Болезни Военный билет Призыв

Какие способы электризации вы знаете. Электризация тел при соприкосновении. Взаимодействие заряженных тел. Два рода зарядов. Применение на практике



В обычных условиях микроскопические тела являются электрически нейтральными, потому что положительно и отрицательно заряженные частицы, которые образуют атомы, связаны друг с другом электрическими силами и образуют нейтральные системы. Если электрическая нейтральность тела нарушена, то такое тело называется наэлектризованное тело . Для электризации тела необходимо, чтобы на нём был создан избыток или недостаток электронов или ионов одного знака.

Способы электризации тел , которые представляют собой взаимодействие заряженных тел, могут быть следующими:

  1. Электризация тел при соприкосновении . В этом случае при тесном контакте небольшая часть электронов переходит с одного вещества, у которого связь с электроном относительно слаба, на другое вещество.
  2. Электризация тел при трении . При этом увеличивается площадь соприкосновения тел, что приводит к усилению электризации.
  3. Влияние . В основе влияния лежит явление электростатической индукции , то есть наведение электрического заряда в веществе, помещённом в постоянное электрическое поле.
  4. Электризация тел под действием света . В основе этого лежит фотоэлектрический эффект , или фотоэффект , когда под действием света из проводника могут вылетать электроны в окружающее пространство, в результате чего проводник заряжается.
Многочисленные опыты показывают, что когда имеет место электризация тела , то на телах возникают электрические заряды, равные по модулю и противоположные по знаку.

Отрицательный заряд тела обусловлен избытком электронов на теле по сравнению с протонами, а положительный заряд обусловлен недостатком электронов.

Когда происходит электризация тела, то есть когда отрицательный заряд частично отделяется от связанного с ним положительного заряда, выполняется закон сохранения электрического заряда . Закон сохранения заряда справедлив для замкнутой системы, в которую не входят извне и из которой не выходят наружу заряженные частицы. Закон сохранения электрического заряда формулируется следующим образом:

В замкнутой системе алгебраическая сумма зарядов всех частиц остаётся неизменной:

q 1 + q 2 + q 3 + ... + q n = const

Где q 1 , q 2 и т.д. – заряды частиц.

Взаимодействие электрически заряженных тел

Взаимодействие тел , имеющих заряды одинакового или разного знака, можно продемонстрировать на следующих опытах. Наэлектризуем эбонитовую палочку трением о мех и прикоснёмся ею к металлической гильзе, подвешенной на шёлковой нити. На гильзе и эбонитовой палочке распределяются заряды одного знака (отрицательные заряды). Приближая заряженную отрицательно эбонитовую палочку к заряженной гильзе, можно увидеть, что гильза будет отталкиваться от палочки (рис. 1.2).

Рис. 1.2. Взаимодействие тел с зарядами одного знака.

Если теперь поднести к заряженной гильзе стеклянную палочку, потёртую о шёлк (положительно заряженную), то гильза будет к ней притягиваться (рис. 1.3).

Рис. 1.3. Взаимодействие тел с зарядами разных знаков.

Отсюда следует, что тела, имеющие заряды одинакового знака (одноимённо заряженные тела), взаимно отталкиваются, а тела, имеющие заряды разного знака (разноименно заряженные тела), взаимно притягиваются. Аналогичные вводы получаются, если приближать два султана, одноименно заряженные (рис. 1.4) и разноименно заряженные (рис. 1.5).

электризация тел.

2. Электризация тел.

Эти явления были обнаружены еще в глубокой древности. Древнегреческие ученые заметили, что янтарь (окаменевшая смола хвойных деревьев, которые росли на Земле много сотен тысяч лет назад) при натирании его шерстью начинает притягивать к себе различные тела. По-гречески янтарь - электрон, отсюда произошло название “электричество”.

Про тело, которое после натирания притягивает к себе другие тела, говорят, что оно наэлектризовано или что ему сообщен электрический заряд.

Электризоваться могут тела, сделанные из разных веществ. Легко наэлектризовать натиранием о шерсть палочки из резины, серы, эбонита, пластмассы, капрона.

Электризация тел происходит при соприкосновении и последующем разделении тел. Трут тела друг о друга лишь для того, чтобы увеличить площадь их соприкосновения.

В электризации всегда участвуют два тела: в рассмотренных выше опытах стеклянная палочка соприкасалась с листом бумаги, кусочек янтаря - с мехом или шерстью, палочка из плексигласа - с шелком. При этом электризуются оба тела. Например, при соприкосновении стеклянной палочки и куска резины электризуются и стекло, и резина. Резина, как и стекло начинает притягивать к себе легкие тела.

Электрический заряд можно передать от одного тела к другому. Для этого нужно коснуться наэлектризованным телом другого тела, и тогда часть электрического заряда перейдет на него. Чтобы убедиться, что и второе тело наэлектризовано, нужно поднести к нему мелкие листочки бумаги и посмотреть, будут ли они притягиваться.

3. Два рода зарядов. Взаимодействие заряженных тел.

Все электризованные тела притягивают к себе другие тела, например листочки бумаги. По притяжению тел нельзя отличить электрический заряд стеклянной палочки, потертой о шелк, от заряда, полученного на эбонитовой палочке, потертая о них. Ведь обе наэлектризованные палочки притягивают листочки бумаги.

Означает ли это, что заряды, полученные на телах, сделанных из различных веществ, ничем не отличаются друг от друга?

Обратимся к опытам. Наэлектризуем эбонитовую палочку, подвешенную на нити. Приблизим к ней другую такую же палочку, наэлектризованную трением о тот же кусочек меха. Палочки оттолкнуться Так как палочки одинаковые и наэлектризовали их трением об одно и тоже тело, можно сказать, что на них были заряды одного рода. Значит, тела, имеющие заряды одного рода, взаимно отталкиваются.

Теперь поднесем к наэлектризованной эбонитовой палочке стеклянную палочку, потертую о шелк. Мы увидим, что стеклянная и эбонитовая палочки взаимно притягиваются (рис.№2). Следовательно, заряд, полученный на стекле, потертом о шелк, другого рода, чем на эбоните, потертом о мех. Значит, существует другой род электрических зарядов.

Будим приближать к подвешенной наэлектризованной эбонитовой палочке наэлектризованные тела из различных веществ: резины, плексигласа, пластмассы, капрона. Мы увидим, что в одних случаях эбонитовая палочка отталкивается от тел, поднесенных к ней, а в других - притягивается. Если эбонитовая палочка оттолкнулась, значит, на теле, поднесенном к ней, заряд такого же рода, что и на ней. А заряд тех тел, к которым эбонитовая палочка притянулась, сходен с зарядом, полученном на стекле, потертом о шелк. Поэтому можно считать, что существует только два рода электрических зарядов.

Заряд, полученный на стекле потертом о шелк (и на всех телах, где получается заряд такого же рода), назвали положительным, а заряд, полученный на янтаре (а также эбоните, сере, резине), потертом о шерсть назвали отрицательным, т. е. зарядам приписали знаки “+” и “-”.

И так, опыты показали, что существует два рода электрических зарядов - положительные и отрицательные заряды и что наэлектризованные тела по-разному взаимодействуют друг с другом.

Тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.

4. Электроскоп. Проводники и не проводники электричества.

Если тела наэлектризованы, то они притягиваются друг к другу или взаимно отталкиваются. По притяжению или отталкиванию можно судить, сообщен ли телу электрический заряд. Поэтому и устройство прибора, при помощи которого выясняют, наэлектризовано ли тело, основано на взаимодействии заряженных тел. Этот прибор называется электроскопом (от греч. слов электрон и скопео - наблюдать, обнаруживать).

В электроскопе через пластмассовую пробку (рис.№3), вставленную в металлическую оправу, пропущен металлический стержень, на конце которого укреплены два листочка из тонкой бумаги. Оправа с обеих сторон закрыта стеклами.

Чем больше заряд электроскопа, тем больше сила отталкивания листочков и тем на больший угол они разойдутся. Значит, по изменению угла расхождение листочков электроскопа можно судить, увеличился или уменьшился его заряд.

Если прикоснуться к заряженному телу (например, к электроскопу) рукой, оно разрядиться. Электрические заряды перейдут на наше тело и через него могут уйти в землю. Разредиться заряженное тело и в том случае если соединить его с землей металлическим предметом, например железной или медной проволокой. Но если заряженное тело соединить с землей стеклянной или эбонитовой палочкой, то электрические заряды по ним не уйдут в землю. В этом случае заряженное тело не разрядится.

По способности проводить электрические заряды вещества условно делятся на проводники и непроводники электричества.

Все металлы, почва, растворы солей и кислот в воде - хорошие проводники электричества.

К непроводникам электричества, или диэлектрикам, относятся фарфор, эбонит, стекло, янтарь, резина, шелк, капрон, пластмассы, керосин, воздух (газы).

Тела, изготовленные из диэлектриков, называются изоляторами (от греч. слова изоляро - уединять).

5. Делимость электрического заряда. Электрон.

Зарядим металлический шар, прикрепленный к стержню электроскопа (рис. №4а). Соединим этот шар с металлическим проводником А, держа его за ручку В, изготовленную из диэлектрика, с другим точно таким же, но незаряженным шаром, находящемся на втором электроскопе. Половина заряда перейдет с первого шара на второй (рис. №4б). Значит, первоначальный заряд разрядился на две равные части.

Теперь разъединим шары и коснемся второго шара рукой. От этого он потеряет заряд - разрядиться. Присоединим его снова к первому шару, на котором осталась половина первоначального заряда. Оставшийся заряд снова разделиться на две равные части, и на первом шаре останется четвертая часть первоначального заряда.

Таким же образом можно получить одну восьмую, одну шестнадцатую часть заряда и т. д.

Таким образом, опыт показывает, что электрический заряд может иметь разное значение. Электрический заряд - физическая величина.

За единицу электрического заряда принят один кулон (обозначается 1 Кл). Единица названа так в честь французского физика Ш. Кулона.

В опыте изображенным на рисунке №4, показано, что электрический заряд можно разделить на части.

А существует ли придел деления заряда?

Чтобы ответить на этот вопрос, понадобилось выполнять более сложные и точные опыты, чем описанные выше, т. к. очень скоро оставшийся на шаре электроскопа заряд становиться таким малым, что обнаружить его при помощи электроскопа не удается.

Для деления заряда на очень маленькие порции нужно передавать его не шарам, а маленьким крупинкам металла или капелькам жидкости. Измеряя заряд, полученный на таких маленьких телах, установили, что можно получить порции заряда, в миллиарды миллиардов раз меньше, чем в описанном опыте. Однако во всех опытах разделить заряд дальше определенного значения не удавалось.

Это позволило предположить, что электрический заряд имеет придел делимости или, точнее, что существуют заряженные частица, которая имеет самый малый заряд, далее уже не делимый.

Чтобы доказать, что существует придел деления электрического заряда, и установить, каков этот придел, ученые проводили специальные опыты. Например, советский ученый А. Ф. Иоффе поставил опыт, в котором электризовали мелкие пылинки цинка, видимые только под микроскопом. Заряд пылинок несколько раз меняли, и каждый раз измеряли, на сколько изменился заряд. Опыты показали, что все изменения заряда пылинки были в целое число раз (т. е. в 2, 3, 4, 5 и т. д.)больше некоторого определенного наименьшего заряда, т. е. заряд пылинки изменялся хотя и очень малыми, но целыми порциями. Так как заряд с пылинки уходит вместе с частицей вещества, то Иоффе сделал вывод, что в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже не делимый.

Эту частицу назвали электрон.

Значение заряда электрона впервые определил американский ученый Р. Милликен. В своих опытах, сходных с опытами А. Ф. Иоффе, он пользовался мелкими капельками масла.

Заряд электрона - отрицательный, равен он - 1,610 Кл (0,000 000 000 000 000 000 16 Кл). Электрический заряд - одно из основных свойств электрона. Этот заряд нельзя “снять” с электрона.

Масса электрона равна 9,110 кг, она в 3700 раз меньше массы молекулы водорода, наименьшей из всех молекул. Крылышко мухи имеет массу, примерно в 510 большую, чем масса электрона.

6. Ядерная модель строения атома

Изучение строения атома практически началось в 1897-1898 гг., после того как была окончательно установлена природа катодных лучей как потока электронов и были определены величина заряда и масса электрона. Факт выделения электронов самыми разнообразными веществами приводил к выводу, что электроны входят в состав всех атомов. Но атом в целом электрически нейтрален, следовательно, он должен содержать в себе еще другую составную часть, заряженную положительно, причем ее заряд должен уравновешивать сумму отрицательных зарядов электронов.

Эта положительно заряженная часть атома была открыта в 1911 г. Эрнестом Резерфордом (1871-1937). Резерфорд предложил следующую схему строения атома. В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Суммарный отрицательный заряд электронов численно равен положительному заряду ядра, так что атом в целом электронейтрален. Так как масса электронов ничтожно мала, то почти вся масса атома сосредоточена в его ядре. Наоборот, размер ядер чрезвычайно мал даже по сравнению с размером самих атомов: диаметр атома - величина порядка 10 см, а диаметр ядра - порядка 10 - 10 см. Отсюда ясно, что на долю ядра и электронов, число которых, как увидим дальше, сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой (рис. №5)

7. Состав атомных ядер

Таким образом, открытия Резерфорда положили начало ядерной теории атома. Со времен Резерфорда физики узнали еще очень многие подробности о строении атомного ядра.

Самым легким атомом является атом водорода (Н). Поскольку почти вся масса атома сосредоточена в ядре, естественно было бы предположить, что ядро атома водорода представляет собой элементарную частицу положительного электричества, которая была названа протоном от греческого слова “протос”, что означает “первый”. Таким образом, протон обладает массой, практически равной массе атома водорода (точно 1,00728 углеродных единиц) и электрическим зарядом, равным +1 (если за единицу отрицательного электричества принять заряд электрона, равный -1,602*10 Кл). Атомы других, более тяжелых элементов содержат ядра, обладающие большим зарядом и, очевидно, большей массой.

Измерения заряда ядер атомов показали, что заряд ядра атома в указанных условных единицах численно равен атомному, или порядковому, номеру элемента. Однако невозможно было допустить, так как последние, будучи одноименно заряженными, неизбежно отталкивались бы друг от друга и, следовательно, такие ядра оказались бы неустойчивыми. К тому же масса атомных ядер оказалась больше суммарной массы протонов, обуславливающих заряд ядер атомов соответствующих элементов, в два раза и более.

Тогда было сделано предположение, что ядра атомов содержат протоны в числе, превышающем атомный номер элемента, а создающийся таким образом избыточный положительный заряд ядра компенсируется входящими в состав ядра электронами. Эти электроны, очевидно, должны удерживать в ядре взаимно отталкивающиеся протоны. Однако это предположение пришлось отвергнуть, так как невозможно было допустить совместное существование в компактном ядре тяжелых (протонов) и легких (электронов) частиц.

В 1932 г. Дж. Чедвик открыл элементарную частицу, не обладающую электрическим зарядом, в связи с чем она была названа нейтроном (от латинского слова neuter, что означает “ни тот, ни другой”). Нейтрон обладает массой, немного превышающей массу протона (точно 1,008665 углеродных единиц). Вслед за этим открытием Д. Д. Иваненко, Е. Н. Гапон и В. Гейзенберг, независимо друг от друга, предложили теорию состава атомных ядер, ставшую общепринятой.

Согласно этой теории, ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов. Число протонов в ядре определяет значение его положительного заряда, а суммарное число протонов и нейтронов - значение его массы. Ядерные частицы - протоны и нейтроны - объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Таким образом, число протонов в ядре соответствует атомному номеру элемента, а общее число нуклонов, поскольку масса атома в основном сосредоточена в ядре, - его массовому числу, т.е. округленной до целого числа его атомной массе А. Тогда число нейтронов а ядре N может быть найдено по разности между массовым числом и атомным номером:

Таким образом, протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

8. Изотопы

Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так, а незначительные отклонения от целых чисел можно объяснить недостаточной точностью измерения. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объяснить неточностью измерения и другими случайными причинами. Например, атомная масса хлора (CL) равна 35,45. Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть - 37. Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих разные массы, но, очевидно, одинаковые химические свойства, т. е. существуют разновидности атомов одного элемента с разными и притом целочисленными массами. Ф. Астону удалось разделить такие смеси на составные части, которые были названы изотопами (от греческих слов “изос” и “топос”, что означает “одинаковый” и “место” (здесь имеется в виду, что разные изотопы одного элемента занимают одно место в периодической системе)). С точки зрения протонно-нейтронной теории, изотопами называются разновидности элементов, ядра атомов которых содержат различное число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, которому равно и число электронов в оболочке атома. Изменение же числа нейтронов (при неизменном числе протонов) не сказывается на химических свойствах атома.

Все это дает возможность сформулировать понятие химического элемента как вида атомов, характеризующихся определенным зарядом ядра. Среди изотопов различных элементов были найдены такие, которые содержат в ядре при разном числе протонов одинаковое общее число нуклонов, то есть атомы которых обладают одинаковой массой. Такие изотопы были названы изобарами (от греческого слова “барос”, что означает “вес”). Различная химическая природа изобаров убедительно подтверждает то, что природа элемента обуславливается не массой его атома.

Для различных изотопов применяются названия и символы самих элементов с указанием массового числа, которое следует за названием элемента или обозначается в виде индекса вверху слева от символа, например: хлор - 35 или Cl.

Различные изотопы отличаются друг от друга устойчивостью. 26 элементов имеют лишь по одному устойчивому изотопу - такие элементы называются моноизотопными, (они характеризуются преимущественно нечетными атомными номерами), и атомные массы их приблизительно равны целым числам. У 55 элементов имеется по несколько устойчивых изотопов - они называются полиизотопными (большое число изотопов характерно преимущественно для элементов с четными номерами). У остальных элементов известны только неустойчивые, радиоактивные изотопы. Это все тяжелые элементы, начиная с элемента №84 (полоний), а из относительно легких - №43 (технеций) и №61 (прометий). Однако радиоактивные изотопы некоторых элементов относительно устойчивы (характеризуются большим периодом полураспада), и поэтому эти элементы, например торий, уран, встречаются в природе. В большинстве же радиоактивные изотопы получают искусственно, в том числе и многочисленные радиоактивные изотопы устойчивых элементов.

9. Электронные оболочки атомов. Теория Бора.

По теории Резерфорда, каждый электрон вращается вокруг ядра, причем сила притяжения ядра уравновешивается центробежной силой, возникающей при вращении электрона. Вращение электрона совершенно аналогично его быстрым колебаниям и должно вызвать испускание электромагнитных волн. Поэтому можно предположить, что вращающийся электрон излучает свет определенной длины волны, зависящий от частоты обращения электрона по орбите. Но, излучая свет, электрон теряет часть своей энергии, вследствие чего нарушается равновесие между ним и ядром. Для восстановления равновесия электрон должен постепенно передвигаться ближе к ядру, причем так же постепенно будет изменяться частота обращения электрона и характер испускаемого им света. В конце концов, исчерпав всю энергию, электрон должен "упасть" на ядро, и излучение света прекратится. Если бы на самом деле происходило подобное непрерывное изменение движения электрона, его "падение" на ядро означало бы разрушение атома и прекращения его существования.

Таким образом, наглядная и простая ядерная модель атома, предложенная Резерфордом, явно противоречила классической электродинамике. Система вращающихся вокруг ядра электронов не может быть устойчивой, так как электрон при таком вращении должен непрерывно излучать энергию, что, в свою очередь, должно привести к его падению на ядро и к разрушению атома. Между тем атомы являются устойчивыми системами.

Эти существенные противоречия частично разрешил выдающийся датский физик Нильс Бор (1885 - 1962), разработавший в 1913 году теорию водородного атома, в основу которой он положил особые постулаты, связав их, с одной стороны, с законами классической механики и, с другой стороны, с квантовой теорией излучения энергии немецкого физика Макса Планка (1858 - 1947).

Сущность теории квантов сводится к тому, что энергия испускается и поглощается не непрерывно, как принималось раньше, а отдельными малыми, но вполне определенными порциями - квантами энергии. Запас энергии излучающего тела изменяется скачками, квант за квантом; дробное число квантов тело не может ни испускать, ни поглощать.

Величина кванта энергии зависит от частоты излучения: чем больше частота излучения, тем больше величина кванта. Обозначая квант энергии через Е, запишем уравнение Планка:

где h - постоянная величина, так называемая константа Планка, равная 6,626*10 Дж*с., а - частота волны Деброиля.

Кванты лучистой энергии называются также фотонами. Применив квантовые представления к вращению электронов вокруг ядра, Бор положил в основу своей теории очень смелые предположения, или постулаты. Хотя эти постулаты и противоречат законам классической электродинамики, но они находят свое оправдание в тех поразительных результатах, к которым приводят, и в том полнейшем согласии, которое обнаруживается между теоретическим результатами и огромным числом экспериментальных фактов. Постулаты Бора заключаются в следующем:

Электрон может двигаться вокруг не по любым орбитам, а только по таким, которые удовлетворяют определенными условиям, вытекающим из теории квантов. Эти орбиты получили название устойчивых, стационарных или квантовых орбит. Когда электрон движется по одной из возможных для него устойчивых орбит, то он не излучает электромагнитной энергии. Переход электрона с удаленной орбиты на более близкую сопровождается потерей энергии. Потерянная атомом при каждом переходе энергия превращается в один квант лучистой энергии. Частота излучаемого при этом света определяется радиусами тех двух орбит, между которыми совершается переход электрона. Обозначив запас энергии атома при положении электрона на более удаленной от ядра орбите через Ен, а на более близкой через Ек и разделив потерянную атомом энергию Ен - Ек на постоянную Планка, получим искомую частоту:

= (Ен - Ек) / h

Чем больше расстояние от орбиты, на которой находится электрон, до той, на которую он переходит, тем больше частота излучения. Простейшим из атомов является атом водорода, вокруг ядра которого вращается только один электрон. Исходя из приведенных постулатов, Бор рассчитал радиусы возможных орбит для этого электрона и нашел, что они относятся, как квадраты натуральных чисел: 1: 2: 3: ...: n . Величина n получила название главного квантового числа.

В дальнейшем теория Бора была распространена и на атомную структуру других элементов, хотя это было связано с некоторыми трудностями из-за ее новизны. Она позволила разрешить очень важный вопрос о расположении электронов в атомах различных элементов и установить зависимость свойств элементов от строения электронных оболочек их атомов. В настоящее время разработаны схемы строения атомов всех химических элементов. Однако надо иметь в виду, что все эти схемы - это лишь более или менее достоверная гипотеза, позволяющая объяснить многие физические и химические свойства элементов.

Как было уже сказано раньше, число электронов, вращающихся вокруг ядра атома, соответствует порядковому номеру элемента в периодической системе. Электроны расположены по слоям, т.е. каждому слою принадлежит определенное заполняющее или как бы насыщающее его число электронов. Электроны одного и того же слоя характеризуются почти одинаковым запасом энергии, т.е. находятся примерно на одинаковом энергетическом уровне. Вся оболочка атома распадается на несколько энергетических уровней. Электроны каждого следующего слоя находятся на более высоком энергетическом уровне, чем электроны предыдущего слоя. Наибольшее число электронов N, имеющих возможность находиться на данном энергетическом уровне, равно удвоенному квадрату номера слоя:

где n - номер слоя. Таким образом на 1-2, на 2-8, на 3-18 и т.д. Кроме того, установлено, что число электронов в наружном слое для всех элементов, кроме палладия, не превышает восьми, а в предпоследнем - восемнадцати.

Электроны наружного слоя, как наиболее удаленные от ядра и, следовательно, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся положительно заряженными, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие электроны становятся отрицательно заряженными. Образующиеся таким путем заряженные частицы, качественно отличные от соответствующих атомов, называются ионами. Многие ионы в свою очередь могут терять или присоединять электроны, превращаясь при этом или в электронейтральные атомы, или в новые ионы с другим зарядом.

10.Ядерные силы.

Гипотеза о том, что атомные ядра состоят из протонов и нейтронов подтверждалось многими экспериментальными фактами. Это свидетельствовало о справедливости потонно-нейтронной модели строения ядра.

Но возникал вопрос: почему ядра не распадаются на отдельные нуклоны под действием сил электростатического отталкивания между положительно заряженными протонами?

Расчёты показывают, что нуклоны не могут удерживаться вместе за счёт сил притяжения гравитационной или магнитной природы, поскольку эти силы существенно меньше электростатических.

В поисках ответа на вопрос об устойчивости атомных ядер учёные предположили, что между всеми нуклонами в ядрах действуют какие то особые силы притяжения, которые значительно превосходят электростатические силы отталкивания между протонами. Эти силы назвали ядерными.

Гипотеза о существовании ядерных сил оказалась правильной. Выяснилось также, что ядерные силы являются короткодействующими: на расстоянии 10-15 м они примерно в 100 раз больше сил электростатического взаимодействия, но уже на расстоянии 10-14 м они оказываются ничтожно малыми. Другими словами, ядерные силы действуют на расстояниях, сравнимых с размерами самих ядер.

11.Деление ядер урана.

Деление ядер урана при бомбардировке их нейтронами было открыто в 1939 году немецкими учёными Отто Ганном и Фрицем Штрассманом.

Рассмотрим механизм этого явления. На (рис №7, а) условно изображено ядро атома урана (23592U). Поглотив лишний нейтрон, ядро возбуждается и деформируется, приобретая вытянутую форму (рис №7,б).

Мы уже знаем, что в ядре действует два вида сил: электростатические силы отталкивания между протонами, стремящиеся разорвать ядро, и ядерные силы притяжения между всеми нуклонами, благодаря которым ядро не распадается. Но ядерные силы - короткодействующие, поэтому в вытянутом ядре они уже не могут удерживать сильно удалённые друг от друга части ядра. Под действием электростатических сил отталкивания ядро разрывается на две части (рис№7,в), которые разлетаются в разные стороны с огромной скоростью и излучают при этом 2-3 нейтрона.

Получается, что часть внутренней энергии ядра переходит в кинетическую энергию разлетающихся осколков и частиц. Осколки быстро тормозят в окружающей среде, в результате чего их кинетическая энергия преобразуется во внутреннюю энергию среды (т. е. в энергию взаимодействия теплового движения составляющих её частиц).

При одновременном делении большого количества ядер урана внутренняя энергия окружающей уран среды и соответственно её температура заметно возрастают (т. е. среда нагревается).

Таким образом, реакция деления ядер урана идёт с выделением энергии в окружающую среду.

Энергия, заключённая в ядрах атомов, колоссальна. Например, при полном делении всех ядер, имеющихся в 1 грамме урана, выделилось бы столько же энергии, сколько выделяется при сгорании 2,5 т нефти.

12. Атомные электростанции.

атомная электростанция (АЭС) - электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию, В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu) При делении 1 г изотопов урана или плутония высвобождается 22 500 квт * ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Первая в мире АЭС опытно-промышленного назначения мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, (рис. №6.). Тепло, выделяется в активной зоне реактора, теплоносителем вбирается водой (теплоносителем) 1-г контура, которая прокачивается через реактор циркуляционным насосом г Нагретая вода из реактора поступав в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образуется пар поступает в турбину 4.

Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

В зависимости от вида и агрегатного состояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой темп-рой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой темп-рой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС. тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и темп-рой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур -- пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева.

В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, и топливо выгорает. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшее топливо переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляции контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличит, особенности: в корпусных реакторах топливо и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах топливо, охлаждаемые теплоносителем, устанавливаются в спец. трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпантиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление не плотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются, Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС спец. системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологической защиты, систем спец. вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вред-ных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличит, особенность большинства АЭС -- использование пара сравнительно низких параметров, насыщенного или слабо перегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

Часть тепловой мощности реактора этой АЭС расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. АЭС, являющиеся наиболее современным видом электростанций имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде, новые энергоблоки имеют мощность практически равную мощности средней ГЭС, однако коэффициент использования установленной мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС. Об экономичности и эффективности атомных электростанций может говорить тот факт, что из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля.

Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форс-мажорных обстоятельствах: землетрясениях, ураганах, и т. п. - здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.

13. Заключение

Подробно изучив явление электризации и строение атома, я узнал, что атом состоит из ядра и находящихся вокруг него отрицательно заряженных электронов. Ядро состоит из положительно заряженных протонов и не имеющих заряда нейтронов. При электризации тела на электризуемом теле возникает либо избыток, либо недостаток электронов. Это определяет заряд тела. Существует только два рода электрических зарядов - положительные и отрицательные заряды. В результате проделанной мной работы я глубоко познакомился с явлениями электростатики и разобрался, как и почему происходят эти явления. Например, молния. Явление электростатики тесно связано со строением атома. Атомы таких веществ как уран, радий и д.р. обладают радиоактивностью, Энергия атома имеет огромное значение для жизни всего человечества. Например, энергия, заключённая в одном грамме урана, равна энергии выделяющейся при сгорании 2.5 тонн нефти. В настоящее время радиоактивная энергия атомов нашла своё применение во многих областях жизни. С каждым годом строят всё больше АЭС (атомных электростанций), развивается производство ледоколов и подводных лодок с атомным реактором. Энергия атома применяется в медицине для лечения различных заболеваний, а так же во многих областях народного хозяйства. Неправильное использование энергии может представлять опасность для здоровья живых организмов. Энергия атомов может принести людям пользу в том случаи, если они научатся правильно использовать её.

Электризация тела Макроскопические тела , как правило, электрически... задачей. 1 версия. При электризации тел важен тесный контакт между ними... должно приводить к заряжению тела . Еще один способ электризации тел – воздействие на...

Электризация тел

Повторительно-обобщающий урок
с выполнением экспериментальных заданий по карточкам

8-й КЛАСС БАЗОВЫЙ КУРС

Задачи урока: продолжить развитие умений наблюдать физические явления, проверять теоретические положения с помощью эксперимента, пользоваться приборами; обеспечить возможность выполнения экспериментов с учетом уровня развития каждого учащегося (дифференцированный подход при составлении индивидуальных карточек-заданий); показать учащимся способ очистки воздуха от вредных примесей, акцентировать внимание на необходимости соблюдения техники безопасности для предотвращения пожаров и аварий на производстве и в быту.

План урока (на доске)

1. Выполнение экспериментальных заданий по карточкам.
2. Обсуждение результатов экспериментов по основным вопросам:

электризация, способы электризации тел;
два рода зарядов, взаимодействие зарядов;
электрическое поле.

3. Объяснение. Статическое электричество, его использование и борьба с ним.

Ход урока

Наш урок я бы хотела начать с отрывка из стихотворения Елизаветы Кульман «Молния»:

- Со мною кто сравнится?
– Я! – Дуб сказал могучий,
Взмахнув вершиной гордой.
Из облаков зловещих
Летучею змеею
Вдруг Молния блеснула
И крепкий Дуб сломила,
Как бы дитя, играя,
Цветка согнуло стебель.
- Со мною кто сравнится?
– Я! – прозвучала Башня,
Чье золотое темя
Пожаром гордо блещет,
Когда не покрывают
Его, как флером, тучи.
Но небеса разверзлись
Для Молнии гремучей.
Летит драконом страшным
С зияющею пастью;
Мгновенье – и не стало
Главы у гордой Башни,
Лишь черными ручьями
Вниз по стенам стекает
Расплавленное злато.
- Нет. Мне никто не равен! -
Сказала и стрелою
Нырнула в волны моря,
Где только что спесиво
Корабль военный несся.
В минуту с треском
Горящие остатки
На воздух разметало.
Потом опять все в море
Упало, потонуло,
И дивного строенья
Как будто не бывало...

Молния – это величественное и грозное явление природы, невольно вызывающее у нас чувство страха. Долгое время человек не умел объяснять причин грозовых явлений. Люди считали грозу деянием богов, наказывающих человека за грехи. Природа молнии стала проясняться после исследований, проведенных в XVIII столетии русскими учеными М.В.Ломоносовым и Г.Рихманом и американским ученым Б.Франклином.

Объяснение М.В.Ломоносова было таким. В земной атмосфере воздух находится в постоянном движении. Благодаря трению восходящих и нисходящих воздушных потоков друг о друга частички воздуха электризуются и, сталкиваясь с капельками воды в облаках, отдают им свой заряд. Таким образом, в облаках с течением времени скапливаются весьма большие заряды. Они-то и являются причиной молний.

Мы постоянно находимся в океане электрических разрядов, создаваемых многочисленными машинами, станками и самим человеком (например, когда мы ходим, причесываемся). Эти разряды, конечно, не так мощны, как природные молнии, поэтому мы обычно не замечаем их, если не считать легких уколов, которые мы иногда испытываем, коснувшись рукой металлического предмета или другого человека. Но ведь такие разряды существуют и могут так же, как и большие молнии, вызывать пожары и взрывы, приводить к значительным убыткам, повреждениям и увечьям, если мы не будем знать, отчего они возникают и как от них защищаться.

На сегодняшнем уроке мы не только закрепим знания, которые получили при изучении тем «Электризация тел», «Строение атома», но и рассмотрим ряд других вопросов. Например, как бороться на производстве и в быту со статическими зарядами? Нельзя ли заставить их работать на пользу людям?

Приступаем к выполнению экспериментальных заданий. Необходимое оборудование и карточки-задания находятся на ваших столах (за каждым столом сидят по двое учащихся). На выполнение каждой серии экспериментов, а их будет три, вам отводится 7–10 минут.

Первая серия экспериментов
Электризация. Способы электризации тел

1 Исследование электризации различных тел

Приборы и материалы: полиэтиленовая пленка, бумажная полоска, кусок ацетатного шелка, пластмассовая ручка, штатив, нить, карандаш.

Порядок выполнения работы

1. Подвесьте карандаш на двух нитях к лапке штатива.
2. Положите полиэтиленовую пленку на стол и натрите ее куском ацетатного шелка. Поднесите полиэтилен и шелк поочередно к концу подвешенного карандаша. Что вы при этом наблюдаете?
3. Проделайте подобные опыты с пластмассовой ручкой, линейкой, бумагой, натирая их о полиэтилен или шелк.
4. Положите на бумажную полоску полиэтиленовую пленку и сильно прижмите их друг к другу рукой. Разведите полоски, а затем приблизьте их друг к другу. Взаимодействуют ли они между собой?
5. Ответьте на вопросы:

а) Как можно наэлектризовать тело?
б) Оба ли тела электризуются при соприкосновении?
в) Как обнаружить электризацию тела?

2 Наблюдение электризации при соприкосновении двух разнородных тел (резины и движущегося воздуха)

Приборы и материалы: толстостенная резиновая трубка, насос, электрометр.

Порядок выполнения работы

1. Наденьте резиновую трубку на штуцер насоса и сделайте 10–15 резких качков, стараясь не касаться трубки руками.
2. Поднесите трубку с насосом к шару электрометра.
3. Наблюдайте отклонение стрелки электрометра.

5. Подумайте, где на практике мы можем встретиться с подобным явлением.

Комментарии учителя (после разбора опыта).
Аналогичное явление наблюдается при перекачивании через шланги различных газов, жидкостей, в особенности нефтепродуктов – бензина, керосина и т.д. Послушайте заметку из газеты:
«Было уже за полночь, когда рабочий Камбарской перевалочной нефтебазы И.Третьяков, заправив восемь цистерн авиационным бензином, перевел наливной шланг в очередную порожнюю емкость. Едва шланг коснулся горловины цистерны, как высоко вверх взметнулся 15-метровый оранжево-яркий столб огня. Мощной взрывной волной Третьякова отбросило далеко от цистерн. Взрыв произошел в результате соприкосновения наконечника шланга со стенкой цистерны и образовавшегося при этом разряда статического электричества...»

3 Наблюдение электризации песка и воронки как двух разнородных тел в процессе соприкосновения

Приборы и материалы : пластмассовая воронка, штатив, электрометр.

Порядок выполнения работы

1. Возьмите пластмассовую воронку и закрепите ее в лапке штатива над шаром электрометра.
2. Сыпьте на край воронки сухой речной песок так, чтобы он скатывался по воронке в шар электрометра. 3. Наблюдайте отклонение стрелки электрометра.
4. Попробуйте объяснить наблюдаемое явление.
5. Подумайте, где на практике мы можем встретиться с подобными явлениями.

Комментарии учителя (после разбора опыта).
Послушайте заметку из журнала: «Когда шофер переливал из ведра через пластмассовую воронку бензин в топливный бак мотоцикла, неожиданно между краем воронки и ведром проскочила искра, а затем из горловины бака возник факел горящего бензина. Источником воспламенения бензино-воздушной смеси стал разряд статического электричества».
Во избежание подобных разрядов при хранении, транспортировке и заправке горючего рекомендуется применять только металлические ведра, канистры и воронки и не использовать пластмассовые емкости.

4 Электризация. Способы электризации тел. Наблюдение электризации бумаги при движении по ней резинового валика

Приборы и материалы: сухая стеклянная пластина (текстолит, эбонит), лист бумаги, резиновый валик, электрометр.

Порядок выполнения работы

1. Положите на стеклянную пластину лист бумаги.
2. Проведите несколько раз по бумаге резиновым валиком, плотно прижимая его к листу во время движения.
3. Поднесите лист бумаги к шару электрометра и наблюдайте отклонение его стрелки.
4. То же самое проделайте с резиновым валиком.
5. Попробуйте объяснить наблюдаемое явление.
6. Подумайте, где на практике мы можем встретиться с подобными явлениями.

Комментарии учителя (после разбора опыта).
Этот опыт показывает, как происходит электризация бумаги в типографских машинах (резиновый валик играет роль цилиндров этой машины). На одном из целлюлозно-бумажных комбинатов некоторое время не могли установить причину частых обрывов быстро движущейся бумажной ленты. Были приглашены ученые. Они выяснили, что причина заключалась в электризации ленты при трении ее о валки. Такая самопроизвольная электризация очень опасна, т.к. может стать причиной пожара.

Прежде чем переходить к обсуждению второй серии экспериментальных заданий, ответьте на вопросы:

Когда про тело можно сказать, что оно наэлектризовано или что ему сообщен электрический заряд? (Ответы учащихся.)
Какой еще вывод можно сделать из первой серии опытов? (Наэлектризовать можно практически все тела; наэлектризованное тело взаимодействует с любым телом.)

Переходим к опытам.

Вторая серия экспериментов
Два рода зарядов. Взаимодействие зарядов

5 Исследование электризации различных тел

Приборы и материалы : бумажная гильза на шелковой нити, подвешенная на штативе, измерительная линейка длиной 30 см из оргстекла с миллиметровыми делениями, резиновая полоска размером 300 ґ 300 мм, бумажная полоска размером 30 ґ 300 мм, кусок капроновой ткани.

Порядок выполнения работы

1. Наэлектризуйте трением, прижатием, ударами друг о друга резиновую полоску и линейку из оргстекла. (Оргстекло при взаимодействии с резиной заряжается положительно.)
2. Зарядите бумажную гильзу, висящую на нити, при помощи заряженной линейки.
3. Подносите заряженные линейку и резиновую полоску поочередно к заряженной гильзе, не касаясь ее, и наблюдайте их взаимодействие. Какими зарядами заряжены гильза и резиновая полоска?
4. Определите с помощью заряженной гильзы знаки зарядов у предложенных вам тел после их электризации друг о друга. Результаты сведите в таблицу:

Электризуемые тела

Об оргстекло

О резину

О полиэтилен

О бумагу

О капрон

Оргстекло

0

+

Резина

-

0

Полиэтилен

0

Бумага

0

Капрон

0

6 Изучение взаимодействия заряженных тел. Два рода зарядов

Приборы и материалы: полиэтиленовая пленка, бумажная полоска, пластмассовая ручка, штатив.

Порядок выполнения работы

1. Маленький кусочек полиэтиленовой пленки подвесьте на нити к лапке штатива и потрите осторожно (чтобы не порвалась нить) кусочком бумаги.
2. Наэлектризуйте бумажную и полиэтиленовую полоски. Для этого на бумажную полоску положите полиэтиленовую пленку и разгладьте рукой. Поднимите полоски за концы, разведите их и медленно поднесите друг к другу. Как они взаимодействуют?
3. Поднесите поочередно бумажную и полиэтиленовую полоски к пленке, висящей на нити, и наблюдайте их взаимодействие.
4. Ответьте на вопросы:

Как взаимодействует каждая полоска с пленкой?
Как можно объяснить различие взаимодействия?
Какие два рода зарядов существуют в природе?
Как взаимодействуют одноименно заряженные тела?
Как взаимодействуют разноименно заряженные тела?

5. Поднесите к заряженной полиэтиленовой пленке, висящей на нити, пластмассовую ручку, натертую сначала о бумагу, а затем о полиэтилен. Одинаковые ли по знаку заряды возникали на пластмассовой ручке в обоих случаях?

7 Два рода зарядов. Взаимодействие зарядов. Взаимодействие двух заряженных тел

Приборы и материалы: два детских воздушных шарика, газета, стеклянная палочка, кусочек шелковой ткани (бумаги).

Порядок выполнения работы

1. Наэлектризуйте шарики трением о газету (поочередно).
2. Подвесьте их на длинных нитях рядом.
3. Наблюдайте отталкивание шаров.
4. Объясните наблюдаемые явления.
5. Подумайте, как, имея в своем распоряжении стеклянную палочку и кусочек шелковой ткани (бумаги), определить знак заряда на шарике. Проделайте опыт, подтверждающий ваше предположение.
6. Объясните результаты опыта.

Какие выводы можно сделать из второй серии экспериментов?

В природе существуют два вида электрических зарядов.
Одноименные заряды взаимно отталкиваются, а разноименные – притягиваются.
Одно и то же тело при электризации может зарядиться в одном случае положительно, а в другом – отрицательно, в зависимости от вещества тела, с которым оно соприкасается.

Переходим к третьей, последней серии опытов.

Третья серия экспериментов
Электрическое поле

8 Изучение зависимости силы взаимодействия заряженных тел от абсолютного значения зарядов и расстояния между ними

Приборы и материалы: полиэтиленовые пленки (2 шт.), бумажная полоска.

Порядок выполнения работы

1. Положите две полиэтиленовые пленки рядом на стол (параллельно друг другу) и проведите по ним один раз рукой. Поднимите пленки за концы, разведите их и, медленно сближая, наблюдайте за их взаимодействием.
2. Повторите опыт с этими же пленками, натерев их рукой. Как изменилась сила взаимодействия пленок?
3. Проделайте аналогичные опыты с полиэтиленовой пленкой и бумажной полоской. Для их электризации положите на бумажную полоску полиэтиленовую пленку и потрите их рукой (первый раз – слегка, второй раз – сильнее). Каждый раз разводите полоски и, медленно поднося друг к другу, наблюдайте за их взаимодействием.
4. Ответьте на вопросы:

По какому признаку вы судите о силе взаимодействия заряженных тел?
Как взаимодействуют заряженные полиэтилен с полиэтиленом и полиэтилен с бумагой?
На оба ли заряженных тела действует электрическая сила?
От чего зависит сила взаимодействия заряженных тел?
Как зависит сила взаимодействия заряженных тел от значения зарядов и расстояния между ними?

9 Наблюдение парения заряженной пушинки в электрическом поле

Приборы и материалы : пластмассовая линейка, комочек ваты.

Порядок выполнения работы

1. Положите пластмассовую линейку на стол и натрите ее бумагой.
2. Распушите очень маленький комочек ваты и положите его на линейку.
3. Поднимите наэлектризованную линейку и легонько сдуйте с нее пушинку вверх.
4. Поместите быстро линейку снизу пушинки и наблюдайте за ее парением в электрическом поле заряженной линейки. (Если пушинка прилипнет к линейке, сдуйте ее и снова повторите опыт, пока не добьетесь парения пушинки.)
5. Ответьте на вопросы:

Какой заряд получила пушинка относительно заряда линейки – одноименный или разноименный?
Какие силы действуют на пушинку во время ее парения?
Почему пушинка не падает в электрическом поле?

Комментарий учителя (после разбора опыта).
Этот опыт показывает возможность уравновешивания силы тяжести, действующей на тело, силой электрического поля. Заряженная вата, плавающая в электрическом поле линейки, играет роль капельки масла (или пылинки цинка) в опытах Иоффе и Милликена.

10 Опыт по защите от электрических полей

Приборы и материалы: электрометр, пластина из оргстекла, штатив, металлический стакан (из фольги), пластмассовый стакан, кусочки шерстяной материи.

Порядок выполнения работы

1. Наэлектризуйте пластину и закрепите ее в лапке штатива выше электрометра, но несколько в стороне, на небольшом расстоянии.
2. Наблюдайте отклонение стрелки электрометра.
3. На шар электрометра наденьте металлический стакан. (Внимание! Рука экспериментатора должна быть изолирована от стакана.) Наблюдайте возвращение стрелки электрометра в нулевое положение.
4. Снимите стакан. Стрелка должна принять первоначальное положение.
5. Наденьте на шар электрометра пластмассовый стакан. Наблюдайте уменьшение угла отклонения стрелки электрометра.
6. Снимите стакан и наблюдайте возвращение стрелки электрометра в первоначальное положение.
7. Попробуйте объяснить наблюдаемые явления.

Комментарий учителя (после разбора опыта).
Опыт доказывает, что внутри металлического тела поле отсутствует.

Какие выводы можно сделать по третьей серии опытов?

В пространстве, где находится электрический заряд, существует электрическое поле, и его действие вблизи заряженных тел сильное, а вдали от них – слабее.
Можно «защититься» от действия электрического поля металлическим экраном.

Обсуждение результатов. Учащиеся в определенной последовательности, соответствующей плану, кратко
(1–2 мин) рассказывают о своих экспериментах и дают ответы на вопросы, предложенные в карточке-задании. Учитель комментирует, поправляет, дополняет (примерные комментарии даны ранее по тексту). Названия экспериментов учащиеся записывают в тетрадь для последующего отчета в письменной форме.

Использование статического электричества и борьба с ним. Мы сегодня экспериментально изучили явление накопления электрических зарядов, т.е. статическое электричество. Оно может служить человеку:

в лечебных целях – используется так называемый статический душ, положительно воздействующий на организм, для лечения органов дыхания используются специальные электроаэрозоли;
для очистки воздуха от пыли, сажи, кислотных и щелочных паров с помощью электростатических фильтров;
для быстрого размножения чертежей, графиков, текстов в электрокопировальных устройствах (в частности ксероксах), для быстрой и прочной окраски тканей в красильнях;
для копчения рыбы на рыбокомбинатах – в специальных электрокамерах, где движется конвейер с рыбой, заряженной положительным зарядом, а электроды заряжены отрицательно. Копчение таким методом происходит в десятки раз быстрее, чем без электрического поля.

Статическое электричество может причинять вред как на производстве, так и в быту, так что зачастую с ним приходится бороться. Так, при трении о воздух самолет электризуется, поэтому после посадки к нему нельзя сразу же приставлять металлический трап: может возникнуть разряд, который вызовет пожар. Сначала самолет разряжают, для чего опускают на землю металлический трос, соединенный с обшивкой самолета, и разряд происходит в землю. Микроразряды возникают, когда человек ходит по полу, покрытому полимерным покрытием, или снимает синтетическую одежду. Чтобы нейтрализовать вредное действие статического электричества:

на производстве заземляют станки и машины, увлажняют воздух, используют специальные нейтрализаторы зарядов;
– дома увлажняют помещения, используют специальные добавки к воде при мытье полов, антистатик для одежды.

Домашнее задание: написать отчет по данной теме, в котором сделать выводы по всем экспериментам, проведенным на данном уроке (названия всех экспериментов заранее написаны учителем на доске ).

Литература

Буров В.А., Иванов А.И., Свиридов В.И. Фронтальные экспериментальные задания по физике. 9-й класс. – М.: Просвещение, 1986.
Буров В.А., Кабанов С.Ф., Свиридов В.И. Фронтальные экспериментальные задания по физике в 6–7-х классах. – М.: Просвещение, 1981.
Горев Л.А. Занимательные опыты по физике. – М.: Просвещение, 1985.
Книга для чтения по физике. / Сост. И.Г.Кириллова. – М.: Просвещение, 1986.
Луппов Г.Д. Молекулярная физика и электродинамика в опорных конспектах и тестах. – М.: Просвещение, 1992.
Перышкин А.В., Родина Н.А. Физика-8. – М.: Просвещение, 1993.

Цели урока:

образовательные:

    формирование первоначальных представлений об электрическом заряде, о взаимодействии заряженных тел, о существовании двух видов электрических зарядов.

    выяснение сущности процесса электризации тел.

    определение знак заряда наэлектризованного тела.

развивающие:

    развитие навыков выделять электрические явления в природе и технике.

    ознакомление с краткими историческими сведениями изучения электрических зарядов.

воспитательные:

    воспитание умения работать в коллективе,

    воспитание любознательности.

Оборудование: электроскоп, электрометры, гильза из фольги на подставке стеклянная и эбонитовая палочки, кусок меха и щелка, полиэтилен, бумага, телевизор, видеомагнитофон.

План урока

    Организационный момент.

    Запись домашнего задания: § 25, 26, 27. Заполнить таблицу.

    Объяснение нового материала:

    Первичный контроль.

    Закрепление изученного материала.

    Подведение итогов. Выставление оценок.

Ход урока

Отыщи всему начало и ты многое поймёшь”. (Козьма Прутков.)

1 ученик: Представьте себе такую сцену:

В Древней Греции, в красивом городе Милете жил философ Фалес. И, вот однажды вечером к нему подходит его любимая дочь. Объясни, почему у меня путаются нити, когда я работаю с янтарным веретеном, к пряже прилипают пыль, соломинки. Это очень не удобно.

Фалес берет веретено, потирает его и видит маленькие искорки.

2 ученик: Правду говорят: “Гром не грянет - мужик не перекрестится”. А какой же гром без молнии? Сколько же миллионов раз должна сверкнуть молния, чтобы мужик, перекрестившись, наконец-то задумался: а что же это такое?

Учитель: Между натертым янтарным веретеном, притягивающим предметы, и молнией, казалось бы ничего общего. А ведь все это -ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ

Почему происходят эти явления? В чем суть этих явлений? Это нам предстоит выяснить на сегодняшнем и ближайших уроках.

В тетрадях записываем дату, классная работа, тема урока.

Электрические явления

Каждый из вас, к концу урока должен научиться объяснить, что такое электрический заряд и электризация, как взаимодействуют друг с другом заряженные тела, и как устроен простейший прибор электроскоп.

Рассмотрим сначала происхождение термина “электричество”

История развития электричества начинается с Фалеса Милетского. Вначале, свойство притягивать мелкие предметы приписывалось только янтарю (окаменевшая смола хвойных деревьев). От названия которого произошло слово электричество, т.к греч. elektron-янтарь. (запись на доске)

3 ученик: Лишь в конце XVI века и начале XVII века вспомнили об этом открытии. Английский врач и естествоиспытатель Ульям Гильберт(1544-1603) выяснил, что при трении могут электризоваться многие вещества. Он был одним из первых ученых, утвердивших опыт, эксперимент как основу исследования.

Научное исследование электрических явлений началось в книге Гильберта, которому и принадлежит и термин “электричество”. Гильберт кропотливо исследовал множество самых различных тел и построил для этой цели специальный электрический указатель, который он описывает таким образом: “Сделай себе из любого металла стрелку длиной три или четыре дюйма, достаточно подвижную на своей игле, наподобие магнитного указателя”. С помощью этого указателя, прототипа современных электроскопов, Гильберт установил, что способностью притягивать обладают многие тела, “не только созданные природой, но и искусственно приготовленные”. Он показал, что при трении электризуется не только янтарь, но и многие другие вещества: алмаз, сапфир, сургуч и что притягивают они не только соломинки, но и металлы, дерево, листья, камешки, комки земли и даже воду и масло. Однако он нашел, что многие тела “не притягиваются и не возбуждаются никакими натираниями”. К числу их относится ряд драгоценных камней и металлы: “серебро, золото, медь, железо, также любой магнит”. Тела обнаруживающие способность притяжения, Гильберт назвал электрическими, тела не обладающие такой способностью, - неэлектрическими.

Учитель: Если кусочек янтаря потереть о шерсть или стеклянную палочку - о бумагу или шелк, то можно услышать легкий треск, в темноте искорки, а сама палочка приобретает способность притягивать к себе мелкие предметы

Про тело, которое после натирания притягивает к себе другие тела, говорят что оно наэлектризовано или что ему сообщили электрический заряд.

Опыт 1. Давайте наэлектризуем расческу о сухие волосы

По притяжению тел друг к другу можно судить, сообщен ли телам электрический заряд Существуют приборы при помощи которых можно судить о наэлектризованности тел - электроскоп (электрон – наблюдаю)

Электроскопом называют физический прибор, который используют для обнаружения у тела электрического заряда.

Электроскоп имеет цилиндрический корпус в который проходит металлический стержень, изолированный от корпуса пластмассовой пробкой. На одном конце стержня находится металлический шарик, а на другом? два подвижных лепестка.

При соприкосновении заряженного тела с шариком электроскопа, его лепестки отклоняются на некоторый угол, зависящий от величины заряда, чем больше заряд электроскопа, тем больше сила отталкивания листочков. Аналогично устроен электрометр, в нем легкая стрелочка отталкивается от стержня.

Чтобы разрядить электроскоп можно просто дотронуться до него рукой. Можно это сделать, например железной или медной проволокой, но по стеклянной или эбонитовой палочке заряды не уйдут в землю.

Электризация может происходить несколькими способами:

1. СОПРИКОСНОВЕНИЕМ

Электрическими опытами занимался и Ньютон, который наблюдал электрическую пляску кусочков бумаги, помещенных под стеклом, положенным на металлическое кольцо. При натирании стекла бумажки притягивались к нему, затем отскакивали, вновь притягивались и т.д. Эти опыты Ньютон проводил еще в 1675 г.

2. УДАРОМ (резиновый шланг резко ударить о массивный предмет и поднести к электроскопу)

3.ТРЕНИЕМ

Гильберт указывает, как производится электризация трением: “Их натирают телами, которые не портят их поверхность и наводят блеск, например, жестким шелком, грубым немарким сукном и сухой ладонью. Трут так же янтарь о янтарь, об алмаз, о стекло и многое другое. Так обрабатываются электрические тела”.

Тела трут друг о друга, чтобы увеличить площадь их соприкосновения.

Опыт 2. Положите на бумажную полоску полиэтиленовую пленку и сильно прижмите полоски рукой. Разведите полоски, а затем приблизьте их друг к другу.

Полоски ______________________.

Вывод: тела можно наэлектризовать ___трением ___________.

В электризации участвуют всегда ____два _______ тела.

электризуются после разделения_____оба _____ тела.

Мы сделали очень важный вывод:

    Один из видов электризации - это трение тел.

    При этом участвуют всегда два (или больше) тела.

    Электризуются оба тела.

Как вы заметили, в электризации всегда участвуют два тела: янтарь с мехом; стекло с шелком и т.д. При этом электризуются оба тела.

4 ученик: Электризация наблюдается также при трении жидкостей о металлы в процессе течения, а также разбрызгивания при ударе. Впервые электризация жидкости при дроблении была замечена у водопадов в Швейцарии в 1786 году. С 1913 года явление получило название баллоэлектрического эффекта.

Покоритель Джомолунгмы Н. Тенсинг в 1953 году в районе южного седла этой горной вершины на высоте 7,9 км над уровнем моря при 30 0 С и сухом ветре до 25 м/с наблюдал сильную электризацию обледеневших брезентовых палаток, вставленных одна в другую. Пространство между палатками было наполнено многочисленными электрическими искрами. Движение лавин в горах в безлунные ночи иногда сопровождается зеленовато-желтым свечением, благодаря чему лавины становятся видимыми.

Все наэлектризованные тела притягивают к себе другие тела, например листочки бумаги. По притяжению нельзя отличить электрический заряд стеклянной палочки, потертой о шелк, от заряда полученной от эбонитовой палочки, потертой о мех. Ведь обе наэлектризованные палочки притягивают к себе кусочки бумаги.

5 ученик: Шарль Дюфэ (1698-1739) установил два рода электрических взаимодействий: притяжение и отталкивание. Сначала он установил, что “наэлектризованные тела притягивают ненаэлектризованные и сейчас же их отталкивают, как только они наэлектризуются вследствие соседства или соприкосновения с наэлектризованными телами”. В дальнейшем он открыл “другой принцип, более общий и более замечательный, чем предыдущие”. “Этот принцип, - продолжает Дюфэ, - состоит в том, что существует электричество двух родов, в высокой степени отличной один от другого: один род я называю “стеклянным” электричеством, другой -“смоляным”…Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное. Так, например, тело, наэлектризованное стеклянным электричеством, отталкивает все тела со стеклянным электричеством, и, обратно, оно притягивает тела со смоляным электричеством. Точно так же смоляное отталкивает смоляное и притягивает стеклянное”.

Учитель: Итак, электрический заряд? это мера свойств заряженных тел взаимодействовать друг с другом.

Какие виды взаимодействия вы знаете? (притяжение и отталкивание)

Условно заряды назвали положительный (на стекле потертым о шелк) и отрицательным (на янтаре, эбоните, сере, резине потертых о шерсть).

Положительный заряд в физике обозначается +q или q

Отрицательный заряд - -q

6 ученик: Представление о положительном и отрицательном зарядах, было введено в 1747 году Франклином. Эбонитовая палочка от электризации о шерсть и мех заряжается отрицательно, потому что отрицательным назвал заряд, образующийся на каучуковой палочке В.Франклин. А эбонит это каучук с большой примесью серы. Заряд, который образуется на стеклянной палочке, потертой о шелк, Франклин назвал положительным. Но во времена Франклина существовал только натуральный шелк и натуральный мех. Сегодня порой трудно бывает отличить натуральный шелк и мех от искусственного. Даже разные сорта бумаги электризуют эбонит по разному. Эбонит приобретает отрицательный заряд от соприкосновения с шерстью (мехом) и капроном, но положительный от соприкосновения с полиэтиленом.

Учитель: Давайте посмотрим как взаимодействуют заряженные тела

Видеодемонстрация.

Итак, тела, имеющие электрические заряды одного знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются. (см. опорный конспект)

По способности проводить электрические заряды все тела делятся на проводники и непроводники (диэлектрики).

Откройте учебник на стр.62-63, найдите определение проводников и диэлектриков.

Проводники: металлы, почва, водные растворы или расплавы электролитов.

Диэлектрики: Пластмассы, воздух, газы, стекло, резина, шелк, фарфор, керосин, капрон и т.д.

Какие тела называются изоляторами

Тела изготовленные из диэлектриков называются - изоляторами

Первичный контроль: Сейчас мы выполним небольшое тестовое задание, которое проверите сами друг у друга и сразу поставите оценки. На выполнение дается пять минут.

Вариант 1

1. Стекло при трении о шелк заряжается:

    положительно

    отрицательно.

2. Если наэлектризованное тело отталкивается от эбонитовой палочки, потертой о мех, то оно заряжено:

    положительно;

    отрицательно.

3. Три пары легких шариков подвешены па нитях. Какая пара шариков не заряжена?

4. Какая пара шариков (см. тот же рисунок) имеет одноименные заряды?

5. Какая пара шариков (см. тот же рисунок) имеет разноименные заряды?

Вариант 2.

1. При натирании о мех каучук электризуется:

    положительно;

    отрицательно.

2. Если заряженное тело притягивается к стеклянной палочке, натертой о шелк, то оно заряжено:

    положительно;

    отрицательно.

3. Три пары легких шариков подвешены на нитях. Какая пара шариков имеет одноименные заряды?

4. Какая пара шариков имеет разноименные заряды (см. тот же рисунок)?

5. Какая пара шариков не заряжена (см. тот же рисунок)?

Ответы:

1 вариант АБАВБ

2 вариант ББАВБ

Закрепление: Послушайте пословицу и ответьте на вопросы:

    О каком физическом явлении (понятии, законе) в ней говориться?

    Каков физический смысл пословицы? Верна ли она с точки зрения физики?

    В чем житейский смысл этой пословицы?

ПОСЛОВИЦЫ

Как соломинка и янтарь (персидская)

Что шелкова ленточка, к стене льнет (русская)

КАЧЕСТВЕННЫЕ ЗАДАЧИ

    Какие меры предосторожности надо принять, чтобы при переливании бензина из одной цистерны в другую он не воспламенился? (Во время перевозки и при переливании бензин электризуется, может возникнуть искра, и бензин вспыхнет. Чтобы этого не произошло, обе цистерны и соединяющий их трубопровод заземляют).

    Для заземления цистерны бензовоза к ней прикрепляют стальную цепь, нижний конец которой несколькими звеньями касается земли. Почему такой цепи нет у железнодорожной цистерны? (Потому, что железнодорожная цистерна заземлена через колеса рельса)

    Может ли одно и тоже тело, например эбонитовая палочка, при трении электризоваться то отрицательно, то положительно? (Может, в зависимости от того, чем ее натирают)

    Если вынуть один капроновый чулок из другого и держать каждый в руке на воздухе, то они расширяются. Почему? (При трении чулки электризуются. Одноименные заряды отталкиваются. Поэтому поверхность чулка раздувается.)

Электрические заряды выполняют так много полезных дел, что всех их и не перечислить.

Например, копчение это пропитывание продукта древесным дымом. Частицы дыма не только придают продуктам особый вкус, но и предохраняют их от порчи. При электрокопчении частицы коптильного дыма заряжают положительно, а к отрицательным электродам подсоединяют, например, тушки рыбы. Заряженные частицы дыма оседают на поверхности тушки и частично поглощаются. Весь процесс электрокопчения продолжается несколько минут.

Итог урока. Выставление оценок

Зачем одевают кольцо золотое
На палец, когда обручаются двое?-
Меня любопытная дева спросила.
Не став пред вопросом в тупик,
Ответил я так собеседнице милой:
Владеет любовь электрической силой,
А золото - проводник!

Физика! Какая емкость слова!
Физика для нас не просто звук!
Физика – опора и основа
Всех без исключения наук!

  • объяснить учащимся механизм электризации тел,
  • развивать исследовательские и творческие навыки,
  • создать условия для повышения интереса к изучаемому материалу,
  • помочь учащимся осмыслить практическую значимость, полезность приобретаемых знаний и умений.

Оборудование:

  • электрофорная машина,
  • электрометр,
  • султанчики,
  • эбонитовые и стеклянные палочки,
  • шелковые и шерстяные ткани,
  • электроскоп,
  • соединительные провода, дистиллированная вода, парафиновые шарики,
  • алюминиевые и бумажные цилиндрики, шелковые нити (крашеные и некрашеные).

На доске: Проводники, изоляторы, смоляной и стеклянный заряды.

  • Электроотрицательный атом.
  • Электроположительный атом.
  • Электризация: - соприкосновение
    • - влияние
    • - фотоэффект (под действием света).
  • Отталкивание, притяжение.
  • Заряды в наэлектризованных изоляторах и проводниках.
  • ХОД УРОКА

    1. Вступительное слово учителя

    В повседневной жизни человек наблюдает огромное количество явлений и, возможно, гораздо большее количество явлений остаются незамеченными.

    Существование этих явлений “толкает” человека на их поиски, открытия и объяснения этих явлений. Такое явление как падение тел на землю у человека не вызывает уже никакого удивления. Но, следует заметить, что земля и данное тело взаимодействуют, не касаясь друг друга. Они взаимодействуют между собой самым известным действием – гравитационным притяжением (гравитационными полями). Мы привыкли, что тела действуют друг на друга, в основном, непосредственно. Есть еще и такие явления, известные еще древним грекам, которые каждый раз вызывают интерес у детей и взрослых. Это электрические явления.

    Примеры электрических взаимодействий весьма разнообразны и не так хорошо знакомы нам с детского возраста как, например, притяжение Земли. Этот интерес объясняется и тем, что здесь мы имеем большие возможности создания, изменения экспериментальных условий, обходясь несложным оборудованием.

    Проследим за ходом выявления и изучения некоторых явлений.

    2. Историческая справка (докладывает ученик)

    Греческий философ Фалес Милетский, живший в 624–547 гг. до н.э., открыл, что янтарь, потертый о мех, приобретает свойство притягивать мелкие предметы – пушинки, соломинки и т.д. Позже такое явление было названо электризацией.

    В 1680 году немецкий ученый Ото фон Герике построил первую электрическую машину и открыл существование электрических сил отталкивания и притяжения.

    Первым ученым, аргументировано отстаивавшим точку зрения о существовании двух видов зарядов, был француз Шарль Дюфе (1698–1739). Электричество, которое появляется при натирании смолы, Дюфе назвал смоляным, а электричество, которое появляется при натирании стекла – стеклянным. В современной терминологии “смоляное” электричество соответствует отрицательным зарядам, а “стекольное” положительным. Самым убедительным оппонентом теории существования двух видов зарядов был знаменитый американец Бенджамин Франклин (1706 - 1790). Он впервые ввел понятие о положительных и отрицательных зарядах. Наличие этих зарядов у тел он объяснил избытком или недостатком в телах некоей общей электрической материи. Это особая материя, впоследствии названная “флюидом Франклина”, по его мнению, обладала положительным зарядом. Таким образом, при электризации тело либо приобретает, либо теряет положительные заряды. Нетрудно догадаться, что Франклин перепутал положительные заряды с отрицательными и тела обмениваются электронами (которые несут отрицательный заряд). Во многом благодаря этому факту впоследствии ошибочно за направление тока в металлах было принято направление движения положительного заряда.

    Англичанин Роберт Симмер (1707 - 1763), обратил внимание на необычное поведение своих шерстяных и шелковых чулков. Он носил две пары чулок: черные шерстяные для тепла и белые шелковые для красоты. Снимая с ноги сразу оба чулка и выдергивая один из другого, он наблюдал, как оба чулка раздуваются, принимая форму ноги и притягиваясь друг к другу. Однако чулки одинакового цвета отталкивались, а разных цветов притягивались. Основываясь на своих наблюдениях, Симмер стал рьяным сторонником теории двух зарядов, за что был прозван “раздутым философом”.

    Выражаясь современным языком, его шелковые чулки имели отрицательные, а шерстяные – положительные заряды.

    3. Явление электризации тел

    Учитель: Какое тело называется заряженным?

    Ученик: Если тело может притягивать или отталкивать другие тела, то оно обладает электрическим зарядом. О таком теле говорят, что оно заряжено. Заряд – свойство тел, – способность к электромагнитному взаимодействию.

    (Демонстрация действия заряженного тела).

    Учитель: Что называется электроскопом?

    Ученик: Прибор, который позволяет обнаружить наличие у тела заряда и оценить его, называется электроскопом.

    Учитель: Как устроен и работает электроскоп?

    Ученик: Основной частью электроскопа является проводящий изолированный стержень, на котором закрепляется стрелка, способная свободно вращаться. При появлении заряда стрелка и стержень заряжаются зарядами одного знака и поэтому они, отталкиваясь, создают угол отклонения, значение которого пропорционально полученному заряду.

    (Демонстрация работы прибора).

    Учитель: Электризация тел может происходить в различных случаях, т.е. существуют различные способы электризации тел:

    • трением,
    • ударом,
    • соприкосновением,
    • влиянием,
    • под действием световой энергии.

    Рассмотрим некоторые из них.

    Ученик: Если потереть эбонитовую палочку о шерсть, то эбонит получит отрицательный заряд, а шерсть – положительный заряд. Наличие этих зарядов обнаруживается с помощью электроскопа. Для этого надо коснуться стержня электроскопа эбонитовой палочкой или шерстяной тряпкой. При этом часть заряда испытуемого тела переходит к стержню. Кстати, в этом случае происходит кратковременный электрический ток. Рассмотрим взаимодействие двух бумажных подвешенных на нити гильз, заряженных один - от эбонитовой палочки, другой – от шерстяной тряпочки. Заметим, что они притягиваются друг к другу. Значит, тела с разноименными зарядами притягиваются. Не каждое вещество может передать электрические заряды. Вещества, через которые могут передаваться заряды, называют проводниками, а вещества, через которые заряды не передаются, называют непроводниками – диэлектриками (изоляторами). Это можно выяснить также с помощью электроскопа, соединяя его с заряженным телом, веществами различного рода.

    Белая шелковая нить не проводит заряд, а крашенная шелковая нить проводит. (Рис. А)

    Белая шелковая нить Крашеная шелковая нить

    Разделение зарядов и возникновение двойного электрического слоя в местах их соприкосновения, всяких двух различных тел, изоляторов или проводников, твердых тел, жидкостей или газов. Описывая электризацию трением, мы всегда брали для опыта только хорошие изоляторы – янтарь, стекло, шелк, эбонит. Почему? Потому что в изоляторах заряд остается на том месте, где он возник и не может через всю поверхность тела перейти на другие соприкасающиеся с ним тела. Опыт не удается, если оба трущиеся тела будут металлами с изолированными ручками, так как мы не можем отделить их друг от друга сразу по всей поверхности.

    Вследствие неизбежной шероховатости поверхности тел, в момент отрыва всегда остаются какие-то последние точки соприкосновения – “мостики”, через которые в последний момент сбегают все избыточные электроны и оба металла оказываются не заряженными.

    Учитель: Теперь рассмотрим электризацию соприкосновением.

    Ученик: Если мы погрузим шарик из парафина в дистиллированную воду и потом вынем из воды то и парафин, и вода окажутся заряженными. (Рис.B)

    Электризация воды и парафина произошла без всякого трения. Почему? Оказывается, что при электризации трением мы лишь увеличиваем площадь соприкосновения и уменьшаем расстояние между атомами трущихся тел. В случае вода – парафин всякие шероховатости не мешают сближению их атомов.

    Значит, трение не является обязательным условием для электризации тел. Существует другая причина, по которой происходит электризация в этих случаях.

    Ученик: На электризации тела через влияние основана работа электрофорной машины. Наэлектризованное тело может взаимодействовать с любым электрически нейтральным проводником. При сближении этих тел, за счет электрического поля заряженного тела во втором теле происходит перераспределение зарядов. Ближе к заряженному телу располагаются заряды по знаку противоположные заряженному телу. Дальше от заряженного тела в проводнике (гильза или цилиндр) располагаются одноименные с заряженным телом заряды.

    Так как расстояние до положительных и отрицательных зарядов в цилиндре от шара разное, то преобладают силы притяжения и цилиндр отклоняется в сторону наэлектризованного тела. Если же дальней стороны тела от заряженного шара коснуться рукой, то тело прыгнет к заряженному шару. Это происходит из-за того, что при этом электроны перескакивают к руке, уменьшая тем самым силы отталкивания. Рис. D.

    Учитель: Как долго сохранится такое положение? (Рис.D)

    Ученик: Через несколько секунд произойдет деление зарядов и цилиндр оторвется от шара. Характер их в дальнейшем будет зависеть от значения суммы их зарядов. Если их сумма равна нулю, то их силы взаимодействия равны нулю. Если Fp < 0, то они оттолкнутся друг от друга, но на меньший угол .

    Учитель: Рассмотрим электризацию тел под действием световой энергии (фотоэффект).

    Ученик: Направим на цинковый диск (пластину) прикрепленную к электрометру сильный световой луч. Под действием световой энергии из пластины вылетает некоторое количество электронов. Сама пластина оказывается заряженным положительно. О величине этого заряда можно судить по углу отклонения стрелки электрометра. (Рис. Е)

    Учитель: Мы убедились в том, что при уменьшении расстояния между атомами явление электризации происходит эффективнее. Почему?

    Ученик: Потому что при этом увеличиваются кулоновские силы притяжения между ядром атома и электроном соседнего атома.

    Перескакивает тот электрон, который слабо связан со своим ядром.

    Учитель: Рассмотрим как располагаются химические элементы в периодической системе химических элементов.

    Ученик: Существуют около 500 форм Периодической системы химических элементов. Из них в одной, 18-клеточной, элементы размещены согласно строению электронных оболочек их атомов и приведена в справочнике по общей и неорганической химии Н.Ф.Стась.

    С периодическим законом согласуются свойства и характеристики атомов, в том числе электроотрицательность и валентность элементов.

    Радиусы атомов и ионов в периодах уменьшаются, т.к. электронная оболочка атома или иона каждого последующего элементов в периоде по сравнению с предыдущим уплотняется из-за увеличения заряда ядра и увеличения притяжения электронов к ядру.

    Радиусы в группах увеличиваются, т.к. атом (ион) каждого элемента отличается от вышестоящего появлением нового электронного слоя. При превращении атома в катион (положительный ион) атомные радиусы резко уменьшаются, а при превращении атома в анион (отрицательный ион) атомные радиусы почти не изменяются.

    Энергия, затрачиваемая на отрыв электрона от атома и превращение в положительный ион называется ионизацией. Напряжение, при котором происходит ионизация, называют ионизационным потенциалом.

    Ионизационный потенциал – физическая характеристика, является показателем металлических свойств элемента: чем он меньше, тем легче отрывается электрон от атома и тем сильнее выражены металлические (восстановительные) свойства элемента.

    Таблица 1. Потенциалы ионизации атомов (эВ/атом) элементов второго периода

    Элемент J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    Литий 5,39 75,6 122,4 --- --- --- --- ---
    Бериллий 9,32 18,2 158,3 217,7 --- --- --- ---
    Бор 8,30 25,1 37,9 259,3 340,1 --- --- ---
    Углерод 11,26 24,4 47,9 64,5 392,0 489,8 --- ---
    Азот 14,53 29,6 47,5 77,4 97,9 551,9 666,8 ---
    Кислород 13,60 35,1 54,9 77,4 113,9 138,1 739,1 871,1
    Фтор 17,40 35,0 62,7 87,2 114,2 157,1 185,1 953,6
    Неон 21,60 41,1 63,0 97,0 126,3 157,9

    Учитель: Существует такое понятие, как электроотрицательность, которое играет определяющую роль при электризации тел. От него зависит знак заряда, получаемый элементом при электризации. Электроотрицательность – что это такое?

    Ученик: Электроотрицательностью называется свойство химического элемента притягивать к своему атому электроны от атомов других элементов, с которыми элемент образует химическую связь в соединениях.

    Электроотрицательность элементов определяли многие ученые: Полинг, Олред и Рохов. Они пришли к выводу, что электроотрицательность элементов в периодах увеличивается, а в группах уменьшается подобно ионизационным потенциалам. Чем меньше значение ионизационного потенциала, тем больше вероятность потери электрона и превращения в положительный ион или положительно заряженного тела, если тело однородное.

    Таблица 2. Относительная электроотрицательность (ЭО) элементов первого, второго и третьего периодов.

    Элемент ЭО Элемент ЭО Элемент ЭО
    По Полингу По Олреду-Рохову По Полингу По Олреду-Рохову По Полингу По Олреду-Рохову
    H 2,1 2,20 Li 1,0 0,97 Na 0,9 1,01
    Be 1,5 1,17 Mg 1,2 1,23
    B 2,0 2,07 Al 1,5 1,47
    C 2,5 2,50 Si 1,8 1,74
    N 3,0 3,07 P 2,1 2,06
    O 3,5 3,50 S 2,5 2,44
    F 4,0 4,10 Cl 3,0 2,83

    Учитель: Из всего этого можно сделать следующий вывод: если взаимодействуют два однородных элемента из одинакового периода, то заранее можно сказать, который из них окажется заряженным положительно, а который отрицательно.

    Вещество, атом которого имеет большую валентность (больше номер группы) по отношению к атому другого вещества, окажется заряженным отрицательно, а второе вещество положительно.

    Если взаимодействуют однородные вещества с одной группы, то вещество с меньшим номером периода или ряда окажется заряженным отрицательно, а второе взаимодействующее тело – положительно.

    Учитель: На этом уроке мы попытались раскрыть механизм электризации тел. Мы выяснили, по какой причине тело после электризации получает заряд того или иного знака, т.е. ответили на главный вопрос – почему? (как, например, раздел механики “Динамика” отвечает на вопрос: почему?)

    Теперь перечислим положительные и отрицательные значения электризации тел.

    Ученик: Статическое электричество может иметь негативное влияние:

    Притяжение волос к расческе;

    Отталкивание волос друг от друга, подобно заряженному султанчику;

    Прилипание к одежде различных мелких предметов;

    На ткацких фабриках прилипание нитей к бобинам, что ведет к частым обрывам.

    Накопленные заряды могут вызвать электрические разряды, которые могут иметь различные последствия:

    Молния (приводит к пожарам);

    Разряд в бензовозе приведет к взрыву;

    При заправке горючей смесью любой разряд может привести к взрыву.

    Чтобы снять статическое электричество, заземляют все устройства и оборудование и даже бензовоз. Используют специальное вещество антистатик.

    Ученик: Статическое электричество может принести пользу:

    При окраске мелких деталей краскораспылителем, краску и тело заряжают противоположными зарядами, что приводит к большой экономии краски;

    В лечебных целях используют статический душ;

    Для очистки воздуха от пыли, сажи, кислотных и щелочных паров используются электростатические фильтры;

    Для копчения рыбы в специальных электромерах (рыба заряжается положительно, а электроды отрицательно, копчение в электрическом поле происходит в десятки раз быстрее).

    Подведение итогов занятия .

    Учитель: Давайте вспомним цель нашего занятия и сделаем краткие выводы.

    • Что на уроке было новым?
    • Что было интересным?
    • Что на уроке было важным?

    Выводы учащихся:

    1. Явления, в которых тела приобретают свойства притягивать другие тела, называют электризацией.
    2. Электризация может происходить соприкосновением, через влияние, при облучении светом.
    3. Вещества бывают: электроотрицательные и электроположительные.
    4. Зная принадлежность веществ, можно предугадать какие заряды получат взаимодействующие тела.
    5. Трение лишь увеличивает площадь соприкосновения.
    6. Вещества бывают проводниками и непроводниками электричества.
    7. Изоляторы накапливают заряды там, где они образовались (в местах соприкосновения).
    8. В проводниках заряды распределяются равномерно по всему объему.

    Обсуждение и выставление оценок участникам урока.

    Литература.

    1. Г.С.Ландсберг. Элементарный учебник физики. Т.2. – М., 1973.
    2. Н.Ф.Стась. Справочник по общей и неорганической химии.
    3. И.Г.Кириллова. Книга для чтения по физике. М., 1986.

    Развлекались ли вы в детстве таким нехитрым фокусом: если потереть о сухие волосы надутый воздушный шарик, а потом приложить его к потолку, то он как бы «прилипает»?

    Нет? Попробуйте, это забавно. Не менее забавно потом торчат во все стороны волосы. Такой же эффект получается иногда при расчесывании длинных волос. Они торчат и липнут к расческе. Ну и всем знакомы ситуации, когда походив в шерстяных или синтетических вещах, прикасаешься к чему-то или к кому-то и чувствуешь резкий укол. В таких случаях говорят – бьешься током. Все это примеры электризации тел. Но откуда возникает электризация, если мы все прекрасно знаем, что электрический ток живет в розетках и батарейках, а не в волосах и одежде?

    Явление электризации тел: способы электризации

    Явление электризации тел начинают изучать в восьмом классе. И начинают изучение с рассмотрения электризации тел при соприкосновении. Для этого на уроках проводят опыты с применением простейших способов электризации тел трением эбонитовой или стеклянной палочки о мех или шелк. Вы можете проделать такие опыты самостоятельно, вместо палочки можно взять пластмассовую ручку или линейку. Потрите ручку о шерсть или мех, а затем поднесите к мелко нарезанным кусочкам бумаги, соломинкам или шерстинкам. Вы увидите, как эти кусочки притягиваются к ручке. То же произойдет с тонкой струей воды, если поднести к ней наэлектризованную ручку.

    Два рода электрических зарядов

    Впервые подобные эффекты были обнаружены с янтарем , потому и были названы электрическими от греческого слова «электрон» – янтарь. И способности тел притягивать другие предметы после соприкосновения, а натирание – это лишь способ увеличить площадь соприкосновения, назвали электризацией или приданием телу электрического заряда. Опытным путем установили, что существует два рода электрических зарядов. Если натереть стеклянную и эбонитовую палочки, то они будут притягиваться между собой. А две одинаковые – отталкиваться. И это происходит не потому, что они не нравятся друг другу, а потому, что у них разные электрические заряды. Электрический заряд стеклянной палочки условились называть положительным, а эбонитовой – отрицательным. Обозначаются они, соответственно, знаками «+» и «-». Опять-таки, эти названия взяты не в смысле того, то один вид заряда хороший, а второй плохой. Имеется в виду, что они противоположны друг другу.

    В наше время широко используют легко электризующиеся предметы – пластмассы, синтетические волокна, нефтепродукты. При трении таких веществ возникает электрический заряд, который иногда бывает как минимум неприятен, как максимум он может быть вреден. В промышленности с ними борются специальными средствами. В быту же самый простой способ избавиться от электризации – это смочить наэлектризованную поверхность. Если воды под рукой нет, то поможет прикосновение к металлу или земле. Эти тела снимут электризацию. А чтобы вообще не ощущать на себе эти неприятные эффекты рекомендуется пользоваться антистатиками.