Болезни Военный билет Призыв

Кратные интегралы их свойства и вычисление. Кратный интеграл

Остановимся несколько подробнее на работах Остроградского по кратным интегралам.

Формула Остроградского для преобразования тройного интеграла в двойной, которую мы пишем обычно в виде

где div A - дивергенция поля вектора А,

Аn - скалярное произведение вектора А на единичный вектор внешней нормали n граничной поверхности, в математической литературе нередко связывалась ранее с именами Гаусса и Грина.

На самом деле в работе Гаусса о притяжении сфероидов можно усмотреть только весьма частные случаи формулы (1), например при P=x, Q=R=0 и т. п. Что касается Дж. Грина, то в его труде по теории электричества и магнетизма формулы (1) вовсе нет; в нем выведено другое соотношение между тройным и двойным интегралами, именно, формула Грина для оператора Лапласа, которую можно записать в виде

Конечно, можно вывести формулу (1) и из (2), полагая

и точно так же можно получить формулу (2) из формулы (1), но Грин этого и не думал делать.

где слева стоит интеграл по объему, а справа интеграл по граничной поверхности, причем суть направляющие косинусы внешней нормали.

Парижские рукописи Остроградского свидетельствуют, с полной несомненностью, что ему принадлежит и открытие, и первое сообщение интегральной теоремы (1). Впервые она была высказана и доказана, точно так, как это делают теперь в “Доказательстве одной теоремы интегрального исчисления”, представленном Парижской Академии наук 13 февраля 1826 г., после чего еще раз была сформулирована в той части “Мемуара о распространении тепла внутри твердых тел ”, которую Остроградский представил 6 августа 1827 г. “Мемуар” был дан на отзыв Фурье и Пуассону, причем последний его, безусловно читал, как свидетельствует запись на первых страницах обеих частей рукописи. Разумеется, Пуассону и не приходила мысль приписывать себе теорему, с которой он познакомился в сочинении Остроградского за два года до представления своей работы на теории упругости.

Что касается взаимоотношения работ по кратным интегралам Остроградского и Грина, напомним, что в “Заметке по теории теплоты” выведена формула, обнимающая собственную формулу Грина, как весьма частный случай. Непривычная теперь символика Коши, употребленная Остроградским в “Заметке”, до недавнего времени скрывала от исследователей это важное открытие. Разумеется, за Грином остается честь открытия и первой публикации в 1828 г. носящей его имя формулы для операторов Лапласа.

Открытие формулы преобразования тройного интеграла в двойной помогло Остроградскому решить проблему варьирования п-кратного интеграла, именно, вывести понадобившуюся там общую формулу преобразования интеграла от выражения типа дивергенции по п- мерной области и интеграл по ограничивающей ее сверхповерхности S с уравнением L(x,y,z,…)=0. Если придерживаться прежних обозначений, то формула имеет вид


Впрочем, Остроградский не применял геометрических образов и терминов, которыми пользуемся мы: геометрия многомерных пространств в то время еще не существовала.

В “Мемуаре об исчислении вариаций кратных интегралов” рассмотрены еще два важных вопроса теории таких интегралов. Во-первых, Остроградский выводит формулу замены переменных в многомерном интеграле; во-вторых, впервые дает полное и точное описание приема вычисления п- кратного интеграла с помощью п последовательных интеграций по каждой из переменных в соответствующих пределах. Наконец, из формул, содержащихся в этом мемуаре, легко выводится общее правило дифференцирования по параметру многомерного интеграла, когда от этого параметра зависит не только подынтегральная функция, но и граница области интегрирования. Названное правило вытекает из наличных в мемуаре формул настолько естественным образом, что позднейшие математики даже отождествляли его с одною из формул этого мемуара.

Замене переменных в кратных интегралах Остроградский посвятил специальную работу. Для двойного интеграла соответствующее правило вывел с помощью формальных преобразований Эйлер, для тройного - Лагранж. Однако, хотя результат Лагранжа верен, рассуждения его были не точными: он как бы исходил из того, что элементы объемов в старых и новых переменных - координатах - между собою равны. Аналогичную ошибку допустил вначале в только что упомянутом выводе правила замены переменных Остроградский. В статье “О преобразовании переменных в кратных интегралах” Остроградский раскрыл ошибку Лагранжа, а также впервые изложил тот наглядный геометрический метод преобразования переменных в двойном интеграле, который, в несколько более строгом оформлении, излагается и в наших руководствах. Именно, при замене переменных в интеграле по формулам, область интегрирования разбивается координатными линиями двух систем u=const, v=const на бесконечно малые криволинейные четырехугольники. Тогда интеграл можно получить, складывая сначала те его элементы, которые отвечают бесконечно узкой криволинейной полосе, а затем, продолжая суммировать элементы полосами, пока они все не будут исчерпаны. Несложный подсчет дает для площади, которая с точностью до малых высшего порядка может рассматриваться как параллелограмм, выражение, где, выбирается так, чтобы площадь была положительной. В итоге получается известная формула

Кратный интеграл

интеграл от функции, заданной в какой-либо области на плоскости, в трёхмерном или n -мерном пространстве. Среди К. и. различают двойные интегралы, тройные интегралы и т. д. n -кратные интегралы.

Пусть функция f (x, y ) задана в некоторой области D плоскости хОу. Разобьем область D на n частичных областей d i , площади которых равны s i , выберем в каждой области d i точку (ξ i , η i ) (см. рис. ) и составим интегральную сумму

Если при неограниченном уменьшении максимального диаметра частичных областей d i суммы S имеют предел независимо от выбора точек (ξ i , η i ), то этот предел называют двойным интегралом от функции f (x, у ) по области D и обозначают

Аналогично определяется тройной интеграл и вообще n -кратный интеграл.

Для существования двойного интеграла достаточно, например, чтобы область D была замкнутой квадрируемой областью (См. Квадрируемая область), а функция f (x, y ) была непрерывна в D. К. и. обладают рядом свойств, аналогичных свойствам простых Интеграл ов. Для вычисления К. и. обычно приводят его к повторному интегралу (См. Повторный интеграл). В специальных случаях для сведения К. и. к интегралам меньшей размерности могут служить Грина формулы и Остроградского формула . К. и. имеют обширные применения: с их помощью выражаются объёмы тел, их массы, статические моменты, моменты инерции и т. п.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Кратный интеграл" в других словарях:

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определенному интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, n… … Большой Энциклопедический словарь

    Определенный интеграл от функции нескольких переменных. Имеются различные понятия К. и. (интеграл Римана, интеграл Лебега, интеграл Лебега Стилтьеса и др.). Кратный интеграл Римана вводится на основе Жордана меры Пусть Е измеримое по Жордану… … Математическая энциклопедия

    В математическом анализе кратным или многократным интегралом называют множество интегралов, взятых от переменных. Например: Замечание: кратный интеграл − это определенный интеграл, при его вычислении всегда получается число. Содержание 1… … Википедия

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определённому интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, n… … Энциклопедический словарь

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определ. интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, я… … Естествознание. Энциклопедический словарь

    Примечание: всюду в данной статье, где используется знак имеется в виду (кратный) интеграл Римана, если не оговорено обратное; всюду в данной статье, где говорится об измеримости множества, имеется в виду измеримость по Жордану, если не… … Википедия

    Кратный интеграл вида где являющийся средним значением степени 2k модуля тригонометрической суммы. Теорема Виноградова о величине этого интеграла теорема о среднем лежит в основе оценок сумм Вейля. Литература Виноградова инте … Википедия

    Определённый интеграл как площадь фигуры У этого термина существуют и другие значения, см. Интеграл (значения). Интеграл функции … Википедия

    Интеграл, в к ром последовательно выполняется интегрирование по разным переменным, т. е. интеграл вида (1) Функция f(x, y).определена на множестве А, лежащем в прямом произведении XX Y пространств Xи У, в к рых заданы s конечные меры mx и my,… … Математическая энциклопедия

    Интеграл, взятый вдоль какой либо кривой на плоскости или в пространстве. Различают К. и. 1 го и 2 го типов. К. и. 1 го типа возникает, например, при рассмотрении задачи о вычислении массы кривой переменной плотности; он обозначается… … Большая советская энциклопедия

Жордана и - разбиение множества Е, т. е. такая система измеримых по Жордану множеств E i , что Величину

где d(E i ) - диаметр множества Е i , наз. мелкостью разбиения Если определена на множестве Е, то всякую сумму вида

наз. интегральной суммой Римана функции f. Если для функции f существует независящий от разбиения, то этот наз. n-к ратным интегралом Римана и обозначают


Саму функцию fназ. в этом случае интегрируемой по Риману, короче - R-интегрируемой.

В случае n=1 в качестве множества Е, по к-рому производится , обычно берется , а в качестве его разбиений t рассматриваются разбиения, состоящие также только из отрезков (см. Римана интеграл ). Таким образом, в этом случае как множество, по к-рому производится интегрирование, так и элементы разбиения представляют собой измеримые по Жордану множества весьма специального вида --отрезки. Поэтому не все свойства R-интегрируемых на отрезке функций справедливы для функций Д-интегрируемых на произвольных измеримых по Жордану множествах. Напр., из того, что любая функция, определенная на множестве жордановой меры , Д-интегрируема на нем, следует, что Д-интегрируемые функции могут быть неограниченными, это невозможно для Д-интегрируемых функций на отрезках. Чтобы из Д-интегрируемости функции на нек-ром множестве следовала ограниченность функции, на рассматриваемое множество налагают дополнительные условия, напр, чтобы у него существовали сколь угодно мелкие разбиения, все элементы к-рых имеют положительную меру Жордана. К таким множествам относятся все измеримые по Жордану открытые множества и их замыкания, в частности измеримые по Жордану области и их замыкания. Имеь-но для таких множеств большей частью и используется кратный интеграл Римана.

В случае n=2 (n=3) К. и. наз. двойным (т р о й н ы м). Поскольку кратный интеграл Римана можно брать только по множествам, измеримым по Жордану (в случае n=2 они наз. также квадрируемыми, а при n=3 - кубируемыми множествами), то двойной (тройной) интеграл Римана рассматривают только на множествах (обычно областях или их замыканиях), границы к-рых имеют площади (объемы) в смысле Жордана, равные нулю.

Интеграл Римана от ограниченных функций n переменных обладает обычными свойствами интеграла (линейность, относительно множеств, по к-рым производится интегрирование, сохранение при интегрировании нестрогих неравенств, интегрируемость произведения интегрируемых функций и т. п.).

Кратный интеграл Римана может быть сведен к повторному интегралу. Пусть

Е- измеримое в R n по Жордану множество, = - сечение множества Е(n-m)-мерной гиперплоскостью - проекция Ена причем измеримы соответственно в смысле (n-m)-мерной и m-мер-ной меры Жордана. Тогда, если функция f Д-интегрируема на множестве Еи для всех существуют (n-m)-кратные интегралы от ее сужения на множестве то существует

где внешний интеграл является m-кратным интегралом Римана, и

Для случая n=3 отсюда следуют формулы: 1) Если - проекция Eна а функции таковы, что множество Еограничено в направлении оси z их графиками, т. е.


2) Пусть проекцией множества Ена ось Ох является отрезок - сечение множества Еплоскостью, параллельной плоскости и проходящей через точку х, тогда

В случае, когда Gявляется измеримой по Жордану областью в пространстве - взаимно однозначное G на измеримую Г пространства причем непрерывно дифференцируемо на замыкании области G, для интегрируемой на = функции f (х).справедлива замены переменного в интеграле

где J(t) - отображения j.

Геометрический смысл кратного интеграла Римана от функции ппеременных связан с понятием ( п+ 1)-мерной меры Жордана если функция f (х).интегрируема на множестве на Еи

Кратным интегралом Лебега наз, Лебега интеграл от функций многих переменных, его определение базируется на понятии Лебега меры в n-мерном евклидовом пространстве. Кратный интеграл Лебега может быть сведен к повторному интегралу (см. Фубини теорема ). Для непрерывно дифференцируемых взаимно однозначных отображений областей справедлива формула замены переменного (1), а также формула (2), выражающая геометрии, смысл кратного интеграла Лебега, в к-рой под мерой следует понимать (n+1)-мерную меру Лебега.

Понятие К. и. переносится на функции, интегрируемые по множеству А, принадлежащему произведению пространств Xи У, в каждом из к-рых заданы -конечные полные неотрицательные меры, соответственно при этом интегрирование по множеству Апроизводится по мере являющейся произведением мер

Для функций многих переменных существует также понятие несобственного К. и. (см. Несобственный интеграл ). Понятие К. и. применяется также к неопределенным интегралам функций многих переменных. Под неопределенным К. и. понимают функцию множества

где Е - измеримое множество. Если, напр., f(x).интегрируема по Лебегу на нек-ром множестве, то ее F(Е). на этом множестве имеет функцию f(x).своей симметричной производной. В этом смысле (аналогично случаю функций одной переменной) взятие неопределенного К. и. является операцией, обратной к операции дифференцирования функции множества.

Лит. : И л ь и н В. А., Лозняк Э. Г., Основы математического анализа, 2 изд., ч. 2, М., 1980; К о л м о г о р о в А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 5 изд., М., 1981: }