Болезни Военный билет Призыв

Какие 4 типа фундаментальных взаимодействий вы знаете. Типы фундаментальных взаимодействий в физике. Классификация элементарных частиц

1.1. Гравитация.

1.2. Электромагнетизм.

1.3. Слабое взаимодействие.

1.4. Проблема единства физики.

2. Классификация элементарных частиц.

2.1. характеристика субатомных частиц.

2.2. лептоны.

2.3. Адроны.

2.4. Частицы – переносчики взаимодействий.

3. Теории элементарных частиц.

3.1. Квантовая электродинамика.

3.2. Теория кварков.

3.3. Теория электрослабого взаимодействия.

3.4. Квантовая хромодинамика.

3.5. На пути к великому объединению.

Список литературы.

Введение.

В середине и второй половине ХХ века в тех разделах физики, которые заняты изучением фундаментальной структуры материи, были получены поистине удивительные результаты. Прежде всего это проявилось в открытии целого множества новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частичек. Мир субатомных частиц поистине многообразен. К ним относятся протоны и нейтроны, составляющие атомные ядра, а также обращающиеся вокруг ядер электроны. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются. Время их жизни чрезвычайно мало, оно составляет мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже несколько сотен. В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. В конце ХХ в. физика начинает понимать, каково значение каждой из элементарных частиц. Миру субатомных частиц присущ глубокий и рациональный порядок. В основе этого порядка - фундаментальные физические взаимодействия.

1.Фундаментальные физические взаимодействия.

В свой повседневной жизни человек сталкивается с множеством сил, действующих на тела. Здесь и сила ветра или набегающего потока воды, давление воздуха, мощный выброс взрывающихся химических веществ, мускульная сила человека, вес тяжелых объектов, давление квантов света, притяжение и отталкивание электрических зарядов, сейсмические волны, вызывающие подчас катастрофические разрушения, и вулканические извержения, приводившие к гибели цивилизации, и т. д. Одни силы действуют непосредственно при контакте с телом, другие, например, гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития теоретического естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести всего лишь к четырем фундаментальным взаимодействиям. Именно эти взаимодействия в конечном счете отвечают за все изменения в мире, именно они являются источником всех преобразований тел и процессов. Изучение свойств фундаментальных взаимодействий составляет главную задачу современной физики.

      Гравитация.

В истории физики гравитация (тяготение) стала первым из четырех фундаментальных взаимодействий предметом научного исследования. После появления в ХVII в. ньютоновской теории гравитации - закона всемирного тяготения - удалось впервые осознать истинную роль гравитации как силы природы. Гравитация обладает рядом особенностей, отличающих ее от других фундаментальных взаимодействий. Наиболее удивительной особенностью гравитации является ее малая интенсивность. Величина гравитационного взаимодействия между компонентами атома водорода составляет 10n , где n = - 3 9 , от силы взаимодействия электрических зарядов. (Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то низшая (самая близкая к ядру) орбита электрона по размерам превосходила бы доступную наблюдению часть Вселенной!) (Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то низшая (самая близкая к ядру) орбита электрона по размерам превосходила бы доступную наблюдению часть Вселенной!). Может показаться удивительным, что мы вообще ощущаем гравитацию, коль скоро она так слаба. Как она может оказаться господствующей силой во Вселенной? Все дело во второй удивительной черте гравитации - ее универсальности. Ничто во Вселенной не избавлено от гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации. Поскольку каждая частица вещества вызывает гравитационное притяжение, гравитация возрастает по мере образования все больших скоплений вещества. Мы ощущаем гравитацию в повседневной жизни потому, что все атомы Земли сообща притягивают нас. И хотя действие гравитационного притяжения одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Гравитация - дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике. Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание никогда еще не наблюдалось (Хотя в традициях квазинаучной мифологии есть целая область, которая называется левитация - поиск "фактов" антигравитации). Поскольку энергия, запасенная в любой частице, всегда положительна и наделяет ее положительной массой, частицы под действием гравитации всегда стремятся сблизиться. Чем является гравитация, неким полем или проявлением искривления пространства-времени, - на этот вопрос пока еще однозначного ответа нет. Как уже отмечалось нами, существуют разные мнения и концепции физиков на сей счет.

      Электромагнетизм.

По величине электрические силы намного превосходят гравитационные. В отличие от слабого гравитационного взаимодействия, электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.). В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Как мы уже знаем, решающий шаг в познании электромагнетизма сделал в середине XIX в. Дж. К. Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма - первой единой теории поля. Существование электрона было твердо установлено в 90-e годы прошлого столетия. Ныне известно, что электрический заряд любой частицы вещества всегда кратен фундаментальной единице заряда - своего рода "атому" заряда. Почему это так - чрезвычайно интересный вопрос. Однако не все материальные частицы являются носителями электрического заряда. Например, фотон и нейтрино электрически нейтральны. В этом отношении электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы. Как и электрические заряды, одноименные магнитные полюса отталкиваются, а разноименные - притягиваются. Однако в отличие от электрических зарядов магнитные полюса встречаются не по отдельности, а только парами - северный полюс и южный полюс. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс - монополь. Но все они заканчивались неудачей. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые теоретические концепции допускают возможность существования монополя. Как электрическое и гравитационное взаимодействия, взаимодействие магнитных полюсов подчиняется закону обратных квадратов. Следовательно, электрическая и магнитная силы "дальнодействующие", и их действие ощутимо на больших расстояниях от источника. Так, магнитное поле Земли простирается далеко в космическое пространство. Мощное магнитное поле Солнца заполняет всю Солнечную систему. Существуют и галактические магнитные поля. Электромагнитное взаимодействие определяет структуру атомов и отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных).

      Слабое взаимодействие.

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада. У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде нарушается один из фундаментальных законов физики - закон сохранения энергии. Казалось, что в этом распаде часть энергии куда-то исчезала. Чтобы "спасти" закон сохранения энергии, В. Паули предположил, что вместе с электроном при бета -распаде вылетает еще одна частица. Она - нейтральная и обладающая необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку "нейтрино". Но предсказание и обнаружение нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что и электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер таких частиц нет. Как же они возникали? Было высказано предположение, что электроны и нейтрино не существуют в ядре в "готовом виде", а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляются три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие. Оно гораздо слабее электромагнитного, хотя и сильнее гравитационного. Оно распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10n см (где n = - 1 6) от источника и потому не может влиять на макроскопические объекты, а ограничивается отдельными субатомными частицами. Впоследствии выяснилось, что большинство нестабильных элементарных частиц участвует в слабом взаимодействии. Теория слабого взаимодействия была создана в конце б0-х годов С. Вайнбергом и А. Саламом. С момента построения Максвеллом теории электромагнитного поля создание этой теории явилось самым крупным шагом на пути к единству физики. 10.

      Сильное взаимодействие.

Последнее в ряду фундаментальных взаимодействий - сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - это наше Солнце. В недрах Солнца и звезд, начиная с определенного времени, непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции. К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация для этого слишком слаба; очевидно, необходимо какое-то новое взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Радиус действия новой силы оказался очень малым. Сильное взаимодействие резко падает на расстоянии от протона или нейтрона, превышающем примерно 10n см (где n = - 13). Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии участвуют только более тяжелые частицы. Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился в начале 60-х годов, когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков. Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, имеют место взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - взаимодействия малого радиуса действия (сильное и слабое). Мир физических элементов в целом развертывается в единстве этих двух полярностей и является воплощением единства предельно малого и предельно большого - близкодействия в микромире и дальнодействия во всей Вселенной.

      Проблема единства физики.

Познание есть обобщение действительности, и поэтому цель науки - поиск единства в природе, связывание разрозненных фрагментов знания в единую картину. Для того чтобы создать единую систему, нужно открыть связующее звено между различными отраслями знания, некоторое фундаментальное отношение. Поиск таких связей и отношений - одна из главных задач научного исследования. Всякий раз, когда удается установить такие новые связи, значительно углубляется понимание окружающего мира, формируются новые способы познания, которые указывают путь к не известным ранее явлениям. Установление глубинных связей между различными областями природы - это одновременно и синтез знания, и метод, направляющий научные исследования по новым, непроторенным дорогам. Выявление Ньютоном связи между притяжением тел в земных условиях и движением планет ознаменовало собой рождение классической механики, на основе которой построена технологическая база современной цивилизации. Установление связи термодинамических свойств газа с хаотическим движением молекул поставило на прочную основу атомно-молекулярную теорию вещества. В середине прошлого столетия Максвелл создал единую электромагнитную теорию, охватившую как электрические, так и магнитные явления. Затем в 20-х г. нашего века Эйнштейн предпринимал попытки объединить в единой теории электромагнетизм и гравитацию. Но к середине ХХ в. положение в физике радикально изменилось: были открыты два новых фундаментальных взаимодействия - сильное и слабое, т.е. при создании единой физики приходится считаться уже не с двумя, а с четырьмя фундаментальными взаимодействиями. Это несколько охладило пыл тех, кто надеялся на быстрое решение данной проблемы. Но сам замысел под сомнение всерьез не ставился, и увлеченность идеей единого описания не прошла. Существует точка зрения, что все четыре (или хотя бы три) взаимодействия представляют собой явления одной природы и должно быть найдено их единое теоретическое описание. Перспектива создания единой теории мира физических элементов на основе одного-единственного фундаментального взаимодействия остается весьма привлекательной. Это главная мечта физиков ХХ в. Но долгое время она оставалась лишь мечтой, и очень неопределенной. Однако во второй половине ХХ в. появились предпосылки осуществления этой мечты и уверенность, что это дело отнюдь не отдаленного будущего. Похоже, что вскоре она вполне может стать реальностью. Решающий шаг на пути к единой теории был сделан в 6О-70-х гг. с созданием сначала теории кварков, а затем и теории электрослабого взаимодействия. Есть основания для мнения, что мы стоим на пороге более могущественного и глубокого объединения, чем когда-либо ранее. Среди физиков усиливается убеждение, что начинают вырисовываться контуры единой теории всех фундаментальных взаимодействий - Великого объединения.

2 . Классификация элементарных частиц.

Многие основополагающие концепции современного естествознания прямо или косвенно связаны с описанием фундаментальных взаимодействий. Взаимодействие и движение – важнейшие атрибуты материи, без которых невозможно ее существование. Взаимодействие обусловливает объединение различных материальных объектов в системы, т. е. системную организацию материи. Многие свойства материальных объектов производны от их взаимодействия, являются результатом их структурных связей между собой и взаимодействий с внешней средой.

К настоящему времени известны четыре вида основных фундаментальных взаимодействий:

· гравитационное;

· электромагнитное;

· сильное;

· слабое.

Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальнымзаконом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними . Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. Законом всемирного тяготения описывается, например, движение планет Солнечной системы, а также других макрообъектов. Предполагается, что гравитационное взаимодействие обусловливается некими элементарными частицами – гравитонами , существование которых к настоящему времени экспериментально не подтверждено.

Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрическое поле возникает при наличии электрических зарядов, а магнитное поле – при их движении. В природе существуют как положительные, так и отрицательные заряды, что и определяет характер электромагнитного взаимодействия. Например, электростатическое взаимодействие между заряженными телами в зависимости от знака заряда сводится либо к притяжению, либо к отталкиванию. При движении зарядов в зависимости от их знака и направления движения между ними возникает либо притяжение, либо отталкивание. Различные агрегатные состояния вещества, явление трения, упругие и другие свойства вещества определяются преимущественно силами межмолекулярного взаимодействия, которое по своей природе является электростатическим. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и др. Его наиболее общее описание дает электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связывающих электрическое и магнитное поля.

Сильное взаимодействие обеспечивает связь нуклонов в ядре и определяет ядерные силы. Предполагается, что ядерные силы возникают при обмене между нуклонами виртуальными частицами – мезонами .


Наконец, слабое взаимодействие описывает некоторые виды ядерных процессов. Оно короткодействующее и характеризует все виды бета-превращений.

Обычно для количественного анализа перечисленных взаимодействий используют две характеристики: безразмерную константу взаимодействия, определяющую величину взаимодействия, и радиус действия (табл. 3.1).

Таблица 3.1

Пo данным табл. 3.1 видно, что константа гравитационного взаимодействия самая малая. Радиус действия его, как и электромагнитного взаимодействия, неограничен. Гравитационное взаимодействие в классическом представлении в процессах микромира существенной роли не играет. Однако в макропроцессах ему принадлежит определяющая роль. Например, движение планет Солнечной системы происходит в строгом соответствии с законами гравитационного взаимодействия.

Сильное взаимодействие отвечает за устойчивость ядер и распространяется только в пределах размеров ядра. Чем сильнее взаимодействуют нуклоны в ядре, тем оно устойчивее, тем больше его энергия связи, определяемая работой, которую необходимо совершить, чтобы разделить нуклоны и удалить их друг от друга на такие расстояния, при которых взаимодействие становится равным нулю. С возрастанием размера ядра энергия связи уменьшается. Так, ядра элементов, находящихся в конце таблицы Менделеева, неустойчивы и могут распадаться. Такой процесс часто называется радиоактивным распадом .

Взаимодействие между атомами и молекулами имеет преимущественно электромагнитную природу. Таким взаимодействием объясняется образование различных агрегатных состояний вещества: твердого, жидкого и газообразного. Например, между молекулами вещества в твердом состоянии взаимодействие в виде притяжения проявляется гораздо сильнее, чем между теми же молекулами в газообразном состоянии.

Известны четыре основных физических взаимодействия, которые определяют структуру нашего мира: сильные, слабые, электромаг­нитные и гравитационные.

1. Сильные взаимодействия происходят на уровне атомных ядер и представляют собой взаимное притяжение их взаимных частей. Действуют на расстояниях примерно 10 -13 см. Одно из проявлений сильных взаимодействий - ядерные си­лы . Сильные, взаимодействия открыты Э. Резерфордом в 1911 году одновременно с открытием атомного ядра. Переносчиками сильных взаимодействий являются глюоны . Ядерные силы не зависят от заряда частиц. В сильных взаимодействиях ве­личина заряда сохраняется.

2. Электромагнитное взаимодействие в 100-1000 раз слабее
сильного взаимодействия, но более дальнодействующее. Свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон – квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы – в молекулы. Электромагнитное взаимодействие связано с электрическими и магнит­ными полями. Электрическое поле возникает при наличии электрических за­рядов, а магнитное поле - при их движении. Различные агрегатные состояния вещества, явление трения, упругие и другие свойства вещества определяются преиму­щественно силами межмолекулярного взаимодействия, которое по своей природе является электромагнитным. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродина­мики: законом Кулона, законом Ампера и др. Его наиболее общее описание дает электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связывающих электрическое и магнитное поля.

3. Слабые взаимодействия слабее электромагнитного. Радиус его действия 10 -15 - 10 -22 см. Слабое взаимодействие связано с распадом частиц, например, с происходящими в ядре превращениями протона в нейтрон, позитрон и нейтри­но. Испускаемое нейтрино обладает огромной проницающей спо­собностью - оно проходит через железную плиту толщиной милли­ард километров. При слабых взаимодействиях меняется заряд частиц. Слабое взаимодействие представляет собой не контактное взаимодействие, а осуществляется путем обмена промежуточны­ми тяжелыми частицами - бозонами .

4. Гравитационное взаимодействие характерно для всех материальных объ­ектов вне зависимости от их природы. Оно заключается во взаимном притя­жении тел и определяется фундаментальным законом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропор­циональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. Законом всемирного тяготения опи­сывается, например, движение планет Солнечной системы и различных мак­рообъектов. Предполагается, что гравитационное взаимодействие обуслов­ливается некими элементарными частицами - гравитонами , существование которых к настоящему времени экспериментально не подтверждено.


Гравитационное взаимодействие во много раз слабее электромагнитного. Оно не учитывается в теории элементарных частиц, поскольку на характерных для них расстояниях порядка 10 -13 см дает чрезвычайно малые эффекты. Однако на ультрамалых расстояниях (10-33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое искажает геометрию пространства. В космических масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. Ядерные ре­акции, связанные с сильными взаимодействиями, происходят в течение 10 -24 - 10 -23 с. Это приблизительно тот кратчайший интервал времени, за который частица, ускоренная до высоких энергий, до скорости, близкой скорости света, проходит через элементарную частицу размером порядка 10 -13 см. Изменения, обусловленные электромагнитными взаимодействиями, осуще­ствляются в течение 10-19 - 10 -21 с, а слабыми (например, рас­пад элементарных частиц) - в основном 10 -10 с.

Все четыре взаимодействия необходимы и достаточныдля построения разнообразного мира. Без сильных взаимодействий не существовали бы атомные ядра. Без электромагнитных взаимодействий не было бы ни ато­мов, ни молекул, ни макроскопических объектов, а также тепла и света. Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эво­люционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

Современная физика пришла к выводу, что все четыре фун­даментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материаль­ного мира, можно получить из одного фундаментального взаи­модействия - суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно. При энергии в 100 ГэВ объеди­няются электромагнитное и слабое взаимодействия. Такая тем­пература соответствует температуре Вселенной через 10 -10 с после Большого взрыва. При энергии 10 15 ГэВ к ним присое­диняется сильное взаимодействие, а при энергии 10 19 ГэВ про­исходит объединение всех четырех взаимодействий.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозмож­но. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как эксперименталь­ный материал, накопленный Вселенной.

Различают 4 вида фундаментальных взаимодействий, не сводящихся друг к другу.

Элементарные частицы участвуют во всех видах известных взаимодействий.

Рассмотрим их в порядке убывания интенсивности:

1) сильное,

2) электромагнитное,

3) слабое

4) гравитационное.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение их составных частей. Оно действует на расстоянии порядка 10 -13 см.

В результате сильное взаимодействие образуются материальные системы с высокой энергией связи - атомные ядра. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но действует на значительно больших расстояниях. Взаимодействие такого типа свойственно электрически заряженным частицам. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы - в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Слабое взаимодействие возможно между различными частицами. Оно простирается на расстояние порядка 10 -15 -10 -22 см и связано главным образом с распадом частиц. В соответствии с современным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию. Как пример происходящие в атомном ядре превращения нейтрона, в протон, электрон и антинейтрино.

Гравитационное взаимодействие самое слабое и не учитывается в теории элементарных частиц, поскольку оно дает чрезвычайно малые эффекты. В космических же масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц.

Ядерные реакции, связанные с сильными взаимодействиями, происходят в течение 10 -24 -10 -23 с.

Изменения, обусловленные электромагнитными взаимодействиями, осуществляются в течение 10 -19 -10 -21 с.

Распад элементарных частиц, связанный со слабым взаимодействием – в среднем за 10 -21 с.

Эти четыре взаимодействия необходимы и достаточны для построения разнообразного мира.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Без электромагнитных взаимодействий не было бы ни атомов, ни молекул, ни макроскопических объектов, а также тепла и света.

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд, а необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной.

Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эволюционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

все четыре фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия - суперсилы .

Теоретически доказано, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно.

    При энергии в 100 ГэВ объединяются электромагнитное и слабое взаимодействия. Такая температура соответствует температуре Вселенной через 10 -10 с. после Большого взрыва.

    При энергии 1015 ГэВ к ним присоединяется сильное взаимодействие.

    При энергии 1019 ГэВ происходит объединение всех четырех взаимодействий.

1 ГэВ = 1 млрд. электрон-вольт

Достижения в области исследования элементарных частиц способствовали дальнейшему развитию концепции атомизма.

В настоящее время считается, что среди множества элементарных частиц можно выделить 12 фундаментальных частиц и столько же античастиц .

Шесть частиц - это кварки с экзотическими названиями:

«верхний», «нижний», «очарованный», «странный», «истинный», «прелестный».

Остальные шесть – лептоны: электрон , мюон , тау-частица и соответствующие им нейтрино (электронное, мюонное, тау-нейтрино).

Обычное вещество состоит из частиц первого поколения.

Предполагается, что остальные поколения можно создать искусственно на ускорителях заряженных частиц.

На основе кварковой модели физики разработали модель строения атомов.

    Каждый атом состоит из тяжелого ядра (сильно связанных глюонными полями протонов и нейтронов) и электронной оболочки.

    Число протонов в ядре равно порядковому номеру элемента в Периодической таблице элементов Д.И. Менделеева.

    Протон имеет положительный электрический заряд, массу в 1836 раз больше массы электрона, размеры порядка 10 -13 см.

    Электрический заряд нейтрона равен нулю.

    Протон, согласно кварковой гипотезе, состоит из двух «верхних» кварков и одного «нижнего», а нейтрон - из одного «верхнего» и двух «нижних» кварков. Их нельзя представить в виде твердого шарика, скорее, они напоминают облако с размытыми границами, состоящее из рождающихся и исчезающих виртуальных частиц.

Остаются еще нерешенными вопросы о происхождении кварков и лептонов, о том, являются ли они основными «первокирпичиками» природы и насколько фундаментальны. Ответы на эти вопросы ищут в современной космологии.

Большое значение имеет исследование процессов рождения элементарных частиц из вакуума построение моделей первичного ядерного синтеза, породившего те или иные частицы в момент рождения Вселенной.

Частицы переносчики взаимодействий

Взаимодействие

Переносчик

Заряд

Масса, m e

Современная теория

Сильное

Глюон

0

0

Квантовая хромодинамика (1974)

Электромагнитное

Фотон

0

0

Квантовая электродинамика Фейнмана, Швингера, Томонаги, Дайсона (1940)

Слабое

W + - бозон

+1

157000

Теория электрослабого взаимодействия: Вайнберг, Глэшоу, Салам (1967)

W - бозон

-1

157000

Z 0 -бозон

0

178000

Гравитационное

Гравитон

0

0

ОТО: Эйнштейн (1915)

Естествознание не только выделяет типы материальных объектов во Вселенной, но и раскрывает связи между ними. Связь между объектами в целостной системе более упорядочена, более устойчива, чем связь каждого из элементов с элементами из внешней среды. Чтобы разрушить систему, выделить из системы тот или иной элемент, нужно приложить к ней определенную энергию. Эта энергия имеет разную величину и зависит от типа взаимодействия между элементами системы. В мегамире эти взаимодействия обеспечиваются гравитацией, в макромире к гравитации добавляется электромагнитное взаимодействие, и оно становится основным, как более сильное. В микромире на размерах атома проявляется еще более сильное ядерное взаимодействие, обеспечивающее целостность атомных ядер. При переходе к элементарным частицам энергия внутренних связей становится сравнимой с собственной энергией частиц - слабое ядерное взаимодействие обеспечивает их целостность. Так что чем меньше размеры материальных систем, тем более прочно связаны между собой элементы.

История науки знает множество попыток представить сложные процессы во Вселенной в виде определенных схем. Успешное познание окружающего мира и приведение наблюдаемых явлений к простейшим понятиям возможны лишь в том случае, если бы мы сумели описать мир в терминах ограниченного числа фундаментальных частиц и нескольких типов фундаментальных взаимодействий, в которые они могут вступать. Сейчас мы знаем, что природные вещества - это химические соединения элементов, построенных из атомов и собранных в Периодическую


таблицу. Некоторое время считали, что атомы и есть элементарные кирпичики мироздания, но потом установили, что атом представляет собой «целую Вселенную» и состоит из взаимодействующих друг с другом еще более фундаментальных частиц: протонов, электронов, нейтронов, мезонов и т.д. Число частиц, претендующих на элементарность, увеличивается, но так ли уж они элементарны?

Механика Ньютона была признана, но происхождение сил, которые вызывают ускорения, в ней не обсуждались. Силы гравитации действуют через пустоту, они дальнодействующие, тогда как силы электромагнитные - через среду. В настоящее время все взаимодействия в природе сводят к четырем типам: гравитационные, электромагнитные, сильные ядерные и слабые ядерные.



Гравитация (от лат. gravitas - тяжесть) - исторически первое исследованное взаимодействие. Вслед за Аристотелем считали, что все тела стремятся в «своему месту» (тяжелые - вниз, к Земле, легкие - вверх). Физике XVII-XVIII вв. были известны только гравитационные взаимодействия. По Ньютону, две точечные массы притягивают друг друга с силой, направленной вдоль соединяющей их прямой: Знак минус указывает на то, что мы имеем дело с притяжением, r - расстояние между телами (считается, что размер тел намного меньше r), т 1 и т 2 - массы тел. Величина G - универсальная постоянная, определяющая значение гравитационных сил. Если тела массой по 1 кг находятся на расстоянии 1 м друг от друга, то сила притяжения между ними равна 6,67 10 -11 н. Гравитация универсальна, все тела подвержены ей и даже сама частица - источник гравитации. Если бы величина G была больше, то увеличилась бы и сила, но G очень мала, и гравитационное взаимодействие в мире субатомных частиц несущественно, а между макроскопическими телами еле заметно. Кэвендиш сумел измерить величину G, пользуясь крутильными весами. Универсальность постоянной G означает, что в любом месте Вселенной и в любой момент времени сила притяжения между телами массой по 1 кг, разделенными расстоянием 1 м, будет иметь то же значение. Поэтому можно говорить, что величина G определяет структуру гравитирующих систем. Гравитация, или тяготение, не очень существенна при взаимодействии между малыми частицами, но она удерживает планеты, всю Солнечную систему и галактики. Мы постоянно ощущаем гравитацию в нашей жизни. Закон утвердил дальнодействующую природу силы тяготения и основное свойство гравитационного взаимодействия - его универсальность.

Теория тяготения Эйнштейна (ОТО) дает отличающиеся результаты от закона Ньютона в сильных гравитационных полях, в слабых - обе теории совпадают. Согласно ОТО, гравитация - это проявление искривления пространства-времени. Тела движутся по искривленным траекториям не потому, что на них действует


гравитация, а потому, что они движутся в искривленном пространстве-времени. Движутся «кратчайшим путем, и тяготение - это геометрия». Влияние искривления пространства-времени можно обнаружить не только вблизи коллапсирующих объектов типа нейтронных звезд или черных дыр. Таковы, например, прецессия орбиты Меркурия или замедление времени на поверхности Земли (см. рис. 2.3, в). Эйнштейн показал, что гравитацию можно описывать как эквивалент ускоренного движения.

Чтобы избежать сжатия Вселенной под влиянием самогравитации и обеспечить ее стационарность, он ввел возможный источник гравитации с необычными свойствами, ведущий к «расталкиванию» материи, а не к концентрации ее, а сила отталкивания возрастает с увеличением расстояния. Но эти свойства могут проявляться только в очень больших масштабах Вселенной. Сила отталкивания неимоверно мала и не зависит от отталкивающей массы; ее представляют в виде где т - масса от-

талкиваемого объекта; r - его расстояние от отталкивающего тела; L - константа. В настоящее время устанавливают верхний предел для L = 10 -53 м -2 , т.е. для двух тел массой по 1 кг, находящихся на расстоянии 1 м, сила притяжения превышает космическое отталкивание, по крайней мере в 10 25 раз. Если две галактики с массами 10 41 кг находятся на расстоянии 10 млн св. лет (около 10 22 м), то для них силы притяжения примерно уравновешивались бы силами отталкивания, если величина L действительно близка к указанному верхнему пределу. Эта величина не измерена до сих пор, хотя и важна для крупномасштабной структуры Вселенной как фундаментальная.

Электромагнитное взаимодействие, обусловленное электрическими и магнитными зарядами, переносится фотонами. Силы взаимодействия между зарядами сложным образом зависят от положения и движения зарядов. Если два заряда q 1 и q 2 неподвижны и сосредоточены в точках на расстоянии r, то взаимодействие между ними электрическое и определяется законом Кулона: В зависимости от знаков зарядов q 1 и q 2 сила электрического взаимодействия, направленная вдоль прямой, соединяющей заряды, будет силой притяжения или отталкивания. Здесь через обозначена постоянная, определяющая интенсивность электростатического взаимодействия, ее значение равно 8,85 10 -12 Ф/м. Так, два заряда по 1 Кл, разнесенные на 1 м, будут испытывать силу 8,99 10 9 Н. Электрический заряд всегда связан с элементарными частицами. Численная величина заряда наиболее известных среди них - протона и электрона - одинакова: это универсальная постоянная е = 1,6 10 -19 Кл. Заряд протона считается положительным, электрона - отрицательным.

Магнитные силы порождаются электрическими токами - движением электрических зарядов. Существуют попытки объединить


теории с учетом симметрий, в которых предсказывается существование магнитных зарядов (магнитных монополей), но они пока не обнаружены. Поэтому величина е определяет и интенсивность магнитного взаимодействия. Если электрические заряды движутся с ускорением, то они излучают - отдают энергию в виде света, радиоволн или рентгеновских лучей в зависимости от диапазона частот. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу, хотя и проявляются подчас в сложных формах. Электромагнитные взаимодействия определяют структуру и поведение атомов, удерживают атомы от распада, отвечают за связи между молекулами, т. е. за химические и биологические явления.

Гравитация и электромагнетизм - дальнодействующие силы, распространяющиеся на всю Вселенную.

Сильные и слабые ядерные взаимодействия - короткодействующие и проявляются только в пределах размеров атомного ядра, т. е. в областях порядка 10 -14 м.

Слабое ядерное взаимодействие ответственно за многие процессы, обуславливающие некоторые виды ядерных распадов элементарных частиц (например, (3-распад - превращение нейтронов в протоны) с радиусом действия почти точечным: около 10 -18 м. Оно сильнее сказывается на превращениях частиц, чем на их движении, поэтому его эффективность определяют постоянной, связанной со скоростью распада, - универсальной постоянной связи g(W), определяющей скорость протекании процессов типа распада нейтрона. Слабое ядерное взаимодействие осуществляют так называемые слабые бозоны, и одни субатомные частицы могут превращаться в другие. Открытие нестабильных субъядерных частиц обнаружило, что слабое взаимодействие вызывает множество превращений. Сверхновые звезды - один из немногих случаев наблюдаемого слабого взаимодействия.

Сильное ядерное взаимодействие препятствует распаду атомных ядер, и не будь его, ядра распались бы из-за сил электрического отталкивания протонов. В ряде случаев для его характеристики вводят величину g(S), аналогичную электрическому заряду, но намного большую. Сильное взаимодействие, осуществляемое глюонами, резко спадает до нуля за пределами области радиусом около 10 -15 м. Оно связывает между собой кварки, входящие в состав протонов, нейтронов и других подобных частиц, именуемых адронами. Говорят, что взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий, но пока картина этих глубинных явлений скрыта от нас. С ним связаны энергия, выделяемая Солнцем и звездами, превращения в ядерных реакторах и освобождение энергии.

Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени не ясно, исчерпываются ли ими


все взаимодействия в природе. Самое сильное - короткодействующее сильное взаимодействие, электромагнитное слабее его на 2 порядка, слабое - на 14 порядков, а гравитационное меньше сильного на 39 порядков. В соответствии с величиной сил взаимодействия они происходят за разное время. Сильные ядерные взаимодействия возникают при столкновении частиц с околосветовыми скоростями. Время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10 -23 с. Процессы слабого взаимодействия происходят за 10 -9 с, а гравитационные - порядка 10 16 с, или 300 млн лет.

«Закон обратных квадратов», по которому действуют друг на друга точечные гравитационные массы или электрические заряды, следует, как показал П.Эренфест, из трехмерности пространства (1917). В пространстве п измерений точечные частицы взаимодействовали бы по закону обратной степени (n - 1). Для п = 3 справедлив закон обратных квадратов, так как 3 - 1 = 2. А при и = 4, что соответствует закону обратных кубов, планеты двигались бы по спиралям и быстро упали на Солнце. В атомах при числе измерений больше трех также не существовало бы устойчивых орбит, т. е. не было бы химических процессов и жизни. На связь трехмерности пространства с законом тяготения указывал еще и Кант.

Кроме того, можно показать, что распространение волн в чистом виде невозможно в пространстве с четным числом измерений - появляются искажения, нарушающие переносимую волной структуру (информацию). Пример тому - распространение волны по резиновому покрытию (по поверхности размерности п = 2). В 1955 г. математик Г. Дж. Уитроу заключил, что поскольку живым организмам необходимы передача и обработка информации, то высшие формы жизни не могут существовать в пространствах четной размерности. Этот вывод относится к известным нам формам жизни и законам природы и не исключает существования иных миров, иной природы.