Болезни Военный билет Призыв

Катушки индуктивности и магнитные поля. Магнитное поле катушки с током. Электромагниты и их применение

Для концентрации магнитного поля в определенной части пространства из провода изготовляют катушку, по которой пропускают ток.

Увеличение магнитной индукции поля достигается увеличением числа витков катушки и размещением ее на стальном сердечнике, молекулярные токи которого, создавая свое поле, увеличивают результирующее поле катушки.

Рис. 3-11. Кольцевая катушка.

Кольцевая катушка (рис. 3-11) имеет w витков, равномерно распределенных вдоль немагнитного сердечника. Поверхность, ограниченная окружностью радиуса совпадающей с средней магнитной линией, пронизывается полным током .

Вследствие симметрии напряженность поля Н во всех точках, лежащих на средней магнитной линии, одинакова, поэтому м. д. с.

По закону полного тока

откуда напряженность магнитного поля на средней магнитной линии, совпадающей с осевой линией кольцевой катушки,

а магнитная индукция

При магнитную индукцию на осевой линии с достаточной точностью можно считать равной среднему значению ее, и, следовательно, магнитный поток сквозь поперечное сечение катушки

Уравнению (3-20) можно придать форму закона Ома для магнитной цепи

где Ф - магнитный поток; - м. д. с.; - сопротивление магнитной цепи (сердечника).

Уравнение (3-21) аналогично уравнению закона Ома для электрической цепи, т. е. магнитный поток равен отношению м. д. с. к магнитному сопротивлению цепи.

Рис. 3-12. Цилиндрическая катушка.

Цилиндрическую катушку (рис. 3-12) можно рассматривать как часть кольцевой катушки с достаточно большим радиусом и с обмоткой, расположенной только на части сердечника, длина которой равна длине катушки . Напряженность поля и магнитную индукцию на осевой линии в центре цилиндрической катушки определяют по формулам (3-18) и (3-19), которые в этом случае являются приближенными и применимыми только для катушек, у которых (рис. 3-12).

Пример 3-5. Цилиндрическая катушка с сердечником из неферромагнитного материала с числом витков 2 000, имеет длину 30 см и диаметр 5 см. Определить магнитный поток катушки при токе в ней 5 А.

Магнитный поток катушки

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Логично было бы рассказать еще об одном представителе пассивных радиоэлементов - катушках индуктивности. Но рассказ о них придется начать издалека, вспомнить о существовании магнитного поля, ведь именно магнитное поле окружает и пронизывает катушки, именно в магнитном поле, чаще всего переменном, катушки и работают. Короче, это их среда обитания.

Магнетизм, как свойство вещества

Магнетизм является одним из важнейших свойств вещества, так же как, например, масса или электрическое поле. Явления магнетизма, впрочем, как и электричества, были известны давно, вот только тогдашняя наука не могла объяснить сути этих явлений. Непонятное явление получило название «магнетизм» по имени города Магнезия, что был когда-то в Малой Азии. Именно из руды, добываемой поблизости, и получались постоянные магниты.

Но постоянные магниты в рамках данной статьи не особо интересны. Коль скоро было обещано рассказать о катушках индуктивности, то речь пойдет, скорее всего, об электромагнетизме, ведь далеко не секрет, что даже вокруг провода с током существует магнитное поле.

В современных условиях исследовать явление магнетизма на начальном, хотя бы уровне, достаточно легко. Для этого надо собрать простейшую электрическую цепь из батарейки и лампочки для карманного фонаря. В качестве индикатора магнитного поля, его направления и напряженности можно воспользоваться обычным компасом.

Магнитное поле постоянного тока

Как известно, компас показывает направление на Север. Если поблизости расположить провода упомянутой выше простейшей схемы, и включить лампочку, то стрелка компаса несколько отклонится от своего нормального положения.

Подключив параллельно еще одну лампочку можно удвоить ток в цепи, отчего угол поворота стрелки несколько увеличится. Это говорит о том, что магнитное поле провода с током стало больше. Именно на таком принципе работают стрелочные измерительные приборы.

Если полярность включения батарейки изменить на обратную, то и стрелка компаса повернется другим концом - направление магнитного поля в проводах также изменилось по направлению. Когда схема будет отключена, стрелка компаса вновь вернется в свое законное положение. Нет тока в катушке, нет и магнитного поля.

Во всех этих опытах компас играет роль пробной магнитной стрелки, подобно тому, как исследование постоянного электрического поля производится пробным электрическим зарядом.

На основе таких простейших опытов можно сделать заключение, что магнетизм появляется на свет благодаря электрическому току: чем этот ток сильней, тем сильнее магнитные свойства проводника. А откуда же тогда берется магнитное поле у постоянных магнитов, ведь к ним батарейку с проводами никто не подключал?

Фундаментальными научными исследованиями доказано, что и постоянный магнетизм основан на электрических явлениях: каждый электрон находится в собственном электрическом поле и обладает элементарными магнитными свойствами. Только в большинстве веществ эти свойства взаимно нейтрализуются, а у некоторых почему-то складываются в один большой магнит.

Конечно, на самом деле все не так примитивно и просто, но, в общем, даже постоянные магниты имеют свои чудесные свойства за счет движения электрических зарядов.

А какие они магнитные линии?

Магнитные линии можно увидеть визуально. В школьном опыте на уроках физики для этого на лист картона насыпаются металлические опилки, а внизу помещается постоянный магнит. Слегка постукивая по листу картона можно добиться картинки, показанной на рисунке 1.

Рисунок 1.

Нетрудно видеть, что магнитные силовые линии выходят из северного полюса и входят в южный, при этом не разрываясь. Конечно, можно сказать, что как раз, наоборот, из южного в северный, но так уж принято, поэтому из северного в южный. Точно так же, как когда-то приняли направление тока от плюса к минусу.

Если вместо постоянного магнита сквозь картонку пропустить провод с током, то металлические опилки покажут его, проводника, магнитное поле. Это магнитное поле имеет вид концентрических круговых линий.

Для исследования магнитного поля можно обойтись и без опилок. Достаточно вокруг проводника с током перемещать пробную магнитную стрелку, чтобы увидеть, что силовые магнитные линии и впрямь представляют собой замкнутые концентрические окружности. Если перемещать пробную стрелку в сторону, куда ее отклоняет магнитное поле, то непременно вернемся в ту же точку, откуда начали движение. Аналогично, как пешком вокруг Земли: если идти никуда не сворачивая, то рано или поздно придешь на то же место.

Рисунок 2.

Направление магнитного поля проводника с током определяется по правилу буравчика, - инструмента для сверления отверстий в дереве. Тут все очень просто: буравчик надо вращать так, чтобы его поступательное движение совпадало с направлением тока в проводе, тогда направление вращения рукоятки покажет, куда направлено магнитное поле.

Рисунок 3.

«Ток идет от нас» - крестик в середине круга это оперение стрелы, летящей за плоскость рисунка, а где «Ток идет к нам», показан наконечник стрелы, летящей из-за плоскости листа. По крайней мере, такое объяснение этих обозначений давалось на уроках физики в школе.

Рисунок 4.

Если к каждому проводнику применить правило буравчика, то определив направление магнитного поля в каждом проводнике, можно с уверенностью сказать, что проводники с одинаковым направлением тока притягиваются, а их магнитное поля складываются. Проводники с токами разного направления взаимно отталкиваются, магнитное их поле компенсируется.

Катушка индуктивности

Если проводник с током выполнить в виде кольца (витка), то у него появляются свои магнитные полюса, северный и южный. Но магнитное поле одного витка, как правило, невелико. Гораздо лучших результатов можно добиться, намотав провод в виде катушки. Такую деталь называют катушкой индуктивности или просто индуктивностью. В этом случае магнитные поля отдельных витков складываются, взаимно усиливая друг друга.

Рисунок 5.

На рисунке 5 показано, каким образом можно получить сумму магнитных полей катушки. Вроде бы можно запитать каждый виток от своего источника, как показано на рис. 5.2, но проще соединить витки последовательно (просто намотать одним проводом).

Совершенно очевидно, что чем большее количество витков у катушки, тем сильнее ее магнитное поле. Также магнитное поле зависит и от тока через катушку. Поэтому вполне правомерно оценивать способность катушки создавать магнитное поле просто умножив ток через катушку (А) на количество витков (W). Такая величина так и называется ампер - витки.

Катушка с сердечником

Магнитное поле, создаваемое катушкой, можно значительно увеличить, если внутрь катушки ввести сердечник из ферромагнитного материала. На рисунке 6 показана таблица с относительной магнитной проницаемостью различных веществ.

Например, трансформаторная сталь позволит сделать магнитное поле примерно в 7..7,5 тысяч раз сильней, чем при отсутствии сердечника. Другими словами, внутри сердечника магнитное поле будет вращать магнитную стрелку в 7000 раз сильнее (такое можно только представить мысленно).

Рисунок 6.

В верхней части таблицы разместились парамагнитные и диамагнитные вещества. Относительная магнитная проницаемость µ указана относительно вакуума. Следовательно, парамагнитные вещества немного усиливают магнитное поле, а диамагнитные чуть-чуть ослабляют. В общем, особого влияния на магнитное поле эти вещества не оказывают. Хотя, на высоких частотах для настройки контуров иногда применяются латунные или алюминиевые сердечники.

В нижней части таблицы разместились ферромагнитные вещества, которые значительно усиливают магнитное поле катушки с током. Так, например, сердечник из трансформаторной стали сделает магнитное поле сильнее ровно в 7500 раз.

Чем и как измерить магнитное поле

Когда понадобились единицы для измерения электрических величин, то в качестве эталона взяли заряд электрона. Из заряда электрона была сформирована вполне реальная и даже ощутимая единица - кулон, а на ее основе все оказалось просто: ампер, вольт, ом, джоуль, ватт, фарада.

А что можно взять в качестве отправной точки для измерения магнитных полей? Каким-то образом привязать к магнитному полю электрона весьма проблематично. Поэтому в качестве единицы измерения в магнетизме принят проводник, по которому протекает постоянный ток в 1 А.

Основной такой характеристикой является напряженность (H). Она показывает, с какой силой действует магнитное поле на упомянутый выше пробный проводник, если дело происходит в вакууме. Вакуум предназначается для исключения влияния среды, поэтому эту характеристику - напряженность считают абсолютно чистой. За единицу напряженности принят ампер на метр (а/м). Такая напряженность появляется на расстоянии 16см от проводника, по которому идет ток 1А.

Напряженность поля говорит лишь о теоретической способности магнитного поля. Реальную же способность к действию отражает другая величина магнитная индукция (B). Именно она показывает реальную силу, с которой магнитное поле действует на проводник с током в 1А.

Рисунок 7.

Если в проводнике длиной 1м протекает ток 1А, и он выталкивается (притягивается) с силой 1Н (102Г), то говорят, что величина магнитной индукции в данной точке ровно 1 тесла.

Магнитная индукция величина векторная, кроме численного значения она имеет еще и направление, которое всегда совпадает с направлением пробной магнитной стрелки в исследуемом магнитном поле.

Рисунок 8.

Единицей магнитной индукции является тесла (ТЛ), хотя на практике часто пользуются более мелкой единицей Гаусс: 1ТЛ = 10 000Гс. Много это или мало? Магнитное поле вблизи мощного магнита может достигать нескольких Тл, около магнитной стрелки компаса не более 100Гс, магнитное поле Земли вблизи поверхности примерно 0,01Гс и даже ниже.

Вектор магнитной индукции B характеризует магнитное поле лишь в одной точке пространства. Чтобы оценить действие магнитного поля в некотором пространстве вводится еще такое понятие, как магнитный поток (Φ).

По сути дела он представляет собой количество линий магнитной индукции, проходящих через данное пространство, через какую-то площадь: Φ=B*S*cosα. Эту картину можно представить в виде дождевых капель: одна линия это одна капля (B), а все вместе это магнитный поток Φ. Именно так в общий поток соединяются силовые магнитные линии отдельных витков катушки.

Рисунок 9.

В системе СИ за единицу магнитного потока принят Вебер (Вб), такой поток возникает, когда индукция в 1 Тл действует на площади 1 кв.м.

Магнитный поток в различных устройствах (двигатели, трансформаторы и т.п.), как правило, проходит определенным путем, называемым магнитной цепью или просто магнитопроводом. Если магнитная цепь замкнута (сердечник кольцевого трансформатора), то ее сопротивление невелико, магнитный поток проходит беспрепятственно, концентрируется внутри сердечника. На рисунке ниже показаны примеры катушек с замкнутым и разомкнутым магнитопроводами.

Рисунок 10.

Но сердечник можно распилить и вытащить из него кусочек, сделать магнитный зазор. Это увеличит общее магнитное сопротивление цепи, следовательно, уменьшит магнитный поток, а в целом уменьшится индукция во всем сердечнике. Это все равно как в электрическую цепь последовательно запаять большое сопротивление.

Рисунок 11.

Если получившийся зазор перекрыть куском стали, то получится, что параллельно зазору подключили дополнительный участок с меньшим магнитным сопротивлением, что и восстановит нарушенный магнитный поток. Это очень напоминает шунт в электрических цепях. Кстати, для магнитной цепи также существует закон, который называют законом Ома для магнитной цепи.

Рисунок 12.

Через магнитный шунт пойдет основная часть магнитного потока. Именно это явление и используется в магнитной записи звуковых или видеосигналов: ферромагнитный слой ленты перекрывает зазор в сердечнике магнитных головок, и весь магнитный поток замыкается через ленту.

Направление магнитного потока, создаваемого катушкой, можно определить, воспользовавшись правилом правой руки: если четыре вытянутых пальца указывают направление тока в катушке, то большой палец покажет направление магнитных линий, как показано на рисунке 13.

Рисунок 13.

Принято считать, что магнитные линии выходят из северного полюса и заходят в южный. Поэтому большой палец в данном случае указывает расположение южного полюса. Проверить так ли это, можно опять же с помощью стрелки компаса.

Как работает электродвигатель

Известно, что электричество может создавать свет и тепло, участвовать в электрохимических процессах. После знакомства с основами магнетизма можно рассказать о том, как работают электродвигатели.

Электродвигатели могут быть самой разной конструкции, мощности и принципа действия: например постоянного и переменного тока, шаговые или коллекторные. Но при всем многообразии конструкций принцип действия основан на взаимодействии магнитных полей ротора и статора.

Для получения этих магнитных полей по обмоткам пропускают ток. Чем больше ток, и чем выше магнитная индукция внешнего магнитного поля, тем мощнее двигатель. Для усиления этого поля используются магнитопроводы, поэтому в электрических двигателях так много стальных деталей. В некоторых моделях двигателей постоянного тока используются постоянные магниты.

Рисунок 14.

Здесь, можно сказать, все понятно и просто: пропустили по проводу ток, получили магнитное поле. Взаимодействие с другим магнитным полем заставляет этот проводник двигаться, да еще и совершать механическую работу.

Направление вращения можно определить по правилу левой руки. Если четыре вытянутых пальца показывают направление тока в проводнике, а магнитные линии входят в ладонь, то отогнутый большой палец укажет направление выталкивания проводника в магнитном поле.

§ 45. Самоиндукция. Индуктивность

Если замыкать и размыкать цепь тока катушки (рис. 45), то вокруг нее будет появляться и исчезать магнитное поле. Изменяющееся магнитное поле пересекает витки самой катушки и создает в ней э. д. с. самоиндукции. При всяком изменении собственного магнитного поля катушки ее витки пересекаются собственными магнитными линиями и в ней возникает э. д. с. самоиндукции.


Если по катушке с числом витков W протекает изменяющийся ток I , то он создает магнитный поток Φ, пересекающий ее витки.
Произведение магнитного потока на число витков называется потокосцеплением и обозначается буквой ψ (пси):

ψ = Φ W . (39)

Потокосцепление ψ, как и магнитный поток Φ, измеряется в веберах (вб ).
Потокосцепление в рассматриваемой катушке пропорционально току, протекающему по ее виткам. Поэтому

ψ = L I , (40)

где L - коэффициент пропорциональности, называемый индуктивностью.
Из формулы (40) следует, что индуктивность определяется отношением потокосцепления к силе тока в катушке и характеризует способность катушки возбуждать э. д. с. самоиндукции (потокосцепление).

Индуктивность измеряется в генри (гн); 1 гн = 1 ом · сек . Если при равномерном изменении тока в проводнике на 1 а в 1 сек наводится э. д. с. самоиндукции, равная 1 в , то такой проводник обладает индуктивностью в 1 гн . Более мелкая единица измерения индуктивности называется миллигенри (мгн ); 1 гн = 1000 мгн . Единица измерения индуктивности, которая в миллион раз меньше генри, называется микрогенри (мкгн ); 1 гн = 1 000 000 мкгн = 10 6 мкг н; 1 мгн = 1000 мкгн .
Определим индуктивность катушки длиной l , имеющей витков, расположенных в одном слое, по которым протекает ток I (длина катушки больше диаметра в 10 раз и более).
Протекающий по виткам катушки ток возбуждает магнитное поле, напряженность которого

а магнитная индукция

Магнитный поток, создаваемый током,

а потокосцепление

ψ = Φ W .

Так как индуктивность

Преобразуя выражение (42), получим индуктивность:

Таким образом, индуктивность катушки прямо пропорциональна квадрату числа ее витков, магнитной проницаемости материала сердечника катушки, площади сечения ее каркаса и обратно пропорциональна длине катушки.

Пример. На цилиндр каркаса без сердечника намотано в один слой 500 витков проволоки. Длина каркаса катушки l = 0,24 м , а ее диаметр d = 0,02 м . Определить индуктивность этой катушки, если магнитная проницаемость воздуха, окружающего катушку, μ а = μ 0 = 4π · 10 -7 гн/м .
Решение . Площадь сечения катушки

Индуктивность катушки

Различные проволочные катушки (обмотки) обладают разной индуктивностью. Катушка со стальным сердечником имеет значительно большую индуктивность, чем катушка без сердечника. Если принять индуктивность проволочной катушки без сердечника за единицу, то у катушки со стальным сердечником индуктивность будет больше примерно в 3500 раз. Это объясняется тем, что при внесении стального сердечника в катушку, по которой протекает ток, происходит намагничивание сердечника, в результате этого значительно увеличивается магнитный поток, пересекающий витки катушки, и возрастает потокосцепление. Поскольку относительная магнитная проницаемость стального сердечника примерно в 3500 раз больше, чем воздуха, индуктивность катушки при внесении сердечника увеличивается во столько же раз. Но эта индуктивность непостоянна, так как μ а стали зависит от напряженности поля Н , а следовательно, и от силы тока в обмотке.
Индуктивность катушки обусловлена также ее сечением и длиной. Чем больше сечение, тем больше индуктивность. С увеличением длины катушки при неизменном числе витков индуктивность уменьшается.

Магнитное поле и индуктивность

Вокруг всякого проводника, по которому течет ток, возникает магнитное поле. Такой эффект называется электромагнетизмом. Магнитные поля оказывают влияние на выравнивание электронов в атомах , и могут вызывать физическую силу, способную развиваться в пространстве. Как и электрические поля , магнитные поля могут занимать совершенно пустое пространство , и воздействовать на материю на расстоянии .

Магнитное поле обладает двумя основными характеристиками: магнитодвижущей силой и магнитным потоком. Общее количество поля или его эффект называется магнитным потоком, а сила, которая формирует этот магнитный поток в пространстве, называется магнитодвижущей силой. Эти две характеристики примерно аналогичны электрическому напряжению (магнитодвижущая сила) и электрическому току (магнитный поток) в проводнике. Магнитный поток, в отличие от электрического тока (который существует только там, где есть свободные электроны), может распространяться в абсолютно пустом пространстве. Пространство оказывает сопротивление магнитному потоку точно так же, как проводник оказывает сопротивление электрическому току. Величина магнитного потока равна магнитодвижущей силе, поделенной на сопротивление среды.

Магнитное поле имеет отличия от электрического поля. Если электрическое поле зависит от имеющегося количества разноименных зарядов (чем больше электрических зарядов одного вида на одном проводнике, и противоположного, на другом, тем больше будет электрическое поле между этими проводниками), то магнитное поле создается потоком электронов (чем интенсивнее движение электронов, тем больше вокруг них магнитного поля).

Устройство, способное запасать энергию магнитного поля, называется катушкой индуктивности. Форма катушки создает гораздо более сильное магнитное поле, чем обычный прямолинейный проводник. Конструкционной основой катушки индуктивности является диэлектрический каркас, на который наматывается провод в виде спирали (существуют так же и бескаркасные катушки). Обмотка может быть как однослойной, так и многослойной. Для увеличения индуктивности применяют магнитные сердечники. Помещенный внутрь катушки сердечник концентрирует магнитное поле и тем самым увеличивает ее индуктивность.

Условные обозначения катушек индуктивности на электрических схемах выглядят следующим образом:

Поскольку электрический ток создает вокруг катушки концентрированное магнитное поле , магнитный поток этого поля приравнивается к хранилищу энергии (сохранение которой происходит за счет кинетического движения электронов через катушку). Чем больше ток в катушке , тем сильнее магнитное поле , и тем больше энергии будет хранить катушка индуктивности .


Так как катушки индуктивности сохраняют кинетическую энергию движущихся электронов в виде магнитного поля , в электрической цепи они ведут себя совершенно иначе, чем резисторы (которые просто рассеивают энергию в виде тепла) . Способность накапливать энергию в зависимости от тока позволяет катушке индуктивности поддерживать этот ток на постоянном уровне. Иными словами, она сопротивляется изменениям тока. Когда ток через катушку увеличивается или уменьшается , она производит напряжение, полярность которого противоположна этим изменениям .

Для сохранения большего количества энергии, ток через катушку индуктивности должен быть увеличен. В этом случае напряженность магнитного поля увеличится, что приведет к возникновению напряжения согласно принципу электромагнитной самоиндукции. И наоборот, для высвобождения энергии из катушки, проходящий через нее ток должен быть уменьшен. В этом случае напряженность магнитного поля уменьшится, что приведет к возникновению напряжения противоположной полярности.

Вспомните Первый закон Ньютона, который гласит что всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние. С катушками индуктивности ситуация примерно аналогичная: "электроны, движущиеся через катушку стремятся оставаться в движении, а покоящиеся электроны имеет тенденцию оставаться в покое". Гипотетически , короткозамкнутая катушка индуктивности б удет сколь угодно долго поддерживать постоянную скорость потока электронов без внешней помощи :

На практике же, катушка индуктивности способна поддерживать постоянный ток только при использовании сверхпроводников. Сопротивление обычных проводов приведет к неизбежному затуханию потока электронов (без внешнего источника энергии).

Когда ток через катушку увеличивается, он создает напряжение, полярность которого противоположна потоку электронов. В этом случае катушка индуктивности выступает в качестве нагрузки. Она, как говорится, "заряжается", поскольку все большее количество энергии сохраняется в ее магнитном поле. На следующем рисунке обратите внимание на полярность напряжения


И наоборот, когда ток через катушку уменьшается, на ее выводах возникает напряжение, полярность которого соответствует потоку электронов. В этом случае катушка индуктивности выступает в качестве источника питания. Она высвобождает энергию магнитного поля в остальную часть схемы. Обратите внимание на полярность напряжения по отношению к направлению тока:


Если ненамагниченную катушку индуктивности подключить к источнику питания, то в первоначальный момент времени она будет сопротивляться потоку электронов пропуская все напряжение источника. Как только ток начнет возрастать, сила магнитного поля, созданного вокруг катушки, будет увеличиваться поглощая энергию источника питания. В конечном итоге ток достигнет максимального значения и прекратит свой рост. В этот момент катушка прекращает поглощать энергию от источника питания и напряжение на ее выводах падает до минимального уровня (в то время как ток остается на максимальном уровне) . Таким образом, при сохранении большего количества энергии, ток через катушку индуктивности увеличивается, а напряжение на ее выводах падает. Заметьте, такое поведение полностью противоположно поведению конденсатора, в котором увеличение количества запасенной энергии приводит к увеличению напряжения на его выводах. Если конденсаторы используют запасенную энергию на поддержание постоянной величины напряжения , то катушки индуктивности такую энергию используют на поддержание постоянной величины тока .

Тип материала, из которого изготавливается провод катушки, оказывает значительное влияние на магнитный поток (а следовательно и на количество запасаемой энергии) создаваемый заданной величиной тока. Влияет на магнитный поток и материал, из которого изготавливается сердечник катушки индуктивности: ферромагнитный материал (например железо) создаст более сильный поток, чем немагнитный материал (например алюминий или воздух).

Способность катушки индуктивности извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля называется индуктивностью . Индуктивность так же является мерой сопротивления изменениям тока. Для обозначения индуктивности используется символ " L ", а измеряется она в Генри , сокращенно " Гн "