики, то ничего из перечисленного произойти не сможет: «классическая» спираль должна хаотично вибрировать и распадаться на части. По мнению исследователей, именно квантовые эффекты ответственны за «склеивание» ДНК. Но, как и в случае с теорией космической ряби – амбициозной «сестрой-близнецом» нынешней работы (правда, занятой объектами макромира), – главный вопрос не оригинален: как этот вывод доказать? Ответа пока нет. Команда Рипер в конце своей статьи интригует мыслью о том, что запутывание каким-то образом напрямую влияет на способ «считывания» информации из ДНК. Дескать, в будущем это удастся проверить и использовать экспериментально. Как именно – пока никто даже не предполагает.

Несмотря на некоторую долю спекулятивности, выдвинутое физиками предположение взбудоражило многие умы. Ведь квантовые эффекты уже находили в самых неожиданных местах, например в электрической цепи , но покамест никто не замахивался на претензии такого масштаба – микроскопического и в то же время невероятно важного.

В свете изложенного тратящий массу сил на запутывание нескольких кубитов в твёрдом теле человек выглядит забавно, поскольку не подозревает, что самым ярким примером такой системы является он сам.

  • Перевод

Квантовая запутанность – одно из самых сложных понятий в науке, но основные её принципы просты. А если понять её, запутанность открывает путь к лучшему пониманию таких понятий, как множественность миров в квантовой теории.

Чарующей аурой загадочности окутано понятие квантовой запутанности, а также (каким-то образом) связанное с ним требование квантовой теории о необходимости наличия «многих миров». И, тем не менее, по сути своей это научные идеи с приземлённым смыслом и конкретными применениями. Я хотел бы объяснить понятия запутанности и множества миров настолько просто и ясно, насколько знаю их сам.

I

Запутанность считается явлением, уникальным для квантовой механики – но это не так. На самом деле, для начала будет более понятным (хотя это и необычный подход) рассмотреть простую, не квантовую (классическую) версию запутанности. Это позволит нам отделить тонкости, связанные с самой запутанностью, от других странностей квантовой теории.

Запутанность появляется в ситуациях, в которых у нас есть частичная информация о состоянии двух систем. К примеру, нашими системами могут стать два объекта – назовём их каоны. «К» будет обозначать «классические» объекты. Но если вам очень хочется представлять себе что-то конкретное и приятное – представьте, что это пирожные.

Наши каоны будут иметь две формы, квадратную или круглую, и эти формы будут обозначать их возможные состояния. Тогда четырьмя возможными совместными состояниями двух каонов будут: (квадрат, квадрат), (квадрат, круг), (круг, квадрат), (круг, круг). В таблице указана вероятность нахождения системы в одном из четырёх перечисленных состояний.


Мы будем говорить, что каоны «независимы», если знание о состоянии одного из них не даёт нам информации о состоянии другого. И у этой таблицы есть такое свойство. Если первый каон (пирожное) квадратный, мы всё ещё не знаем форму второго. И наоборот, форма второго ничего не говорит нам о форме первого.

С другой стороны, мы скажем, что два каона запутаны, если информация об одном из них улучшает наши знания о другом. Вторая табличка покажет нам сильную запутанность. В этом случае, если первый каон будет круглым, мы будем знать, что второй тоже круглый. А если первый каон квадратный, то таким же будет и второй. Зная форму одного, мы однозначно определим форму другого.

Квантовая версия запутанности выглядит, по сути, также – это отсутствие независимости. В квантовой теории состояния описываются математическими объектами под названием волновая функция. Правила, объединяющие волновые функции с физическими возможностями, порождают очень интересные сложности, которые мы обсудим позже, но основное понятие о запутанном знании, которое мы продемонстрировали для классического случая, остаётся тем же.

Хотя пирожные нельзя считать квантовыми системами, запутанность квантовых систем возникает естественным путём – например, после столкновений частиц. На практике незапутанные (независимые) состояния можно считать редкими исключениями, поскольку при взаимодействии систем между ними возникают корреляции.

Рассмотрим, к примеру, молекулы. Они состоят из подсистем – конкретно, электронов и ядер. Минимальное энергетическое состояние молекулы, в котором она обычно и находится, представляет собой сильно запутанное состояние электронов и ядра, поскольку расположение этих составляющих частиц никак не будет независимым. При движении ядра электрон движется с ним.

Вернёмся к нашему примеру. Если мы запишем Φ■, Φ● как волновые функции, описывающие систему 1 в её квадратных или круглых состояниях и ψ■, ψ● для волновых функций, описывающих систему 2 в её квадратных или круглых состояниях, тогда в нашем рабочем примере все состояния можно описать, как:

Независимые: Φ■ ψ■ + Φ■ ψ● + Φ● ψ■ + Φ● ψ●

Запутанные: Φ■ ψ■ + Φ● ψ●

Независимую версию также можно записать, как:

(Φ■ + Φ●)(ψ■ + ψ●)

Отметим, как в последнем случае скобки чётко разделяют первую и вторую системы на независимые части.

Существует множество способов создания запутанных состояний. Один из них – измерить составную систему, дающую вам частичную информацию. Можно узнать, например, что две системы договорились быть одной формы, не зная при этом, какую именно форму они выбрали. Это понятие станет важным чуть позже.

Более характерные последствия квантовой запутанности, такие, как эффекты Эйнштейна-Подольского-Розена (EPR) и Гринберга-Хорна-Зейлингера (GHZ), возникают из-за её взаимодействия ещё с одним свойством квантовой теории под названием «принцип дополнительности». Для обсуждения EPR и GHZ позвольте мне сначала представить вам этот принцип.

До этого момента мы представляли, что каоны бывают двух форм (квадратные и круглые). Теперь представим, что ещё они бывают двух цветов – красного и синего. Рассматривая классические системы, например, пирожные, это дополнительное свойство означало бы, что каон может существовать в одном из четырёх возможных состояний: красный квадрат, красный круг, синий квадрат и синий круг.

Но квантовые пирожные – квантожные… Или квантоны… Ведут себя совсем по-другому. То, что квантон в каких-то ситуациях может обладать разной формой и цветом не обязательно означает, что он одновременно обладает как формой, так и цветом. Фактически, здравый смысл, которого требовал Эйнштейн от физической реальности, не соответствует экспериментальным фактам, что мы скоро увидим.

Мы можем измерить форму квантона, но при этом мы потеряем всю информацию о его цвете. Или мы можем измерить цвет, но потеряем информацию о его форме. Согласно квантовой теории, мы не можем одновременно измерить и форму и цвет. Ничей взгляд на квантовую реальность не обладает полнотой; приходится принимать во внимание множество разных и взаимоисключающих картин, у каждой из которых есть своё неполное представление о происходящем. Это и есть суть принципа дополнительности, такая, как её сформулировал Нильс Бор.

В результате квантовая теория заставляет нас быть осмотрительными в приписывании свойствам физической реальности. Во избежание противоречий приходится признать, что:

Не существует свойства, если его не измерили.
Измерение – активный процесс, изменяющий измеряемую систему

II

Теперь опишем две образцовые, но не классические, иллюстрации странностей квантовой теории. Обе были проверены в строгих экспериментах (в реальных экспериментах люди меряют не формы и цвета пирожных, а угловые моменты электронов).

Альберт Эйнштейн, Борис Подольский и Натан Розен (EPR) описали удивительный эффект, возникающий при запутанности двух квантовых систем. EPR-эффект объединяет особую, экспериментально достижимую форму квантовой запутанности с принципом дополнительности.

EPR-пара состоит из двух квантонов, у каждого из которых можно измерить форму или цвет (но не то и другое сразу). Предположим, что у нас есть множество таких пар, все они одинаковые, и мы можем выбирать, какие измерения мы проводим над их компонентами. Если мы измерим форму одного из членов EPR-пары, мы с одинаковой вероятностью получим квадрат или круг. Если измерим цвет, то с одинаковой вероятностью получим красный или синий.

Интересные эффекты, казавшиеся EPR парадоксальными, возникают, когда мы проводим измерения обоих членов пары. Когда мы меряем цвет обоих членов, или их форму, мы обнаруживаем, что результаты всегда совпадают. То есть, если мы обнаружим, что один из них красный и затем меряем цвет второго, мы также обнаруживаем, что он красный – и т.п. С другой стороны, если мы измеряем форму одного и цвет другого, никакой корреляции не наблюдается. То есть, если первый был квадратом, то второй с одинаковой вероятностью может быть синим или красным.

Согласно квантовой теории, мы получим такие результаты, даже если две системы будет разделять огромное расстояние и измерения будут проведены почти одновременно. Выбор типа измерений в одном месте, судя по всему, влияет на состояние системы в другом месте. Это «пугающее дальнодействие», как называл его Эйнштейн, по-видимому, требует передачу информации – в нашем случае, информации о проведённом измерении – со скоростью, превышающей скорость света.

Но так ли это? Пока я не узнаю, какой результат получили вы, я не знаю, чего ожидать мне. Я получаю полезную информацию, когда я узнаю ваш результат, а не когда вы проводите измерение. И любое сообщение, содержащее полученный вами результат, необходимо передать каким-либо физическим способом, медленнее скорости света.

При дальнейшем изучении парадокс ещё больше разрушается. Давайте рассмотрим состояние второй системы, если измерение первой дало красный цвет. Если мы решим мерить цвет второго квантона, мы получим красный. Но по принципу дополнительности, если мы решим измерить его форму, когда он находится в «красном» состоянии, у нас будут равные шансы на получение квадрата или круга. Поэтому, результат EPR логически предопределён. Это просто пересказ принципа дополнительности.

Нет парадокса и в том, что удалённые события коррелируют. Ведь если мы положим одну из двух перчаток из пары в коробки и отправим их в разные концы планеты, неудивительно, что посмотрев в одну коробку, я могу определить, на какую руку предназначена другая перчатка. Точно так же, во всех случаях корреляция пар EPR должна быть зафиксирована на них, когда они находятся рядом и потому они могут выдержать последующее разделение, будто бы имея память. Странность EPR-парадокса не в самой по себе возможности корреляции, а в возможности её сохранения в виде дополнений.

III

Дэниел Гринбергер, Майкл Хорн и Антон Зейлингер открыли ещё один прекрасный пример квантовой запутанности. ОН включает три наших квантона, находящихся в специально подготовленном запутанном состоянии (GHZ-состоянии). Мы распределяем каждый из них разным удалённым экспериментаторам. Каждый из них выбирает, независимо и случайно, измерять ли цвет или форму и записывает результат. Эксперимент повторяют многократно, но всегда с тремя квантонами в GHZ-состоянии.

Каждый отдельно взятый экспериментатор получает случайные результаты. Измеряя форму квантона, он с равной вероятностью получает квадрат или круг; измеряя цвет квантона, он с равной вероятностью получает красный или синий. Пока всё обыденно.

Но когда экспериментаторы собираются вместе и сравнивают результаты, анализ показывает удивительный результат. Допустим, мы будем называть квадратную форму и красный цвет «добрыми», а круги и синий цвет – «злыми». Экспериментаторы обнаруживают, что если двое из них решили измерить форму, а третий – цвет, тогда либо 0, либо 2 результата измерений получаются «злыми» (т.е. круглыми или синими). Но если все трое решают измерить цвет, то либо 1 либо 3 измерения получаются злыми. Это предсказывает квантовая механика, и именно это и происходит.

Вопрос: количество зла чётное или нечётное? В разных измерениях реализовываются обе возможности. Нам приходится отказаться от этого вопроса. Не имеет смысла рассуждать о количестве зла в системе без связи с тем, как его измеряют. И это приводит к противоречиям.

Эффект GHZ, как описывает его физик Сидни Колман, это «оплеуха от квантовой механики». Он разрушает привычное, полученное из опыта ожидание того, что у физических систем есть предопределённые свойства, независимые от их измерения. Если бы это было так, то баланс доброго и злого не зависел бы от выбора типов измерений. После того, как вы примете существование GHZ-эффекта, вы его не забудете, а ваш кругозор будет расширен.

IV

Пока что мы рассуждаем о том, как запутанность не позволяет назначить уникальные независимые состояния нескольким квантонам. Такие же рассуждения применимы к изменениям одного квантона, происходящим со временем.

Мы говорим об «запутанных историях», когда системе невозможно присвоить определённое состояние в каждый момент времени. Так же, как в традиционной запутанности мы исключаем какие-то возможности, мы можем создать и запутанные истории, проводя измерения, собирающие частичную информацию о прошлых событиях. В простейших запутанных историях у нас есть один квантон, изучаемый нами в два разных момента времени. Мы можем представить ситуацию, когда мы определяем, что форма нашего квантона оба раза была квадратной, или круглой оба раза, но при этом остаются возможными обе ситуации. Это темпоральная квантовая аналогия простейшим вариантам запутанности, описанным ранее.

Используя более сложный протокол, мы можем добавить чуть-чуть дополнительности в эту систему, и описать ситуации, вызывающие «многомировое» свойство квантовой теории. Наш квантон можно подготовить в красном состоянии, а затем измерить и получить голубое. И как в предыдущих примерах, мы не можем на постоянной основе присвоить квантону свойство цвета в промежутке между двумя измерениями; нет у него и определённой формы. Такие истории реализовывают, ограниченным, но полностью контролируемым и точным способом, интуицию, свойственную картинке множественности миров в квантовой механике. Определённое состояние может разделиться на две противоречащие друг другу исторические траектории, которые затем снова соединяются.

Эрвин Шрёдингер, основатель квантовой теории, скептически относившийся к её правильности, подчёркивал, что эволюция квантовых систем естественным образом приводит к состояниям, измерение которых может дать чрезвычайно разные результаты. Его мысленный эксперимент с «котом Шрёдингера» постулирует, как известно, квантовую неопределённость, выведенную на уровень влияния на смертность кошачьих. До измерения коту невозможно присвоить свойство жизни (или смерти). Оба, или ни одно из них, существуют вместе в потустороннем мире возможностей.

Повседневный язык плохо приспособлен для объяснения квантовой дополнительности, в частности потому, что повседневный опыт её не включает. Практические кошки взаимодействуют с окружающими молекулами воздуха, и другими предметами, совершенно по-разному, в зависимости от того, живы они или мертвы, поэтому на практике измерение проходит автоматически, и кот продолжает жить (или не жить). Но истории с запутанностью описывают квантоны, являющиеся котятами Шрёдингера. Их полное описание требует, чтобы мы принимали к рассмотрению две взаимоисключающие траектории свойств.

Контролируемая экспериментальная реализация запутанных историй – вещь деликатная, поскольку требует сбора частичной информации о квантонах. Обычные квантовые измерения обычно собирают всю информацию сразу – к примеру, определяют точную форму или точный цвет – вместо того, чтобы несколько раз получить частичную информацию. Но это можно сделать, хотя и с чрезвычайными техническими трудностями. Этим способом мы можем присвоить определённый математический и экспериментальный смысл распространению концепции «множественности миров» в квантовой теории, и продемонстрировать её реальность.

Если вас еще не поразили чудеса квантовой физики, то после этой статьи ваше мышление уж точно перевернется. Сегодня я расскажу, что такое квантовая запутанность, но простыми словами, чтобы любой человек понял, что это такое.

Запутанность как магическая связь

После того, как были открыты необычные эффекты, происходящие в микромире, ученые пришли к интересному теоретическому предположению. Оно именно следовало из основ квантовой теории.

В прошлой я рассказывал о том, что электрон ведет себя очень странно.

Но запутанность квантовых, элементарных частиц вообще противоречит какому-либо здравому смыслу, выходит за рамки любого понимания.

Если они взаимодействовали друг с другом, то после разъединения между ними остается магическая связь, даже если их разнести на любое, сколь угодно большое расстояние.

Магическая в том смысле, что информация между ними передается мгновенно.

Как известно из квантовой механики частица до измерения находится в суперпозиции, то есть имеет сразу несколько параметров, размыта в пространстве, не имеет точное значение спина. Если над одной из пары ранее взаимодействующих частиц произвести измерение, то есть произвести коллапс волновой функции, то вторая сразу, мгновенно отреагирует на это измерение. И не важно, какое расстояние между ними. Фантастика, не правда ли.

Как известно из теории относительности Эйнштейна ничто не может превышать скорость света. Чтобы информация дошла от одной частицы до второй, нужно по крайне мере затратить время прохождения света. Но одна частица именно мгновенно реагирует на измерение второй. Информация при скорости света дошла бы до нее уже позже. Все это не укладывается в здравый смысл.

Если разделить пару элементарных частичек с нулевым общим параметром спина, то одна должна иметь отрицательный спин, а вторая положительный. Но до измерения значение спина находится в суперпозиции. Как только мы измерили спин у первой частички, увидели, что он имеет положительное значение, так сразу вторая приобретает отрицательный спин. Если же наоборот первая частичка приобретает отрицательное значение спина, то вторая мгновенно положительное значение.

Или такая аналогия.

У нас имеется два шара. Один черный, другой белый. Мы их накрыли непрозрачными стаканами, не видим, где какой. Мешаем как в игре наперстки.

Если открыли один стакан и увидели, что там белый шар, значит во втором стакане черный. Но сначала мы не знаем, где какой.

Так и с элементарными частичками. Но они до того, как на них посмотреть, находятся в суперпозиции. До измерения шары как бы бесцветны. Но разрушив суперпозицию одного шара и увидев, что он белый, то второй сразу становится черным. И это происходит мгновенно, будь хоть один шар на земле, а второй в другой галактике. Чтобы свет дошел от одного шара до другого в нашем случае, допустим нужно сотни лет, а второй шар узнает, что произвели измерение над вторым, повторяю, мгновенно. Между ними запутанность.

Понятно, что Эйнштейн, да и многие другие физики не принимали такой исход событий, то есть квантовую запутанность. Он считал выводы квантовой физики неверными, неполными, предполагал, что не хватает каких-то скрытых переменных.

Вышеописанный парадокс Эйнштейна наоборот придумал, чтобы показать, что выводы квантовой механики не верны, потому что запутанность противоречит здравому смыслу.

Этот парадокс назвали парадокс Эйнштейна - Подольского - Розена, сокращённо ЭПР-парадокс.

Но проведенные эксперименты с запутанностью уже позже А. Аспектом и другими учеными, показали, что Эйнштейн был не прав. Квантовая запутанность существует.

И это уже были не теоретические предположения, вытекающие из уравнений, а реальные факты множества экспериментов по квантовой запутанности. Ученые это увидели вживую, а Эйнштейн умер, так и не узнав правду.

Частицы действительно взаимодействуют мгновенно, ограничения по скорости света им не помеха. Мир оказался куда интереснее и сложнее.

При квантовой запутанности происходит, повторю, мгновенная передача информации, образуется магическая связь.

Но как такое может быть?

Сегодняшняя квантовая физика отвечает на этот вопрос изящным образом. Между частицами происходит мгновенная связь не из-за того, что информация передается очень быстро, а потому что на более глубоком уровне они просто не разделены, а все еще находятся вместе. Они находятся в так называемой квантовой запутанности.

То есть состояние запутанности это такое состояние системы, где по каким-то параметрам или значениям, она не может быть разделена на отдельные, полностью самостоятельные части.

Например, электроны после взаимодействия могут быть разделены на большое расстояние в пространстве, но их спины находятся все еще вместе. Поэтому во время экспериментов спины мгновенно согласуются между собой.

Понимаете, к чему это ведет?

Сегодняшние познания современной квантовой физики на основе теории декогеренции сводятся к одному.

Существует более глубокая, непроявленная реальность. А то, что мы наблюдаем как привычный классический мир лишь малая часть, частный случай более фундаментальной квантовой реальности.

В ней нет пространства, времени, каких-то параметров частиц, а лишь информация о них, потенциальная возможность их проявления.

Именно этот факт изящно и просто объясняет, почему возникает коллапс волновой функции, рассмотренный в предыдущей статье, квантовую запутанность и другие чудеса микромира.

Сегодня, говоря о квантовой запутанности, вспоминают потусторонний мир.

То есть на более фундаментальном уровне элементарная частица непроявленная. Она находится одновременно в нескольких точках пространства, имеет несколько значений спинов.

Затем по каким-то параметрам она может проявиться в нашем классическом мире в ходе измерения. В рассмотренном выше эксперименте две частицы уже имеют конкретное значение координат пространства, но спины их находятся все еще в квантовой реальности, непроявленные. Там нет пространства и времени, поэтому спины частиц сцеплены вместе, несмотря на огромное расстояние между ними.

А когда мы смотрим, какой спин у частицы, то есть производим измерение, мы как бы вытаскиваем спин из квантовой реальности в наш обычный мир. А нам кажется, что частицы обмениваются информацией мгновенно. Просто они были все еще вместе по одному параметру, хоть и находились далеко друг от друга. Их раздельность на самом деле есть иллюзия.

Все это кажется странным, непривычным, но этот факт уже подтверждается многими экспериментами. На основе магической запутанности создаются квантовые компьютеры.

Реальность оказалась намного сложнее и интереснее.

Принцип квантовой запутанности не стыкуется с обычным нашим взглядом на мир.


Вот как объясняет квантовую запутанность физик-ученый Д.Бом.

Допустим, мы наблюдаем за рыбой в аквариуме. Но в силу каких-то ограничений, мы можем смотреть не на аквариум, как он есть, а лишь на его проекции, снимаемые двумя камерами спереди и сбоку. То есть мы наблюдаем за рыбой, смотря на два телевизора. Нам кажутся рыбы разными, так как мы снимаем ее одной камерой в анфас, другой в профиль. Но чудесным образом их движения четко согласуются. Как только рыба с первого экрана поворачивается, вторая мгновенно делает также поворот. Мы удивляемся, не догадываясь, что это одна и та же рыба.

Так и в квантовом эксперименте с двумя частицами. Из-за своих ограничений нам кажется, что спины двух, ранее взаимодействующих частиц, не зависимы друг от друга, ведь теперь частицы находятся далеко друг от друга. Но на самом деле они все еще вместе, но находятся в квантовой реальности, в нелокальном источнике. Мы просто смотрим не на реальность, как она есть на самом деле, а с искажением, в рамках классической физики.

Квантовая телепортация простыми словами

Когда ученые узнали о квантовой запутанности и мгновенной передаче информации, многие задались вопросом: можно ли осуществить телепортацию?

Это оказалось действительно возможным.

Уже проведено множество экспериментов по телепортации.

Суть метода легко можно понять, если вы поняли общий принцип запутанности.

Имеется частица, например электрон А и две пары запутанных электронов В и С. Электрон А и пара В, С находятся в разных точках пространства, неважно как далеко. А теперь переведем в квантовую запутанность частички А и В, то есть объединим их. Теперь С становится точно такой же как А, потому что общее их состояние не меняется. То есть частица А как бы телепортируется в частицу С.

Сегодня проведены уже более сложные опыты по телепортации.

Конечно, все опыты пока проводятся только с элементарными частицами. Но согласитесь, это уже невероятно. Ведь все мы состоим из тех же частиц, ученые говорят, что телепортация макрообъектов теоретически ничем не отличается. Нужно лишь решить множество технических моментов, а это лишь вопрос времени. Может быть, человечество дойдет в своем развитии до способности телепортировать большие объекты, да и самого человека.

Квантовая реальность

Квантовая запутанность есть целостность, неразрывность, единение на более глубоком уровне.

Если по каким-то параметрам частицы находятся в квантовой запутанности, то по этим параметрам их просто нельзя разделить на отдельные части. Они взаимозависимы. Такие свойства просто фантастические с точки зрения привычного мира, запредельные, можно сказать потусторонние и трансцендентные. Но это факт, от которого уже никуда не деться. Пора это уже признать.

Но к чему все это ведет?

Оказывается, о таком положении вещей давно говорили многие духовные учения человечества.

Видимый нами мир, состоящий из материальных объектов это не основа реальности, а лишь малая ее часть и не самая главная. Существует трансцендентная реальность, которая задает, определяет все, что происходит с нашим миром, а значит и с нами.

Именно там кроются настоящие ответы на извечные вопросы о смысле жизни, настоящего развития человека, обретения счастья и здоровья.

И это не пустые слова.

Все это приводит к переосмыслению жизненных ценностей, пониманию того, что кроме бессмысленной гонкой за материальными благами есть что-то более важное и высокое. И эта реальность не где-то там, она окружает нас повсюду, она пронизывает нас, она как говорится "на кончиках наших пальцев".

Но давайте об этом поговорим в следующих статьях.

А сейчас посмотрите видео о квантовой запутанности.

От квантовой запутанности мы плавно переходим к теории . Об этом в следующей статье.

Квантовая запутанность

Квантовая запутанность (сцепленность) (англ. Entanglement) - квантовомеханическое явление, при котором квантовое состояние двух или большего числа объектов должно описываться во взаимосвязи друг с другом, даже если отдельные объекты разнесены в пространстве. Вследствие этого возникают корреляции между наблюдаемыми физическими свойствами объектов. Например, можно приготовить две частицы, находящиеся в едином квантовом состоянии так, что когда одна частица наблюдается в состоянии со спином, направленным вверх, то спин другой оказывается направленным вниз, и наоборот, и это несмотря на то, что согласно квантовой механике, предсказать, какие фактически каждый раз получатся направления, невозможно. Иными словами, создаётся впечатление, что измерения, проводимые над одной системой, оказывают мгновенное воздействие на запутанную с ней. Однако то, что понимается под информацией в классическом смысле, всё-таки не может быть передано через запутанность быстрее, чем со скоростью света.
Раньше исходный термин «entanglement» переводился противоположно по смыслу - как запутанность, но смысл слова заключается в сохранении связи даже после сложной биографии квантовой частицы. Так что при наличии связи между двумя частицами в клубке физической системы, «подергав» одну частицу, можно было определить другую.

Квантовая запутанность является основой таких будущих технологий, как квантовый компьютер и квантовая криптография, а также она была использована в опытах по квантовой телепортации. В теоретическом и философском плане данное явление представляет собой одно из наиболее революционных свойств квантовой теории, так как можно видеть, что корреляции, предсказываемые квантовой механикой, совершенно несовместимы с представлениями о, казалось бы, очевидной локальности реального мира, при которой информация о состоянии системы может передаваться только посредством её ближайшего окружения. Различные взгляды на то, что в действительности происходит во время процесса квантовомеханического запутывания, ведут к различным интерпретациям квантовой механики.

История вопроса

В 1935 г. Эйнштейн, Подольский и Розен сформулировали знаменитый Парадокс Эйнштейна - Подольского - Розена, который показал, что из-за связности квантовая механика становится нелокальной теорией. Известно, как Эйнштейн высмеивал связность, называя его «кошмарным дальнодействием. Естественно нелокальная связность опровергала постулат ТО о предельной скорости света (передаче сигнала).

С другой стороны, квантовая механика отлично зарекомендовала себя в предсказании экспериментальных результатов, и фактически наблюдались даже сильные корреляции, происходящие благодаря феномену запутывания. Есть способ, который позволяет, казалось бы, успешно объяснить квантовое запутывание - подход «теории скрытых параметров» при котором за корреляции отвечают определённые, но неизвестные микроскопические параметры. Однако, в 1964 г. Дж. С. Белл показал, что «хорошую» локальную теорию таким образом построить всё равно не удастся, то есть, запутывание, предсказываемое квантовой механикой, можно экспериментально отличить от результатов, предсказываемых широким классом теорий с локальными скрытыми параметрами. Результаты последующих экспериментов дали ошеломляющее подтверждение квантовой механики. Некоторые проверки показывают, что в этих экспериментах есть ряд узких мест, но общепризнано, что они несущественны.

Связность приводит к интересным взаимоотношениям с принципом относительности, который утверждает, что информация не может переноситься с места на место быстрее, чем со скоростью света. Хотя две системы могут быть разделены большим расстоянием и быть при этом запутанными, передать через их связь полезную информацию невозможно, поэтому причинность не нарушается из-за запутанности. Это происходит по двум причинам:
1. результаты измерений в квантовой механике носят принципиально вероятностный характер;
2. теорема о клонировании квантового состояния запрещает статистическую проверку запутанных состояний.

Причины влияние частиц

В нашем мире существуют особые состояния нескольких квантовых частиц - запутанные состояния, у которых наблюдаются квантовые корреляции (вообще, корреляция - это взаимосвязь между событиями выше уровня случайных совпадений). Эти корреляции можно обнаружить экспериментально, что было сделано впервые свыше двадцати лет назад и сейчас уже рутинно используется в разнообразных экспериментах. В классическом (то есть неквантовом) мире существует два типа корреляций - когда одно событие является причиной другого или же когда у них обоих есть общая причина. В квантовой теории возникает третий тип корреляций, связанный с нелокальными свойствами запутанных состояний нескольких частиц. Этот третий тип корреляций трудно представить себе, пользуясь привычными бытовыми аналогиями. А может быть, эти квантовые корреляции есть результат какого-то нового, неизвестного до сих пор взаимодействия, благодаря которому запутанные частицы (и только они!) влияют друг на друга?

Сразу стоит подчеркнуть «ненормальность» такого гипотетического взаимодействия. Квантовые корреляции наблюдаются, даже если детектирование двух разнесенных на большое расстояние частиц происходит одновременно (в пределах погрешностей эксперимента). Значит, если такое взаимодействие и имеет место, то оно должно распространяться в лабораторной системе отсчета чрезвычайно быстро, со сверхсветовой скоростью. А из этого неизбежно следует, что в других системах отсчета это взаимодействие будет вообще мгновенным и даже будет действовать из будущего в прошлое (правда, не нарушая принцип причинности).

Суть эксперимента

Геометрия эксперимента. Пары запутанных фотонов порождались в Женеве, затем фотоны посылались вдоль оптоволоконных кабелей одинаковой длины (отмечены красным цветом) в два приемника (отмечены буквами APD), отстоящими друг от друга на 18 км. Изображение из обсуждаемой статьи в Nature

Идея эксперимента состоит в следующем: создадим два запутанных фотона и отправим их в два детектора, отстоящих как можно дальше друг от друга (в описываемом эксперименте расстояние между двумя детекторами было 18 км). При этом пути фотонов до детекторов сделаем по возможности одинаковыми, так чтобы моменты их детектирования были максимально близкими. В этой работе моменты детектирования совпадали с точностью примерно 0,3 наносекунды. Квантовые корреляции в этих условиях по-прежнему наблюдались. Значит, если предположить, что они «работают» за счет описанного выше взаимодействия, то его скорость должна превышать скорость света в сотню тысяч раз.
Такой эксперимент, на самом деле, проводился этой же группой и раньше. Новизна данной работы лишь в том, что эксперимент длился долго. Квантовые корреляции наблюдались непрерывно и не исчезали ни в какое время суток.
Почему это важно? Если гипотетическое взаимодействие переносится некоторой средой, то у этой среды будет выделенная система отсчета. Из-за вращения Земли лабораторная система отсчета движется относительно этой системы отсчета с разной скоростью. Это значит, что промежуток времени между двумя событиями детектирования двух фотонов будет для этой среды всё время разным, в зависимости от времени суток. В частности, будет и такой момент, когда эти два события для этой среды будут казаться одновременными. (Тут, кстати, используется тот факт из теории относительности, что два одновременных события будут одновременными во всех инерциальных системах отсчета, движущихся перпендикулярно соединяющей их линии).

Если квантовые корреляции осуществляются за счет описанного выше гипотетического взаимодействия и если скорость этого взаимодействия конечна (пусть и сколь угодно большая), то в этот момент корреляции бы исчезли. Поэтому непрерывное наблюдение корреляций в течение суток полностью закрыло бы эту возможность. А повторение такого эксперимента в разные времена года закрыло бы эту гипотезу даже с бесконечно быстрым взаимодействием в своей, выделенной системе отсчета.

К сожалению, этого достичь не удалось из-за неидеальности эксперимента. В этом эксперименте для того, чтобы сказать, что корреляции действительно наблюдаются, требуется накапливать сигнал в течение нескольких минут. Исчезновение корреляций, например, на 1 секунду этот эксперимент не смог бы заметить. Именно поэтому авторы не смогли полностью закрыть гипотетическое взаимодействие, а лишь получили ограничение на скорость его распространения в своей выделенной системе отсчета, что, конечно, сильно снижает ценность полученного результата.

А может быть...?

Читатель может спросить: а если всё же описанная выше гипотетическая возможность реализуется, но просто эксперимент из-за своей неидеальности ее проглядел, то означает ли это, что теория относительности неверна? Можно ли использовать этот эффект для сверхсветовой передачи информации или даже для перемещения в пространстве?

Нет. Описанное выше гипотетическое взаимодействие по построению служит единственной цели - это те «шестеренки», которые заставляют «работать» квантовые корреляции. Но уже доказано, что с помощью квантовых корреляций невозможно передать информацию быстрее скорости света. Поэтому каков бы ни был механизм квантовых корреляций, нарушить теорию относительности он не может.
© Игорь Иванов

См. Торсионные поля .
Основы Тонкого Мира - физический вакуум и торсионные поля . 4. МЕНТАЛЬНОЕ ТЕЛО.
ДНК и СЛОВО живое и мертвое.
Квантовая запутанность.
Квантовая теория и телепатия.
Лечение Силой Мысли.
Внушение и Самовнушение.
Ментальное лечение.
Подсознательное перепрограммирование.

Copyright © 2015 Любовь безусловная