Болезни Военный билет Призыв

Какие частицы переносят слабое взаимодействие. Слабое и сильное ядерное взаимодействия

Фейнманивська диаграмма бета-распада нейтрона на протон, электрон и электронное антинейтрино через промежуточный W –бозон – одна из четырех фундаментальных физических взаимодействий между элементарными частицами наряду с гравитационным, электромагнитным и сильным. Наиболее известным ее проявлением является бета-распад и связанная с ним радиоактивность. Взаимодействие названа слабой, поскольку напряженность соответствующего ей поля в 10 13 меньше, чем в полей, удерживающих вместе ядерные частицы (нуклоны и кварки) и в 10 10 меньше по кулоновское на этих масштабах, однако значительно сильнее чем гравитационная. Взаимодействие имеет короткий радиус действия и проявляется лишь на расстояниях порядка размера атомного ядра.
Первую теорию слабого взаимодействия предложил Энрико Ферми в 1930. При разработке теории он использовал гипотезу Вольфганга Паули о существовании новой в то время элементарной частицы нейтрино.
Слабое взаимодействие описывает те процессы ядерной физики и физики элементарных частиц, которые происходят относительно медленно, напротив быстрым процессам, обусловленным сильным взаимодействием. Например, период полураспада нейтрона составляет примерно 16 мин. – Вечность по сравнению с ядерными процессами, для которых характерен время составляет 10 -23 с.
Для сравнения заряженные пионы? ± распадаются через слабое взаимодействие и имеют время жизни 2.6033 ± 0.0005 x 10 -8 c, тогда как нейтральный пион? 0 распадается на два гамма-кванта через электромагнитное взаимодействие и имеет время жизни 8.4 ± 0.6 x 10 -17 c.
Другая характеристика взаимодействия – длина свободного пробега частиц в веществе. Частицы, которые взаимодействуют через электромагнитное взаимодействие – заряженные частицы, гамма-кванты, можно задержать железной плитой толщиной в несколько десятнив сантиметров. Тогда как нейтрино, взаимодействующего лишь слабо, проходит, не столкнувшись ни разу, через слой металла толщиной миллиард километров.
В слабом взаимодействии участвуют кварки и лептоны, включая нейтрино. При этом изменяется аромат частиц, т.е. их тип. Например, в результате распада нейтрона один из его d-кварков превращается в u-кварк. Нейтрино уникальны тем, что взаимодействуют с другими частицами только за слабой, и еще слабую гравитационным взаимодействием.
По современным представлениям, сформулированными в Стандартной модели, слабое взаимодействие переносится калибровочные W-и Z-бозонами, которые были обнаружены на ускорителях в 1982. Их массы составляют 80 и 90 масс протона. Обмен виртуальными W-бозонами называют заряженным током, обмен Z-бозонами – нейтральным током.
Вершины диаграмм Фейнмана, описывающие возможные процессы с участием калибровочных W-и Z-бозонов можно разделить на три типа:

Лептон может випроминиты или поглотить W-бозон, и превратиться в нейтрино;
кварк может випроминиты или поглотить W-бозон, и изменить свой аромат, превратившись в суперпозицию других кварков;
лептон или кварк может поглотить или випроминиты Z-бозон

Способность частицы до слабого взаимодействия описывается квантовым числом, что называется слабый изоспин. Возможные значения изоспину для частиц, которые могут обмениваться W и Z бозонами ± 1 / 2. Именно эти частицы взаимодействуют через слабое взаимодействие. Не взаимодействуют за слабой взаемоидию частицы с нулевым слабым изоспином, для которых процессы обмена W и Z бозонами невозможны. Слабый изоспин сохраняется в реакциях между элементарными частицами. Это означает, что суммарный слабый изоспин всех частиц, участвующих в реакции, остается неизменным, хотя типы частиц могут при этом меняться.
Особенностью слабого взаимодействия является то, что она нарушает четность, поскольку способность к слабого взаимодействия через заряженные токи имеют только фермионы с левой хиральность и античастицы фермионов с правой хиральность. Несохранение четности в слабом взаимодействии открыли Янг Чжэньнин и Ли Чжэндао, за что получили Нобелевскую премию по физике за 1957 год. Причину несохранение четности видят в спонтанном нарушении симметрии. В рамках Стандартной модели за нарушение симметрии соответствует гипотетическая частица – бозон Хиггса. Это единственная частичка обычная модели, которая еще не была обнаружена экспериментально.
При слабом взаимодействии нарушается также CP симметрия. Это нарушение было выявлено экспериментально в 1964 году в экспериментах с каона. Авторы открытия Джеймс Кронин и Вал Фитч награждены Нобелевской премией за 1980. Несохранение CP-симметрии происходит гораздо реже, чем нарушение четности. Оно означает также, поскольку сохранение CPT-симметрия опирается на фундаментральни физические принципы – преобразования Лоренца и близкодействия, возможность нарушения T-симметрии, т.е. неинвариантнисть физических процессов по изменению направления времени.

В 1969 была построена единая теория электромагнитного и слабого ядерного взаимодействия, согласно которой при энергиях советов 100 ГэВ, что соответствует температуре 10 15 К разница между электромагнитными и слабыми процессами исчезает. Экспериментальная проверка единой теории электрослабого и сильного ядерного взаимодействия требует увеличения энергии ускорителей в сто миллиардов раз.
Теория электрослабого взаимодействия построена на основе группы симметрии SU (2).
Несмотря на малую величину и короткодию, слабое взаимодействие выполняет очень важную роль в природе. Если бы удалось «выключить» слабое взаимодействие, то Солнце погасло бы, поскольку стало бы невозможным процесс превращения протона в нейтрон, позитрон и нейтрино, в результате которого 4 протона превращаются в 4 He два позитроны и два нейтрино. Этот процесс служит основным источником энергии для Солнца и большинства звезд (см. Водородный цикл). Процессы слабого взаимодействия важны для эволюции звезд, поскольку они обусловливают потери энергии очень горячих звезд во взрывах сверхновых с образованием пульсаров и т.д. Если бы не было слабого взаимодействия в природе были бы стабильны и широко распространены в обычной веществе мюоны, пи-мезоны и другие частицы. Столь важная роль слабого взаимодействия повязна с тем, что она не подчиняется ряду запретов, характерных для сильного и елетромагнитнои взаимодействий. В частности, слабое взаимодействие превращает заряженные лептоны в нейтрино, а кварки одного аромата – в кварки другое.

Слабое взаимодействие

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.

У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики - закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Об их возникновении было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.

Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микромиром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.

Сильное взаимодействие

Последнее в ряду фундаментальных взаимодействий - сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.

К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация слишком слаба и не может это обеспечить; очевидно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимодействия, радиус действия новой силы оказался очень малым: сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10-13 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 60-х гг., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков.

Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - малого радиуса (сильное и слабое). Мир физических процессов развертывается в границах этих двух полярностей и является воплощением единства предельно малого и предельно большого - близкодействия в микромире и дальнодействия во всей Вселенной.

Слабое взаимодействие, или слабое ядерное взаимодействие - одно из четырех фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвертого из фундаментальных взаимодействий, гравитационного. Это взаимодействие является наиболее слабым из фундаментальных взаимодействий, экспериментально наблюдаемых в распадах элементарных частиц, где принципиально существенными являются квантовые эффекты. Квантовые проявления гравитационного взаимодействия никогда не наблюдались. Слабое взаимодействие выделяется с помощью следующего правила: если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.

Типичный пример слабого взаимодействия - это бета-распад нейтрона

где n - нейтрон, p - протон, e- - электрон, e - электронное антинейтрино.

Следует, однако, иметь в виду, что указанное выше правило совсем не означает, что любой акт слабого взаимодействия обязан сопровождаться нейтрино или антинейтрино. Известно, что имеет место большое число безнейтринных распадов. В качестве примера можно отметить процесс распада лямбда-гиперона на протон p и отрицательно заряженный пион. По современным представлениям нейтрон и протон не являются истинно элементарными частицами, а состоят из элементарных частиц, называемых кварками.

Интенсивность слабого взаимодействия характеризуется константой связи Ферми GF. Константа GF размерна. Чтобы образовать безразмерную величину, необходимо использовать какую-нибудь эталонную массу, например массу протона mp. Тогда безразмерная константа связи будет

Видно, что слабое взаимодействие гораздо интенсивнее гравитационного.

Слабое взаимодействие в отличие от гравитационного является короткодействующим. Это означает, что слабое взаимодействие между частицами начинает действовать, только если частицы находятся достаточно близко друг к другу. Если же расстояние между частицами превосходит некоторую величину, называемую характерным радиусом взаимодействия, слабое взаимодействие не проявляет себя. Экспериментально установлено, что характерный радиус слабого взаимодействия порядка 10-15 см, то есть слабое взаимодействие, сосредоточен на расстояниях меньше размеров атомного ядра. Хотя слабое взаимодействие существенно сосредоточено внутри ядра, оно имеет определенные макроскопические проявления. Кроме того, слабое взаимодействие играет важную роль в так называемых термоядерных реакциях, ответственных за механизм энерговыделения в звездах. Удивительнейшим свойством слабого взаимодействия является существование процессов, в которых проявляется зеркальная асимметрия. На первый взгляд кажется очевидным, что разница между понятиями левое и правое условна. Действительно, процессы гравитационного, электромагнитного и сильного взаимодействия инвариантны относительно пространственной инверсии, осуществляющей зеркальное отражение. Говорят, что в таких процессах сохраняется пространственная четность P. Однако экспериментально установлено, что слабые процессы могут протекать с несохранением пространственной четности и, следовательно, как бы чувствуют разницу между левым и правым. В настоящее время имеются твердые экспериментальные доказательства, что несохранение четности в слабых взаимодействиях носит универсальный характер, оно проявляет себя не только в распадах элементарных частиц, но и в ядерных и даже атомных явлениях. Следует признать, что зеркальная асимметрия представляет собой свойство Природы на самом фундаментальном уровне.


Прочие статьи:

Питание
Охотятся касатки маленькими группами, однако когда встречается большой косяк лосося, они разделяются и охотятся поодиночке. При этом они подают сигналы, для поддержания связи, ведь в азарте охоты касатки иногда отбиваются на несколько мил...

Очаги расообразования и их место в расогенетическом процессе
Большое число районов с малой плотностью населения, если она еще сопровождается малопроходимыми географическими барьерами или эндогамией, образуют области дискретного антропологического покрова. Дискретность антропологического покрова, о...

Мегамир
Космические объекты. Расстояние измеряется световыми годами, время – миллионами и миллиардами лет. ...

Слабое взаимодействие и элементы
теории электрослабого взаимодействия

Урок-лекция объяснения нового материала, 2 ч. 11-й класс

Вы уже знаете, что все силы в природе сводятся к описанию гравитационного, электромагнитного и сильного взаимодействи й или их совокупностей. Гравитационное взаимодействие присуще всем материальным объектам. К электромагнитному сводятся не только взаимодействие между заряженными телами и частицами, но и упругие, вязкие, молекулярные, химические и другие взаимодействия. Сильное взаимодействие удерживает нуклоны в атомных ядрах и определяет различные превращения частиц друг в друга.

Сегодня мы рассмотрим ещё один, 4-й, тип фундаментальных взаимодействий, несводимый ни к одному из названных, – слабое взаимодействие . Узнаем поразительный факт, что на малых расстояниях слабое взаимодействие становится неотличимым от электромагнитного.

Слабое взаимодействие. Слабым это взаимодействие называется неслучайно. Во-первых, его проявления редко встречаются в нашей повседневной жизни, тогда как мы давно привыкли к различным проявлениям гравитационного и электромагнитного взаимодействий (например, падение всех тел на Землю, трение, молния и др.), к результатам действия ядерных сил, обеспечивающих стабильность окружающего нас вещества. Во-вторых, это взаимодействие действительно является слабым, т.к. его интенсивность при низких энергиях, не превышающих 1 ГэВ – энергии покоя протона, – в миллиарды раз меньше, чем интенсивность сильного и электромагнитного взаимодействий.

Кроме того, опыт показывает, что сильное и электромагнитное взаимодействия могут обеспечивать как различные превращения частиц, так и целостность какого-то материального объекта (например, сильное взаимодействие обеспечивает целостность ядра, электромагнитное взаимодействие – целостность кристаллической решётки). Силы слабого взаимодействия не хватает, чтобы удерживать частицы друг около друга (т.е. образовывать связанные состояния). Оно может проявляться только при распадах и взаимных превращениях частиц.

Несмотря на все «слабости» слабого взаимодействия, оно имеет очень большое значение. Именно это взаимодействие на микроуровне отвечает за выделение энергии в звёздах, в том числе и на Солнце. Можно сказать, что мы в прямом смысле не можем жить без этого взаимодействия! Кроме того, известный вам -распад радиоактивных ядер также происходит за счёт слабого взаимодействия.

Итак, каковы основные свойства слабого взаимодействия?

– Слабое взаимодействие при низких энергиях гораздо слабее сильного и электромагнитного взаимодействий;

– слабое взаимодействие является короткодействующим: радиус его действия порядка 10 –18 м;

– слабое взаимодействие универсально: в нём участвуют практически все частицы, кроме фотонов. Кроме того, есть частицы, которые участвуют только в слабом взаимодействии, например, нейтрино и антинейтрино ;

– при слабом взаимодействии не выполняются некоторые, казалось бы, всеобщие законы сохранения (этот вопрос рассмотрен в материале для самостоятельного изучения, см. далее).

Как известно, каждое из взаимодействий осуществляется посредством особых элементарных частиц – переносчиков того или иного взаимодействия. Например, фотоны – переносчики электромагнитного взаимодействия, глюоны – переносчики сильного взаимодействия. В настоящее время учёные пытаются открыть переносчиков гравитационного взаимодействия – гравитоны.

Переносчиками слабого взаимодействия являются промежуточные векторные бозоны . Их известно 3 вида: W – , W + , Z 0 . Эти частицы имеют очень большие массы: m W 85m p , m Z 96m p , где m p – масса протона.

Опишем подробнее роль промежуточных бозонов в процессах слабого взаимодействия. Например, при -распаде кварк d из нейтрона испускает W – -бозон и превращается в кварк u , так что нейтрон превращается в протон: d u + W – , – а затем W – -бозон распадается на электрон и антинейтрино: [Однако следует подчеркнуть, что из-за очень большой массы W -бозона эффективно -распад происходит так, что всё внутреннее «устройство» слабых взаимодействий не проявляется и отражается только в малой константе взаимодействия. Но если изучать процессы слабого взаимодействия при энергиях, сравнимых с массой W (т.е. порядка 100 ГэВ), то здесь вклад W -бозона отчётливо проявляется. – Ред. ]

2. Единое электрослабое взаимодействие. Дальнейшие теоретические исследования привели к тому, что картина фундаментальных взаимодействий стала упрощаться. Оказалось, что электромагнитные и слабые взаимодействия являются проявлением одного и того же взаимодействия, которое получило название электрослабого взаимодействия . Эту мысль впервые высказали (независимо друг от друга) в 1967 г. С.Вайнберг и А.Салам , выдвинув следующую гипотезу: природа слабого и электромагнитного взаимодействий едина, т.к. на малых расстояниях слабые взаимодействия сравниваются по силе с электромагнитными, и разница между промежуточными векторными бозонами и фотонами стирается . Иными словами, при энергиях, превышающих несколько сотен гигаэлектронвольт, электромагнитное и слабое взаимодействия становятся неразличимыми по интенсивности, они как бы сливаются в одно электрослабое взаимодействие.

Заметим, что Вайнберг и Салам опирались на высказанное ранее предположение, что переносчиками слабого взаимодействия являются промежуточные векторные бозоны. Экспериментально эти частицы были открыты гораздо позже (в 1983 г.).

3. Обоснование гипотезы Вайнберга–Салама. Вайнберг и Салам пришли к выводу о существовании единого электрослабого взаимодействия на основе новых фундаментальных физических идей:
1) локальной калибровочной инвариантности ;
2) спонтанного нарушения симметрии.

Из гипотезы следует, что на малых расстояниях промежуточные векторные бозоны не отличаются по своим свойствам от фотонов, а это значит, что промежуточные векторные бозоны и фотоны – это, по сути, два проявления одной и той же частицы – переносчика электрослабого взаимодействия (иначе сила взаимодействия не может быть одинаковой). Это возможно только тогда, когда выполняется принцип локальной калибровочной инвариантности (симметрии), (см. схему).

Выяснилось, что при изменении масштаба, т.е. при уменьшении расстояния, переносчики электрослабого взаимодействия переходят из одного своего проявления – фотонов – в другое свое проявление – промежуточные векторные бозоны, – но обмен ими осуществляется столь же легко.

Но тут встал новый вопрос: каким образом промежуточные векторные бозоны и фотоны могут быть проявлениями одних и тех же частиц, если у фотонов масса равна нулю, а промежуточные векторные бозоны имеют очень большие массы? Поскольку это одни и те же частицы, их массы обязаны совпадать. Казалось, что возникла безвыходная ситуация.

Оказалось, что промежуточные векторные бозоны способны приобретать свою массу в результате некоего механизма, который называется спонтанным нарушением симметрии . Этот механизм весьма сложен, но попробуем рассмотреть его суть на нескольких простых примерах.

    Законы движения отдельных атомов удовлетворяют принципу пространственной симметрии, т.е. не изменяются при движении атома по различным направлениям. Но при образовании кристалла эта симметрия сама собой нарушается, и свойства кристалла по разным направлениям уже не будут одинаковыми. Таким образом, у кристалла по сравнению со свободными атомами появляется много специфических свойств, например, способность намагничиваться.

    Шарик, находящийся в центре приподнятого дна бутылки, будет находиться в равновесии. Система при этом обладает осевой симметрией. Однако данное положение равновесия неустойчиво. Предоставленный самому себе шарик под влиянием сколь угодно малого возмущения скатится на вогнутое дно. Это положение шарика устойчиво, т.к. ему соответствует минимум потенциальной энергии в поле тяжести Земли. Первоначальная осевая симметрия состояния окажется спонтанно нарушенной.

Аналогично, в самых общих чертах, механизм спонтанного нарушения локальной калибровочной симметрии, которая обеспечивает «безмассовость» промежуточных векторных бозонов и их идентичность фотонам, приводит к появлению массы у промежуточных векторных бозонов и тем самым к различиям во внешнем проявлении слабого и электромагнитного взаимодействий.

Изложенные выше положения составляют единую теорию электрослабого взаимодействия . Именно из неё следовало существование трёх видов промежуточных векторных бозонов W – , W + , Z 0 , а также предсказаны значения их масс.

Экспериментальное открытие промежуточных векторных бозонов в 1983 г. подтвердило справедливость единой теории электрослабого взаимодействия. С этими экспериментами вам также предлагается ознакомиться самостоятельно (вопрос изложен в материале для самостоятельного изучения).

Таким образом, вместо четырёх фундаментальных взаимодействиях можно говорить лишь о трёх: гравитационном, сильном и электрослабом.

Материал для самостоятельного изучения

1. Невыполнение законов сохранения при слабом взаимодействии. Обнаружилось, что при слабом взаимодействии не выполняются некоторые, казалось бы, всеобщие законы сохранения, выполняющиеся при остальных трёх фундаментальных взаимодействиях (см. схему).

Рассмотрим законы, которые не выполняются при слабом взаимодействии.

    Закон сохранения пространственной чётности (P -чётности). Говорят, что закон сохранения пространственной чётности в каком-либо процессе выполняется, если процесс является зеркально симметричным, т.е. протекает совершенно одинаково как вправо, так и влево относительно какого-то выбранного центра. Иными словами, сам процесс и его зеркальное отражение протекают абсолютно одинаково.

В 1957 г. Ц.Ву было установлено, что закон сохранения чётности не выполняется при слабых взаимодействиях. Некоторое вещество, содержащее -активный изотоп кобальта , помещалось внутрь катушки с током, создающей магнитное поле (поле необходимо для упорядочивания ориентации спинов и собственных магнитных моментов ядер). Оказалось, что по одну сторону (например, вверх) испускалось примерно на 40% больше электронов, чем по другую.

Опыт на реальной установке (вверху) и его отражение в зеркале (внизу)

При зеркальном отражении всей картины, например, относительно зеркала, располагающегося внизу, мы увидим совершенно другое явление (большинство электронов вылетают вниз, хотя поле В кругового тока по-прежнему направлено вверх). Чтобы явление -распада в зеркале протекало точно так же, должно измениться направление «преимущественного» испускания электронов (вверх). Налицо нарушение закона сохранения пространственной чётности, которого бы не было, если бы электроны с равной вероятностью испускались как вверх, так и вниз.

Явление несохранения пространственной чётности при слабом взаимодействии можно проиллюстрировать и так. Рождающиеся при слабом взаимодействии частицы (электроны, мюоны, таоны) являются продольно-поляризованными. Это означает, что они имеют собственный момент импульса – спин j , который для данной частицы всегда либо сонаправлен с импульсом частицы p , либо направлен противоположно. При зеркальном отражении у этих частиц указанные векторы меняют направление по-разному. Спин направления не меняет, а импульс – меняет. Однако частиц с полученным расположением p и j попросту не существует, поэтому в зеркале процесс протекает иначе.

Частица с продольной поляризацией: а ) падение; б ) отражение

2. Открытие промежуточных векторных бозонов. В 1983 г. существование промежуточных векторных бозонов было экспериментально подтверждено. Известно, что основным методом исследования в физике элементарных частиц является метод рассеяния, т.е. столкновение различных частиц друг с другом, в результате которого рождаются новые частицы. В последнее время широко применяются коллайдеры – ускорители, в которых сталкиваются два пучка частиц с нулевым суммарным импульсом (частицы из разных пучков имеют равные по модулю, но противоположно направленные импульсы). Говорят, что процесс рассматривается в системе центра инерции сталкивающихся частиц . Рождающиеся в коллайдере новые частицы регистрируются различными детекторами.

Итак, столкнём протонный и антипротонный пучки, в каждом из которых энергия частицы равна Е . Тогда суммарная энергия столкновения двух частиц равна 2Е . При условии 2Е > Мс 2 в этом столкновении может быть рождена частица массой М . Рассмотрим процесс: , где Х – это набор всевозможных состояний, например,

Рождение промежуточных векторных бозонов проиллюстрируем диаграммой.

Кварк u из протона и антикварк из антипротона могут слиться в W + (это показано на диаграмме). Аналогично, пары могут дать при слиянии Z 9 -бозон, пара – W – -бозон. Но, родившись, эти частицы быстро распадаются. Например, и др.

Позитрон или положительно заряженный мюон с высокой эффективностью могут быть зарегистрированы детекторами, и это будет служить признаком рождения промежуточного векторного бозона. Нейтрино при этом улетают, унося значительную часть энергии.

Экспериментальное открытие векторных промежуточных бозонов подтвердило справедливость единой теории электрослабого взаимодействия.

Вопросы для самоконтроля

1. Перечислите и поясните законы сохранения, которые выполняются при слабом взаимодействии.

2. В чём суть закона сохранения пространственной чётности?

3. Поясните, каким образом было доказано невыполнение закона сохранения пространственной чётности при слабом взаимодействии. Когда и кем был проведён данный опыт?

4. Как ещё можно проиллюстрировать явление несохранения пространственной чётности при слабом взаимодействии?

5. Чем отличается закон сохранения пространственной чётности от закона сохранения комбинированной чётности? Почему нельзя говорить о его выполнимости для слабого взаимодействия?

6. Для чего были введены странность и чарм? Какие значения они могут принимать? Что можно сказать о сохранении этих величин при слабом взаимодействии?

7. Чем отличается изотопический спин от изотопического мультиплета? Приведите пример изотопического мультиплета. Всегда ли закон сохранения изоспина не выполняется при слабом взаимодействии?

8. Как вы считаете, почему до построения коллайдеров не удавалось экспериментально доказать существование промежуточных векторных бозонов?

9. Поясните процесс рождения промежуточных векторных бозонов в коллайдере.

10. Каким образом регистрируются рождающиеся в коллайдере промежуточные векторные бозоны?

Литература

Мякишев Г.Я. Элементарные частицы. – М.: Наука, 1979.

Методические указания по курсу «Физика атомного ядра и элементарных частиц»: Сост. Василевский А.С. Ч. 1, 2. – Киров: ГПИ, 1990.

Мухин К.Н. Занимательная ядерная физика. – М.: Энергоатомиздат, 1985.

Наумов А.И. Физика атомного ядра и элементарных частиц. – М.: Просвещение, 1984.

Окунь Л.Б . Физика элементарных частиц. – М.: Наука, 1988.

Орир Дж. Популярная физика. – М.: Мир, 1964.

Физика элементарных частиц. Астрофизика: Энциклопедия «Современное естествознание». Т. 4. – М.: ИД Магистр-Пресс, 2000.

Выпускник Кировского ГПУ 1996 г., учитель физики высшей квалификационной категории, педагогический стаж 9 лет, методист, к.п.н. Женат, имеет двоих детей.

Студентка 5-го курса физического факультета ВятГГУ.

Слабое взаимодействие.К выявлению существования слабого взаимодействия физика про­двигалась медленно. Слабое взаимодействие ответственно за распа­ды частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.
У бета-распада обнаружилась в высшей степени странная особен­ность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики – закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обла­дает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».
Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь ос­тавалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Об их возникновении было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что вхо­дящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.
Слабое взаимодействие по величине значительно меньше всех

взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабо­го взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микроми­ром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.

Сильное взаимодействие.Последнее в ряду фундаментальных взаимодействий - сильное взаи­модействие, которое является источником огромной энергии. Наи­более характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно про­текают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.
К представлению о существовании сильного взаимодействия фи­зика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического оттал­кивания. Гравитация слишком слаба и не может это обеспечить; оче­видно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выясни­лось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимо­действия, радиус действия новой силы оказался очень малым: силь­ное взаимодействие проявляется на расстоянии, определяемом раз­мерами ядра, т.е. примерно 10-13 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испы­тывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно толь­ко тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.
Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 60-х гг., когда была предложена кварковая модель. В этой теории нейтроны и про­тоны рассматриваются не как элементарные частицы, а как состав­ные системы, построенные из кварков.



Гравитационное взаимодействие существует между всеми элементарными частицами и обусловливает гравитационное притяжение всех тел друг к другу на любых расстояниях (смотри Всемирного тяготения закон); оно пренебрежимо мало в физических процессах в микромире, но играет основную роль, например, в космогонии. Слабое взаимодействие проявляется лишь на расстояниях около 10-18 м и обусловливает распадные процессы (например, бета-распад некоторых элементарных частиц и

ядер). Электромагнитное взаимодействие существует на любых расстояниях между элементарными частицами, имеющими электрический заряд или магнитный момент; в частности, оно определяет связь электронов и ядер в атомах, а также ответственно за все виды электромагнитных излучений. Сильное взаимодействие проявляется на расстояниях около 10-15 м и обусловливает существование ядер атомов.