Болезни Военный билет Призыв

Кто придумал параллельные прямые. Основные понятия геометрии Лобачевского. Некоторые. Создание неевклидовой геометрии

Пятый постулат Евклида «Если прямая, падающая на две прямые, образует внутренние односторонние углы, в сумме меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы в сумме меньше двух прямых» многим математикам еще в античности казался каким-то не очень ясным, отчасти в связи со сложностью его формулировки.

Представлялось, что постулатами должны быть только элементарные предложения, простые по форме. В связи с этим 5-ый постулат стал предметом особого внимания математиков, причем исследования на эту тему можно разделить на два направления, на деле тесно связанные между собой. Первое стремилось к замене этого постулата более простым и интуитивно ясным, как, например, сформулированное еще Проклом утверждение «Через точку, не лежащую на данной прямой, можно провести только одну прямую, не пересекающуюся с данной»: именно в таком виде 5-ый постулат, вернее, эквивалентная ему аксиома о параллельных фигурирует в современных учебниках.

Представители второго направления пытались доказать пятый постулат на основе других, то есть превратить его в теорему. Попытки такого рода начали ряд арабских математиков средневековья: ал-Аббас ал-Джаухари (нач. IX в.), Сабит ибн Корра, Ибн ал-Хайсам, Омар Хайям, Насиреддин ат-Туси. Позже в эти исследования включились европейцы: писавшие по-древнееврейски Леви Бен Гершон (XIV в.) и Альфонсо (XV в.), а затем немец-иезуит Х. Клавий (1596), англичанин Дж. Валлис (1663) и др. Особенный интерес к этой проблеме возник в XVIII в.: с 1759 по 1800 г. вышло 55 сочинений, анализирующих данную проблему, в т. ч. весьма важные сочинения итальянца-иезуита Дж. Саккери и немца И. Г. Ламберта.

Доказательства обычно велись методом «от противного»: из допущения, что 5-ый постулат не выполняется, пытались вывести следствия, которые противоречили бы другим постулатам и аксиомам. В действительности, однако, в конечном итоге получали противоречие не с другими постулатами, а с неким явным или неявным «очевидным» предложением, которое, однако, было невозможно установить на основе других постулатов и аксиом евклидовой геометрии: таким образом, доказательства не достигали своей цели, – получалось, что на место 5-го постулата опять-таки ставилось какое-то другое равносильное ему утверждение. В качестве такого утверждения брались, например, следующие положения:

Рис. 2. Существуют прямые, равноотстоящие друг от друга


Рис. 4. Две сходящиеся прямые пересекаются

Геометрия, в которой эти утверждения не выполняются, конечно, не такова, как мы привыкли, но из этого еще не следует, что она невозможна или что эти утверждения вытекают из других постулатов и аксиом Евклида, так что во всех доказательствах были те или иные пробелы или натяжки. Клавий обосновывал допущение о том, что существуют прямые, равноотстоящие друг от друга, евклидовым «определением» прямой как линии, равно расположенной по отношению к точкам на ней. Валлис впервые положил в основание своего доказательства 5-го постулата «естественное» положение, согласно которому для любой фигуры существует подобная сколь угодно большого размера, и обосновывал это утверждение 3-м постулатом Евклида, утверждающим из всякого центра и всяким раствором может быть описан круг (в действительности утверждение о существовании, например, неравных подобных треугольников или даже окружностей эквивалентно 5-му постулату). А. М. Лежандр в последовательных изданиях учебника «Начала геометрии» (1794, 1800, 1823) приводил новые доказательства 5-го постулата, но внимательный анализ показывал пробелы в этих доказательствах. Подвергнув Лежандра справедливой критике, наш соотечественник С. Е. Гурьев в книге «Опыт о усовершенствовании элементов геометрии» (1798), однако, сам допустил ошибку в доказательстве 5-го постулата.

Довольно быстро была осознана связь между суммой углов треугольника и четырехугольника и 5-ым постулатом: 5-ый постулат следует из утверждения о том, что сумма углов треугольника равна двум прямым, которое можно вывести из существования прямоугольников. В связи с этим получил распространение подход (ему следовали Хайям, ат-Туси, Валлис, Саккери), при котором рассматривается четырехугольник, получающийся в результате откладывания равных отрезков на двух перпендикулярах к одной прямой. Исследуются три гипотезы: два верхних угла являются острыми, тупыми либо прямыми; при этом осуществляется попытка показать, что гипотезы тупых и острых углов ведут к противоречию.

При другом подходе (его применяли Ибн ал-Хайсам, Ламберт) анализировались аналогичные три гипотезы для четырехугольника с тремя прямыми углами.

Саккери и Ламберт показали, что гипотезы тупых углов действительно ведут к противоречию, но им не удалось найти противоречия при рассмотрении гипотез острых углов: вывод о таком противоречии Саккери сделал лишь в результате ошибки, а Ламберт заключил, что видимое отсутствие противоречия в гипотезе острого угла связано с какой-то фундаментальной причиной. Ламберт нашел, что, при принятии гипотезы острого угла, сумма углов каждого треугольника меньше 180° на величину, пропорциональную его площади, и сравнил с этим открытое в нач. XVII в. положение, согласно которому площадь сферического треугольника, напротив, больше 180° на величину, пропорциональную его площади.

В 1763 г. Г. С. Клюгель опубликовал «Обзор важнейших попыток доказательства теории параллельных линий», где рассмотрел около 30 доказательств 5-го постулата и выявил в них ошибки. Клюгель заключил, что Евклид вполне обосновано поместил свое утверждение среди постулатов.

Тем не менее, попытки доказательства 5-го постулата сыграли весьма важную роль: пытаясь привести противоположные ему утверждения к противоречию, указанные исследователи на деле открыли многие важные теоремы неевклидовой геометрии – в частности, такой геометрии, где место 5-го постулата занимает утверждение о возможности провести через заданную точку, по крайней мере, двух прямых, не пересекающих данную. Это утверждение, эквивалентное гипотезе острого угла, и было положено в основу первооткрывателями неевклидовой геометрии.

К мысли о том, что допущение альтернативы 5-му постулату ведет к построению геометрии, отличной от евклидовой, но столь же непротиворечивой, независимо пришли несколько ученых: К. Ф. Гаусс, Н. И. Лобачевский и Я. Бояи (а также Ф. К. Швейкарт и Ф. А. Тауринус, чей вклад в новую геометрию, впрочем, был более скромным и которые не публиковали своих исследований). Гаусс, судя по записям, сохранившимся в его архиве (и опубликованным только в 1860-е гг.), осознал возможность новой геометрии еще в 1810-е гг., но также никогда не публиковал своих открытий на эту тему: «Я опасаюсь крика беотийцев (т. е. глупцов: жители области Беотия считались в Древней Греции самыми глупыми), если выскажу мои воззрения целиком», – писал он в 1829 г. своему другу математику Ф. В. Бесселю. Непонимание в полной мере выпало на долю Лобачевского, сделавшего первый доклад о новой геометрии в 1826 г. и опубликовавшего полученные результаты в 1829 г. В 1842 г. Гаусс добился избрания Лобачевского членом-корреспондентом Геттингенского ученого общества: это было единственным признанием заслуг Лобачевского при жизни. Отец Я. Бояи – математик Фаркаш Бояи, также пытавшийся доказать 5-й постулат – предостерегал сына от исследований в этом направлении: «...это может лишить тебя твоего досуга, здоровья, покоя, всех радостей жизни. Эта черная пропасть в состоянии, быть может, поглотить тысячу таких титанов, как Ньютон, на Земле это никогда не прояснится...». Тем не менее, Я. Бояи в 1832 г. опубликовал свои результаты в приложении к учебнику геометрии, написанному его отцом. Бояи также не добился признания, к тому же был огорчен тем, что Лобачевский опередил его: больше неевклидовой геометрией он не занимался. Так что только Лобачевский в течение всей оставшейся жизни, во-первых, продолжал исследования в новой области, а во-вторых, пропагандировал свои идеи, опубликовал еще ряд книг и статей по новой геометрии.

Итак, в плоскости Лобачевского через точку C вне данной прямой AB проходят по крайней мере две прямые, не пересекающие AB . Все прямые, проходящие через C , делятся на два класса – на пересекающие и на не пересекающие AB . Эти последние лежат в некотором угле, образованном двумя крайними прямыми, не пересекающими AB . Именно эти прямые Лобачевский называет параллельными прямой AB , а угол между ними и перпендикуляром – углом параллельности. Этот угол зависит от расстояния от точки C до прямой AB : чем больше это расстояние, тем меньше угол параллельности. Прямые, лежащие внутри угла, называются расходящимися по отношению к AB .

Любые две расходящиеся прямые p и q имеют единственный общий перпендикуляр t , который является самым коротким отрезкам от одной до другой. Если точка M движется по p в направлении от t , то расстояние от M до q будет возрастать до бесконечности, причем основания перпендикуляров, опущенных из M на q , заполнят лишь конечный отрезок.

Если прямые p и q пересекают друг друга, то проекции точек одной из них на другую также заполняют ограниченный отрезок.

Если прямые p и q параллельны, то в одном направлении расстояния между их точками неограниченно убывают, а в другом неограниченно возрастают; одна прямая проецируется на луч другой.

На рисунках показаны различные взаимные положения прямых p и q , возможные в геометрии Лобачевского; r и s – перпендикуляры, параллельные q . (Мы вынуждены рисовать искривленную линию q , хотя речь идет о прямой. Даже если бы наш мир в целом подчинялся бы законам геометрии Лобачевского, мы бы все равно не смогли изобразить в малом масштабе без искажений то, как все выглядит в большом: в геометрии Лобачевского нет подобных фигур, которые не были бы равными).

Внутри угла существует прямая, параллельная обеим сторонам угла. Она делит все точки внутри угла на два типа: через точки первого типа можно провести прямые, пересекающие обе стороны угла; через точки второго типа нельзя провести ни одной такой прямой. То же верно и для пространства между параллельными прямыми. Между двумя расходящимися прямыми есть две прямые, параллельные им обеим; они делят пространство между расходящимися прямыми на три области: через точки в одной области можно провести прямые, пересекающие обе стороны угла; через точки в двух других областях таких прямых провести нельзя.

На диаметр окружности всегда опирается острый, а не прямой угол. Сторона вписанного в окружность правильного шестиугольника всегда больше ее радиуса. Для любого n > 6 можно построить такую окружность, что сторона вписанного в нее правильного n -угольника равна ее радиусу.

Лобачевский интересовался вопросом о геометрии физического пространства, в частности, используя данные астрономических наблюдений подсчитывал сумму углов больших, межзвездных треугольников: однако отличие этой суммы углов от 180° лежало целиком внутри ошибки наблюдений. Непонимание, выпавшее на долю Лобачевского, который сам называл свою геометрию «воображаемой», во многом связано с тем, что в его время такие идеи казались чистыми абстракциями и игрой воображения. Действительно ли новая геометрия непротиворечива? (Ведь если даже Лобачевскому не удалось встретить противоречия, это не гарантирует, что оно не будет обнаружено впоследствии). Насколько она соотносится с реальным миром, а также с другими областями математики? Это стало ясно далеко не сразу, и успех, в конечном итоге выпавший на долю новых идей, был связан с открытием моделей новой геометрии.

Ни в какой. По определению, параллельные прямые не имеют точек пересечения.

Теперь давайте по геометриям и заблуждениям. Всюду будут рассматриваться "плоскости", чтобы это ни значило.

Геометрия Евклида. То, что учили в школе, то, что привычнее и почти точно выполняется в повседневной жизни. Выделю те два факта, что будут существенны потом. Первое: в этой геометрии есть расстояние, между любыми двумя точками существует кратчайшая, и притом только одна (отрезок прямой). Второе: через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной и при том только одну.

Это соответствует какой-то паре аксиом из учебника Погорелова, поэтому мне удобнее будет на это опираться.

Геометрия Лобачевского. С расстоянием в ней все отлично, но нам его сложно представить из-за постоянной отрицательной кривизны (не поняли - не страшно). С параллельностью сложнее. Через точку вне прямой всегда можно провести не просто одну, а бесконечно много параллельных прямых.

Сферическая геометрия. Во-первых, что мы считаем "прямыми". Прямые на сфере - большие круги = круги, высекаемык на сфере плоскостью, проходящей через центр = круги радиуса равного радиусу сферы. Это прямые в том смысле, что это кратчайший путь между не очень далекими (чуть позже станет понятно, какими) точками. Некоторые могли заметить, что если города находятся на одной параллели, то самолет летит не по этой параллели, а по траектории выпуклой на север в северном полушарии. Если порисуете, то заметите, что большой круг, соединяющий две точки проходит северней параллели.

Чем же плохо расстояние на сфере? Возьмем диаметрально противоположные точки на сфере, для них существует бесконечно много кратчайших. Нагляднее: посмотрю на северный и южный полюса. Все мерилианы проходят через них, все они имеют одинаковые длины, любой другой путь будет длиннее.

Параллельных прямых при этом нет совсем, любые две прямые пересекаютсяются в диаметрально противоположных точках.

Проективная плоскость. Самое главное и первое отличие: никакого расстояния нет и быть не может. В принципе, его нельзя ввести, чтобы оно удовлетворяло каким-то естественным условиям (сохранялось при "движениях" плоскости). Таким образом, ни про какие "бесконечно удаленные прямые" сама геометрия не знает, все это придумано людьми, чтобы как-то понять проективную плоскость. Самый "простой" способ: представить привычную нам плоскость (так называемую "аффинную карту") и добавить к ней прямую, которая "бесконечно удалена", причем все прямые, которые были параллельны данной в плоскости, которую представили, пересекутся в какой-то одной точке на этой "бесконечно удаленной" прямой. Такое описание довольно просто: вот я что-то написал в два предложения, и кто-то что-то уже представил. Но оно вводит в заблуждение, никакой выделенной прямой в проективной геометрии нет. Но уже это описание показывает, что параллельных прямых

теоремы геометрии Лобачевского

1. Основные понятия геометрии Лобачевского

В евклидовой геометрии согласно пятому постулату на плоскости через точку Р, лежащую вне прямой А"А, проходит только одна прямая В"В, не пересекающая А"А. Прямая В"В называется параллелью к А"А. При этом достаточно потребовать, чтобы таких прямых проходило не более одной, так как существование непересекающей прямой может быть доказано путем последовательного проведения прямых PQA"A и PBPQ. В геометрии Лобачевского аксиома параллельности требует, чтобы через точку Р проходило более одной прямой, не пересекающей А "А.

Непересекающие прямые заполняют часть пучка с вершиной Р, лежащую внутри пары вертикальных углов TPU и U"PT" , расположенных симметрично относительно перпендикуляра PQ. Прямые, образующие стороны вертикальных углов, отделяют пересекающие прямые от непересекающих и сами являются тоже непересекающими. Эти граничные прямые называются параллелями в точке Р к прямой А"А соответственно в двух ее направлениях: T"Т параллельно А "А в направлении A"A, a UU" параллельно А "А в направлении А А". Остальные непересекающие прямые называются расходящимися прямыми с А "А .

Угол , 0< Р образует с перпендикуляром PQ, QPT= QPU" =, называется углом параллельности отрезка PQ=a и обозначается через . При а=0 угол =/2; при увеличении а угол уменьшается так, что для каждого заданного, 0<а. Эта зависимость называется функцией Лобачевского :

П (a)=2arctg (),

где к -- некоторая константа, определяющая фиксированный по величине отрезок. Она получила название радиуса кривизны пространства Лобачевского. Подобно сферической геометрии существует бесконечное множество пространств Лобачевского, различающихся величиной к.

Две различные прямые по плоскости образуют пару одного из трех типов.

Пересекающиеся прямые . Расстояние от точек одной прямой до другой прямой неограниченно увеличивается при удалении точки от пересечения прямых. Если прямые не перпендикулярны, то каждая проектируется ортогонально на другую в открытый отрезок конечной величины.

Параллельные прямые . На плоскости через данную точку проходит единственная прямая, параллельная данной прямой в заданном на последней направлении. Параллель в точке Р сохраняет в каждой своей точке свойство быть параллелью той же прямой в том же направлении. Параллелизм обладает взаимностью (если а ||b в определенном направлении, то и b ||а в соответствующем направлении) и транзитивностью (если а ||b и с||b в одном направлении, то а||с в соответствующем направлении). В направлении параллельности параллельные неограниченно сближаются, в противоположном направлении -- неограниченно удаляются (в смысле расстояния от перемещающейся точки одной прямой до другой прямой). Ортогональная проекция одной прямой на другую является открытой полупрямой.

Расходящиеся прямые . Они имеют один общий перпендикуляр, отрезок которого дает минимальное расстояние. По обе стороны от перпендикуляра прямые неограниченно расходятся. Каждая прямая проектируется на другую в открытый отрезок конечной величины.

Трем типам прямых соответствуют на плоскости три типа пучков прямых, каждый из которых покрывает всю плоскость: пучок 1-го рода -- множество всех прямых, проходящих через одну точку (центр пучка); пучок 2-го рода -- множество всех прямых, перпендикулярных к одной прямой (базе пучка); пучок 3-го рода -- множество всех прямых, параллельных одной прямой в заданном направлении, включающее и эту прямую.

Ортогональные траектории прямых этих пучков образуют аналоги окружности евклидовой плоскости: окружность в собственном смысле; эквидистанта , или линия равных расстояний (если не рассматривать базу), которая вогнута в сторону базы; предельная линия , или орицикл , ее можно рассматривать как окружность с бесконечно удаленным центром. Предельные линии конгруэнтны. Они не замкнуты и вогнуты в сторону параллельности. Две предельные линии, порожденные одним пучком,-- концентричны (высекают на прямых пучка равные отрезки). Отношение длин концентрических дуг, заключенных между двумя прямыми пучка, убывает в сторону параллельности как показательная функция расстояния х между дугами:

s" / s=e .

Каждый из аналогов окружности может скользить по самому себе, что порождает три типа однопараметрических движений плоскости: вращение вокруг собственного центра; вращение вокруг идеального центра (одна траектория -- база, остальные -- эквидистанты); вращение вокруг бесконечно удаленного центра (все траектории -- предельные линии).

Вращение аналогов окружностей вокруг прямой порождающего пучка приводит к аналогам сферы: собственно сфере, поверхности равных расстояний и орисфере , или предельной поверхности .

На сфере геометрия больших окружностей -- обычная сферическая геометрия; на поверхности равных расстояний -- геометрия эквидистант, являющаяся планиметрией Лобачевского, но с большим значением к; на предельной поверхности -- евклидова геометрия предельных линий.

Связь между длинами дуг и хорд предельных линий и евклидовы тригонометрические соотношения на предельной поверхности позволяют вывести тригонометрические соотношения на плоскости, то есть тригонометрические формулы для прямолинейных треугольников.

2. Некоторые теоремы геометрии Лобачевского

Теорема 1 . Сумма углов всякого треугольника меньше 2d.

Рассмотрим сначала прямоугольный треугольник ABC (рис. 2). Его стороны а, b, с изображены соответственно в виде отрезка евклидова перпендикуляра к прямой и , дуги евклидовой окружности с центром М и дуги евклидовой окружности с центром N . Угол С --прямой. Угол А равен углу между касательными к окружностям b и с в точке А , или, что то же, углу между радиусами NA и МА этих окружностей. Наконец, B = BNМ.

Построим на отрезке BN как на диаметре евклидову окружность q; она имеет с окружностью с одну только общую точку В , так как ее диаметр является радиусом окружности с . Поэтому точка А лежит вне круга, ограниченного окружностью q, следовательно,

А = MAN < MBN.

Отсюда в силу равенства MBN+В = d имеем:

А +В < d; (1)

поэтому A + B + C < 2d, что и требовалось доказать.

Заметим, что с помощью надлежащего гиперболического движения любой прямоугольный треугольник можно расположить так, чтобы один из его катетов лежал на евклидовом перпендикуляре к прямой и; следовательно, использованный нами метод вывода неравенства (1) применим к любому прямоугольному треугольнику.

Если дан косоугольный треугольник, то разбиваем его одной из высот на два прямоугольных треугольника. Сумма острых углов этих прямоугольных треугольников равна сумме углов данного косоугольного треугольника. Отсюда, принимая во внимание неравенство (1) , заключаем, что теорема справедлива для любого треугольника.

Теорема 2. Сумма углов четырехугольника меньше 4d.

Для доказательства достаточно разбить четырехугольник диагональю на два треугольника.

Теорема 3. Две расходящиеся прямые имеют один и только один общий перпендикуляр.

Пусть одна из данных расходящихся прямых изображается на карте в виде евклидова перпендикуляра р к прямой и в точке М , другая -- в виде евклидовой полуокружности q с центром на и , причем р и q не имеют общих точек (рис. 3). Такое расположение двух расходящихся гиперболических прямых на карте всегда может быть достигнуто с помощью надлежащего гиперболического движения.

Проведем из М евклидову касательную MN к q и опишем из центра М радиусом MN евклидову полуокружность m . Ясно, что m --гиперболическая прямая, пересекающая и р и q под прямым углом. Следовательно, m изображает на карте искомый общий перпендикуляр данных расходящихся прямых.

Две расходящиеся прямые не могут иметь двух общих перпендикуляров, так кaк в этом случае существовал бы четырехугольник с четырьмя прямыми углами, что противоречит теореме 2.

. Теорема 4. Прямоугольная проекция стороны острого угла на другую его сторону есть отрезок (а не полупрямая, как в геометрии Евклида).

Справедливость теоремы очевидна из рис. 4, где отрезок АВ есть прямоугольная проекция стороны АВ острого угла ВАС на его сторону АС.

На том же рисунке дуга DE евклидовой окружности с центром М есть перпендикуляр к гиперболической прямой АС . Этот перпендикуляр не пересекается с наклонной АВ. Следовательно, допущение, что перпендикуляр и наклонная к одной и той же прямой всегда пересекаются, противоречит аксиоме параллельности Лобачевского; оно равносильно аксиоме параллельности Евклида.

Теорема 5. Если три угла треугольника ABC равны соответственно трем углам треугольника А"В"С", то эти треугольники равны.

Допустим обратное и отложим соответственно на лучах АВ и АС отрезки АВ = А"В", АС = А"С". Очевидно, треугольники АВС и А"В"С" равны по двум сторонам и заключенному между ними углу. Точка B не совпадает с В , точка C не совпадает с С , так как в любом из этих случаев имело бы место равенство данных треугольников, что противоречит допущению.

Рассмотрим следующие возможности.

а) Точка В лежит между А и В , точка С -- между А и С (рис. 5); на этом и следующем рисунке гиперболические прямые изображены условно в виде евклидовых прямых). Нетрудно убедиться, что сумма углов четырехугольника ВССВ равна 4d , что невозможно в силу теоремы 2.

6) Точка В лежит между А и В , точка С -- между А и С (рис. 6). Обозначим через D точку пересечения отрезков ВС и BC Так как C = C" и C" = С, то C= С, что невозможно, поскольку угол С -- внешний относительно треугольника CCD.

Аналогично трактуются и другие возможные случаи.

Теорема доказана, поскольку сделанное допущение привело к противоречию.

Из теоремы 5 вытекает, что в геометрии Лобачевского не существует треугольника, подобного данному треугольнику, но не равного ему.

История создания геометрии Лобачевского одновременно является историей попыток доказать пятый постулат Евклида. Этот постулат представляет собой одну из аксиом, положенных Евклидом в основу изложения геометрии (см. Евклид и его «Начала»). Пятый постулат – последнее и самое сложное из предложений, включенных Евклидом в его аксиоматику геометрии. Напомним формулировку пятого постулата: если две прямые пересекаются третьей так, что по какую-либо сторону от нее сумма внутренних углов меньше двух прямых углов, то по эту же сторону исходные прямые пересекаются. Например, если на рис. 1 угол – прямой, а угол чуть меньше прямого, то прямые и непременно пересекаются, причем справа от прямой . Многие теоремы Евклида (например, «в равнобедренном треугольнике углы при основании равны») выражают гораздо более простые факты, чем пятый постулат. К тому же проверить на эксперименте пятый постулат довольно сложно. Достаточно сказать, что если на рис. 1 расстояние считать равным 1 м, а угол отличается от прямого на одну угловую секунду, то можно подсчитать, что прямые и пересекаются на расстоянии свыше 200 км от прямой .

Многие математики, жившие после Евклида, пытались доказать, что эта аксиома (пятый постулат) – лишняя, т.е. она может быть доказана как теорема на основании остальных аксиом. Так, в V в. математик Прокл (первый комментатор трудов Евклида) предпринял такую попытку. Однако в своем доказательстве Прокл незаметно для себя использовал следующее утверждение: два перпендикуляра к одной прямой на всем своем протяжении находятся на ограниченном расстоянии друг от друга (т.е. две прямые, перпендикулярные третьей, не могут неограниченно удаляться друг от друга, как линии на рис. 2). Но при всей кажущейся наглядной «очевидности» это утверждение при строгом аксиоматическом изложении геометрии требует обоснования. В действительности использованное Проклом утверждение является эквивалентом пятого постулата; иначе говоря, если его добавить к остальным аксиомам Евклида в качестве еще одной новой аксиомы, то пятый постулат можно доказать (что и сделал Прокл), а если принять пятый постулат, то можно доказать сформулированное Проклом утверждение.

Критический анализ дальнейших попыток доказать пятый постулат выявил большое число аналогичных «очевидных» утверждений, которыми можно заменить пятый постулат в аксиоматике Евклида. Вот несколько примеров таких эквивалентов пятого постулата.

1) Через точку внутри угла, меньшего, чем развернутый, всегда можно провести прямую, пересекающую его стороны, т.е. прямые линии на плоскости не могут располагаться так, как показано на рис. 3. 2) Существуют два подобных треугольника, не равных между собой. 3) Три точки, расположенные по одну сторону прямой на равном расстоянии от нее (рис. 4), лежат на одной прямой. 4) Для всякого треугольника существует описанная окружность.

Постепенно «доказательства» становятся все изощреннее, в них все глубже прячутся малозаметные эквиваленты пятого постулата. Допустив, что пятый постулат неверен, математики пытались прийти к логическому противоречию. Они приходили к утверждениям, чудовищно противоречащим нашей геометрической интуиции, но логического противоречия не получалось. А может быть, мы вообще никогда не придем на таком пути к противоречию? Не может ли быть так, что, заменив пятый постулат Евклида его отрицанием (при сохранении остальных аксиом Евклида), мы придем к новой, неевклидовой геометрии, которая во многом не согласуется с нашими привычными наглядными представлениями, но тем не менее не содержит никаких логических противоречий? Эту простую, но очень дерзкую мысль математики не могли выстрадать в течение двух тысячелетий после появления «Начал» Евклида.

Первым, кто допустил возможность существования неевклидовой геометрии, в которой пятый постулат заменяется его отрицанием, был К. Ф. Гаусс. То, что Гаусс владел идеями неевклидовой геометрии, было обнаружено лишь после смерти ученого, когда стали изучать его архивы. Гениальный Гаусс, к мнениям которою все прислушивались, не рискнул опубликовать свои результаты по неевклидовой геометрии, опасаясь быть непонятым и втянутым в полемику.

XIX в. принес решение загадки пятого постулата. К этому открытию независимо от Гаусса пришел и наш соотечественник – профессор Казанского университета Н. И. Лобачевский. Как и его предшественники, Лобачевский вначале пытался выводить различные следствия из отрицания пятого постулата, надеясь, что рано или поздно он придет к противоречию. Однако он доказал много десятков теорем, не обнаруживая логических противоречий. И тогда Лобачевскому пришла в голову догадка о непротиворечивости геометрии, в которой пятый постулат заменен его отрицанием. Лобачевский назвал эту геометрию воображаемой. Свои исследования Лобачевский изложил в ряде сочинений, начиная с 1829 г. Но математический мир не принял идеи Лобачевского. Ученые не были подготовлены к мысли о том, что может существовать геометрия, отличная от евклидовой. И лишь Гаусс выразил свое отношение к научному подвигу русского ученого: он добился избрания в 1842 г. Н. И. Лобачевского членом-корреспондентом Геттингенского королевского научного общества. Это единственная научная почесть, выпавшая на долю Лобачевского при жизни. Он умер, так и не добившись признания своих идей.

Рассказывая о геометрии Лобачевского, нельзя не отметить еще одного ученою, который вместе с Гауссом и Лобачевским делит заслугу открытия неевклидовой геометрии. Им был венгерский математик Я. Бойяи (1802-1860). Его отец, известный математик Ф. Бойяи, всю жизнь работавший над теорией параллельных, считал, что решение этой проблемы выше сил человеческих, и хотел оградить сына от неудач и разочарований. В одном из писем он писал ему: «Я прошел весь беспросветный мрак этой ночи и всякий светоч, всякую радость жизни в ней похоронил... она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни...» Но Янош не внял предостережениям отца. Вскоре молодой ученый независимо от Гаусса и Лобачевского пришел к тем же идеям. В приложении к книге своего отца, вышедшей в 1832 г., Я. Бойяи дал самостоятельное изложение неевклидовой геометрии.

В геометрии Лобачевского (или геометрии Лобачевского Бойяи, как ее иногда называют) сохраняются все теоремы, которые в евклидовой геометрии можно доказать без использования пятого постулата (или аксиомы параллельности одного из эквивалентов пятого постулата, - включенной в наши дни в школьные учебники). Например: вертикальные углы равны; углы при основании равнобедренного треугольника равны; из данной точки можно опустить на данную прямую только один перпендикуляр; сохраняются также признаки равенства треугольников и др. Однако теоремы, при доказательстве которых применяется аксиома параллельности, видоизменяются. Теорема о сумме углов треугольника – первая теорема школьного курса, при доказательстве которой используется аксиома параллельности. Здесь нас ожидает первый «сюрприз»: в геометрии Лобачевского сумма углов любого треугольника меньше 180°.

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то в евклидовой геометрии равны и третьи углы (такие треугольники подобны). В геометрии Лобачевского не существует подобных треугольников. Более того, в геометрии Лобачевского имеет место четвертый признак равенства треугольников: если углы одного треугольника соответственно равны углам другого треугольника, то эти треугольники равны.

Разность между 180° и суммой углов треугольника в геометрии Лобачевского положительна; она называется дефектом этого треугольника. Оказывается, что в этой геометрии площадь треугольника замечательным образом связана с его дефектом: , где и означают площадь и дефект треугольника, а число зависит от выбора единиц измерения площадей и углов.

Пусть теперь – некоторый острый угол (рис. 5). В геометрии Лобачевского можно выбрать такую точку на стороне , что перпендикуляр к стороне не пересекается с другой стороной угла. Этот факт как раз подтверждает, что не выполняется пятый постулат: сумма углов и меньше развернутого угла, но прямые и не пересекаются. Если начать приближать точку к , то найдется такая «критическая» точка , что перпендикуляр к стороне все еще не пересекается со стороной , но для любой точки , лежащей между и , соответствующий перпендикуляр пересекается со стороной . Прямые и все более приближаются друг к другу, но общих точек не имеют. На рис. 6 эти прямые изображены отдельно; именно такие неограниченно приближающиеся друг к другу прямые Лобачевский называет в своей геометрии параллельными. А два перпендикуляра к одной прямой (которые неограниченно удаляются друг от друга, как на рис. 2) Лобачевский называет расходящимися прямыми. Оказывается, что этим и ограничиваются все возможности расположения двух прямых на плоскости Лобачевского: две несовпадающие прямые либо пересекаются в одной точке, либо параллельны (рис. 6), либо являются расходящимися (в этом случае они имеют единственный общий перпендикуляр, рис. 2).

На рис. 7 перпендикуляр к стороне угла не пересекается со стороной , а прямые симметричны прямым относительно . Далее, , так что – перпендикуляр к отрезку в его середине и аналогично – перпендикуляр к отрезку в его середине. Эти перпендикуляры не пересекаются, и потому не существует точки, одинаково удаленной от точек , т.е. треугольник не имеет описанной окружности.

На рис. 8 изображен интересный вариант расположения трех прямых на плоскости Лобачевского: каждые две из них параллельны (только в разных направлениях). А на рис. 9 все прямые параллельны друг другу в одном направлении (пучок параллельных прямых). Красная линия на рис. 9 «перпендикулярна» всем проведенным прямым (т.е. касательная к этой линии в любой ее точке перпендикулярна прямой, проходящей через ). Эта линия называется предельной окружностью, или орициклом. Прямые рассмотренного пучка являются как бы ее «радиусами», а «центр» предельной окружности лежит в бесконечности, поскольку «радиусы» параллельны. В то же время предельная окружность не является прямой линией, она «искривлена». И другие свойства, которыми в евклидовой геометрии обладает прямая, в геометрии Лобачевского оказываются присущими другим линиям. Например, множество точек, находящихся по одну сторону от данной прямой на данном расстоянии от нее, в геометрии Лобачевского представляет собой кривую линию (она называется эквидистантой).

НИКОЛАЙ ИВАНОВИЧ ЛОБАЧЕВСКИЙ
(1792-1856)

С 14 лет жизнь Н.И.Лобачевского была связана с Казанским университетом. Его студенческие годы приходились на благополучный период в истории университета. Было у кого учиться математике; среди профессоров выделялся М.Ф. Бартельс, сотоварищ первых шагов в математике К. Ф. Гаусса.

С 1814 г. Лобачевский преподает в университете: читает лекции по математике, физике, астрономии, заведует обсерваторией, возглавляет библиотеку. В течение нескольких лет он избирался деканом физико-математического факультета.

С 1827 г. начинается 19-летний период его непрерывного ректорства. Все надо было начинать заново: заниматься строительством, привлекать новых профессоров, менять студенческий режим. На это уходило почти все время.

Еще в первых числах февраля 1826 г. он передал в университет рукопись «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», 11 февраля он выступил с докладом на заседании Совета университета. Собственно, речь шла не о доказательстве пятого постулата Евклида, а о построении геометрии, в которой имеет место его отрицание, т.е. о доказательстве его невыводимости из остальных аксиом. Вероятно, никто из присутствовавших не мог уследить за ходом мысли Лобачевского. Созданная комиссия из членов Совета несколько лет не давала заключения.

В 1830 г. в «Казанском вестнике» выходит работа «О началах геометрии», представляющая собой извлечение из доклада на Совете. Чтобы разобраться в ситуации, решили воспользоваться помощью столицы: в 1832 г. статью послали в Петербург. И здесь никто ничего не понял, работа была квалифицирована как бессмысленная. Не следует слишком сурово судить русских ученых: нигде в мире математики еще не были готовы воспринять идеи неевклидовой геометрии.

Ничто не могло поколебать уверенность Лобачевского в своей правоте. В течение 30 лет он продолжает развивать свою геометрию, пытается делать изложение более доступным, публикует работы по-французски и по-немецки.

Немецкую версию изложения прочитал Гаусс и, разумеется, понял автора с полуслова. Он прочитал его работы на русском языке и оценил их в письмах к ученикам, но публичной поддержки новой геометрии Гаусс не оказал.

Н. И. Лобачевский дослужился до высоких чинов, он был награжден большим числом орденов, пользовался уважением окружающих, но о его геометрии предпочитали не говорить, даже в те дни, когда Казань прощалась с ним. Прошло еще не менее двадцати лет, прежде чем геометрия Лобачевского завоевала права гражданства в математике.

Мы кратко коснулись только некоторых фактов геометрии Лобачевского, не упоминая многих других очень интересных и содержательных теорем (например, длина окружности и площадь круга радиуса здесь растут в зависимости от по показательному закону). Возникает убежденность, что эта теория, богатая очень интересными и содержательными фактами, в самом деле непротиворечива. Но эта убежденность (которая была у всех трех творцов неевклидовой геометрии) не заменяет доказательства непротиворечивости.

Чтобы получить такое доказательство, надо было построить модель. И Лобачевский это хорошо понимал и пытался ее найти.

Но сам Лобачевский этого уже не смог сделать. Построение такой модели (т.е. доказательство непротиворечивости геометрии Лобачевского) выпало на долю математиков следующего поколения.

В 1868 г. итальянский математик Э. Бельтрами исследовал вогнутую поверхность, называемую псевдосферой (рис. 10), и доказал, что на этой поверхности действует геометрия Лобачевского! Если на этой поверхности нарисовать кратчайшие линии («геодезические») и измерять по этим линиям расстояния, составлять из дуг этих линий треугольники и т.д., то оказывается, что в точности реализуются все формулы геометрии Лобачевского (в частности, сумма углов любого треугольника меньше 180°). Правда, на псевдосфере реализуется не вся плоскость Лобачевского, а лишь ее ограниченный кусок, но все же этим была пробита первая брешь в глухой стене непризнания Лобачевского. А через два года немецкий математик Ф. Клейн (1849-1925) предлагает другую модель плоскости Лобачевского.

Клейн берет некоторый круг и рассматривает такие проективные преобразования плоскости (см. Проективная геометрия), которые отображают круг на себя. «Плоскостью» Клейн называет внутренность круга , а указанные проективные преобразования считает «движениями» этой «плоскости». Далее, каждую хорду круга (без концов, поскольку берутся только внутренние точки круга) Клейн считает «прямой». Поскольку «движения» представляют собой проективные преобразования, «прямые» переходят при этих «движениях» в «прямые». Теперь в этой «плоскости» можно рассматривать отрезки, треугольники и т.д. Две фигуры называются «равными», если одна из них может быть переведена в другую некоторым «движением». Тем самым введены все понятия, упоминаемые в аксиомах геометрии, и можно производить проверку выполнения аксиом в этой модели. Например, очевидно, что через любые две точки проходит единственная «прямая» (рис. 11). Можно проследить также, что через точку , не принадлежащую «прямой» , проходит бесконечно много «прямых», не пересекающих . Дальнейшая проверка показывает, что в модели Клейна выполняются и все остальные аксиомы геометрии Лобачевского. В частности, для любой «прямой» (т.е. хорды круга ) и любой точки этой «прямой» существует «движение», переводящее ее в другую заданную прямую с отмеченной на ней точкой . Это и позволяет проверить выполнение всех аксиом геометрии Лобачевского.

Еще одна модель геометрии Лобачевского была предложена французским математиком А. Пуанкаре (1854-1912). Он также рассматривает внутренность некоторого круга ; «прямыми» он считает дуги окружностей, которые в точках пересечения с границей круга касаются радиусов (рис. 12). Не говоря подробно о «движениях» в модели Пуанкаре (ими будут круговые преобразования, в частности инверсии относительно «прямых», переводящие круг в себя), ограничимся указанием рис. 13, показывающего, что в этой модели евклидова аксиома параллельности места не имеет. Интересно, что в этой модели окружность (евклидова), расположенная внутри круга , оказывается «окружностью» и в смысле геометрии Лобачевского; окружность, касающаяся границы. Тогда свет будет (в соответствии с принципом Ферма о минимальности времени движения по световой траектории) распространяться как раз по «прямым» рассмотренной модели. Свет не может за конечное время дойти до границы (поскольку там его скорость убывает до нуля), и потому этот мир будет восприниматься его «жителями» бесконечным, причем по своей метрике и свойствам совпадающим с плоскостью Лобачевского.

Впоследствии были предложены и другие модели геометрии Лобачевского. Этими моделями была окончательно установлена непротиворечивость геометрии Лобачевского. Тем самым было показано, что геометрия Евклида не является единственно возможной. Это оказало большое прогрессивное воздействие на все дальнейшее развитие геометрии и математики в целом.

А в XX в. было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики, как одна из возможных геометрий, но и непосредственно связана с приложениями математики к физике. Оказалось, что взаимосвязь пространства и времени, открытая в работах X. Лоренца, А. Пуанкаре, А. Эйнштейна, Г. Минковского и описываемая в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского. Например, в расчетах современных синхрофазотронов используются формулы геометрии Лобачевского.

Лобачевского геометрия - геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Лобачевского геометрия вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Лобачевского геометрия имеет вполне реальный смысл. Лобачевского геометрия была создана и развита Н. И. Лобачевским, который впервые сообщил о ней в 1826. Лобачевского геометрия называется неевклидовой геометрией, хотя обычно термину «неевклидова геометрия» придают более широкий смысл, включая сюда и др. теории, возникшие вслед за Лобачевского геометрия и также основанные на изменении основных посылок евклидовой геометрии. Лобачевского геометрия называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана).

Лобачевского геометрия представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще (см. Геометрия). С современной точки зрения можно дать, например, следующее определение Лобачевского геометрия на плоскости: она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости (рис. 1) и внутренность его, т. е. круг, за исключением ограничивающей его окружности, назовем «плоскостью». Точкой «плоскости» будет точка внутри круга. «Прямой» будем называть любую хорду (например, а, b, b`, MN) (с исключенными концами, т. к. окружность круга исключена из «плоскости»). «Движением» назовем любое преобразование круга самого в себя, которое переводит хорды в хорды.

Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Лобачевского геометрия Иными словами, всякое утверждение Лобачевского геометрия на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, т. к. через точку О, не лежащую на данной хорде а (т. е. «прямой»), проходит сколько угодно не пересекающих её хорд («прямых») (например, b, b`). Аналогично, Лобачевского геометрия в пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах («прямые» - хорды, «плоскости» - плоские сечения внутренности шара, «равные» фигуры - те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды). Таким образом, Лобачевского геометрия имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии.

Возникновение геометрии Лобачевского

Источником Лобачевского геометрия послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в «Началах» Евклида). Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов.

Вот неполный перечень учёных, занимавшихся доказательством V постулата до 19 в.: древнегреческий математики Птолемей (2 в.), Прокл (5 в.) (доказательство Прокла основано на предположении о конечности расстояния между двумя параллельными), Ибн аль-Хайсам из Ирака (конец 10 - начало 11 вв.) (Ибн аль-Хайсам пытался доказать V постулат, исходя из предположения, что конец движущегося перпендикуляра к прямой описывает прямую линию), таджикский математик Омар Хайям (2-я половина 11 - начало 12 вв.), азербайджанский математик Насирэддин Туей (13 в.) (Хайям и Насирэддин при доказательстве V постулата исходили из предположения, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения), немецкий математик К. Клавий (Шлюссель, 1574), итальянские математики П. Катальди (впервые в 1603 напечатавший работу, целиком посвященную вопросу о параллельных), Дж. Борелли (1658), Дж. Витале (1680), английский математик Дж. Валлис (1663, опубликовано в 1693) (Валлис основывает доказательство V постулата на предположении, что для всякой фигуры существует ей подобная, но не равная фигура). Доказательства перечисленных выше геометров сводились к замене V постулата др. предположением, казавшимся более очевидным.

Итальянский математик Дж. Саккери (1733) сделал попытку доказать V постулат от противного. Приняв предложение, противоречащее постулату Евклида, Саккери развил из него довольно обширные следствия. Ошибочно признав некоторые из этих следствий приводящими к противоречиям, Саккери заключил, что постулат Евклида доказан. Немецкий математик И. Ламберт (около 1766, опубликовано в 1786) предпринял аналогичные исследования, однако он не повторил ошибки Саккери, а признал своё бессилие обнаружить в построенной им системе логическое противоречие. Попытки доказательства постулата предпринимались и в 19 в. Здесь следует отметить работы французского математика А. Лежандра; одно из его доказательств (1800) основано на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла, т. е., как и все его предшественники, он заменил постулат др. допущением. Довольно близко к построению Лобачевского геометрия подошли немецкие математики Ф. Швейкарт (1818) и Ф. Тауринус (1825), однако ясно выраженной мысли о том, что намечаемая ими теория будет логически столь же совершенна, как и геометрия Евклида, они не имели.

Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе др. посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий. Лобачевский сделал об этом сообщение в 1826, а в 1829-30 напечатал работу «О началах геометрии» с изложением своей теории. В 1832 была опубликована работа венгерского математика Я. Больяй аналогичного содержания. Как выяснилось впоследствии, немецкий математик К. Ф. Гаусс также пришёл к мысли о возможности существования непротиворечивой неевклидовой геометрии, но скрывал её, опасаясь быть непонятым. Хотя Лобачевского геометрия развивалась как умозрительная теория и сам Лобачевский называл её «воображаемой геометрией», тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решен вопрос о её реальном смысле, логической непротиворечивости.

Лобачевского геометрия изучает свойства «плоскости Лобачевского» (в планиметрии) и «пространства Лобачевского» (в стереометрии). Плоскость Лобачевского - это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем - расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Лобачевского геометрия состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Лобачевского геометрии.

Приведём несколько фактов геометрии Лобачевского, отличающих её от геометрии Евклида и установленных самим Лобачевским

1) В Лобачевского геометрия не существует подобных, но неравных треугольников; треугольники равны, если их углы равны. Поэтому существует абсолютная единица длины, т. е. отрезок, выделенный по своим свойствам, подобно тому как прямой угол выделен своими свойствами. Таким отрезком может служить, например, сторона правильного треугольника с данной суммой углов.

2) Сумма углов всякого треугольника меньше p и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность p - (a + b + g), где a, b, g - углы треугольника, пропорциональна его площади.

3) Через точку О, не лежащую на данной прямой а, проходит бесконечно много прямых, не пересекающих а и находящихся с ней в одной плоскости; среди них есть две крайние b, b`, которые и называются параллельными прямой а в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) а общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек) (рис. 1,3). Угол ее между прямой b (или b`) и перпендикуляром из О на а - т. н. угол параллельности - по мере удаления точки О от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель b с одной стороны (а b` с противоположной) асимптотически приближается к а, а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

4) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

5) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.

6) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.

7) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

8) Длина окружности не пропорциональна радиусу, а растет быстрее.

9) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от p; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2p, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Лобачевского геометрия переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай Лобачевского геометрии.

Лобачевского геометрия продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрическим идеям. В целом Лобачевского геометрия является обширной областью исследования, подобно геометрии Евклида.