Болезни Военный билет Призыв

Как создать гравитацию. Искусственная гравитация в Sci-Fi. Ищем истину

Условия невесомости, воспроизводимой на самолете лаборатории, наиболее близки к условиям реального космического полета и позволяют отрабатывать большинство операций в промежутки времени заданной величины – 25-30 секунд. В период с 1967 по 1979 годы такие полеты проводились на самолетах-лабораториях Ту-104А. С 1980 года по настоящее время полеты на невесомость проводятся с использованием самолетов-лабораторий ИЛ-76 МДК.

Полеты на невесомость выполняются по траектории, называемой «парабола Кеплера». Поэтому их часто называют «параболическими». Методика выполнения таких полетов пилотами самолетов-лабораторий тщательно отработана. Параболические полеты выполняются следующим образом. В зоне выполнения полетов самолет летит горизонтально на высоте шесть тысяч метров. Затем самолет с ускорением начинает набирать высоту под углом 45 градусов. В криволинейном полете на всех присутствующих на борту действуют перегрузки величиной до 2g. Это ощущение тяжести длится недолго – примерно 15 секунд, пока самолет выбирается на подъем. На высоте девять тысяч метров пилот почти полностью убирает тягу двигателей, и самолет продолжает полет по инерции. Как только сила инерции, противоположная по направлению силе тяготения, становится равна ей по величине, то сила тяжести внутри салона самолета-лаборатории становится равна нулю. Поэтому вес людей и оборудования, находящихся внутри самолета, равен нулю, и они находятся в состоянии невесомости. Это происходит в верхней точке параболы Кеплера. Затем пилот отдает штурвал от себя, и самолет начинает резкое снижение на минимальной тяге двигателей. Снижение происходит под тем же углом, что и набор высоты. Невесомость может длиться 22-28 секунд в зависимости от условий выполнения полета. По истечении этого промежутка времени экипаж максимально увеличивает тягу двигателей и переводит машину в горизонтальный полет на высоте шесть тысяч метров.

В последнее время появилось много работ, в которых авторы анализируют возможные последствия длительного пребывания человека в необычном для него состоянии невесомости. Обсуждается, естественно, и проблема создания искусственной гравитации на космическом корабле (под гравитацией понимается действие сил ). В условиях Земли человек ощущает невесомость, как известно, лишь при свободном падении или при полете на самолете по параболической траектории (траектория Кеплера), когда ускорение движения равно ускорению силы тяжести. Все иные способы, например, погружение человека в жидкость, позволяют лишь частично воспроизвести некоторые изменения в функциях организма, возникающие при невесомости.

Часто понятие невесомости и нулевого гравитационного поля отождествляют. На самом же деле между ними есть принципиальное различие, которое можно пояснить следующим образом. Нулевое гравитационное поле (или нулевая гравитация) возможно лишь в отдельных точках космического пространства, где силы притяжения двух или нескольких небесных тел взаимно уравновешиваются. В таких точках невесомость статическая. Любое тело помещенное в такую точку космического пространства, не будет ничего весить.

Динамическая невесомость может возникнуть в любых других точках гравитационного поля, когда сила тяжести уравновешивается центробежной силой. Невесомость этого рода возникает, например, при вращении искусственного спутника Земли по круговой или эллиптической орбите.

Американский ученый Э. Джонс приводит некоторые расчеты, относящиеся к полету космического корабля с Земли на Луну. Выбранная автором траектория полета имеет длину 384 тысячи километров. Примерно через семь часов после старта корабль достигает второй космической скорости и летит с этой скоростью в течение пяти часов, пока не попадет в сферу притяжения Луны. На расстоянии в 350 тысяч километров от Земли корабль проходит точку статической невесомости. На последнем этапе полета продолжительностью около семи часов разность гравитационных сил Земли и Луны будет составлять лишь тысячные доли силы нашего привычного земного тяготения.

Из этого примера следует, что в межпланетном полете на человека могут действовать лишь незначительные гравитационные силы, и он практически будет испытывать состояние статической невесомости.

Исследования влияния невесомости, проведенные при полетах американских космонавтов, показали, что организм человека может приспосабливаться к состоянию относительно кратковременной невесомости. Люди могут находиться в ней без существенных нарушений в системах организма. Однако это приспособление не во всех случаях достаточно совершенно. Кроме того, ученые пока не знают, как перенесет человек длительную невесомость - недели, месяцы. Есть основания думать, что в таких случаях возможны вегетативно-вестибулярные расстройства, которые примут форму болезни укачивания. (А еще интересно как в условиях искусственной гравитации и невесомости люди смогут осуществлять разные привычные действия, например, ту же заправку картриджей, хотя наверняка специалисты, которых можно найти по ссылке tend.kiev.ua/zapravka-kartridzhej/ смогут профессионально заправить картридж и в условиях невесомости).

Резкое снижение мышечной деятельности и уменьшение потребности в энергии могут привести в длительном космическом полете к мышечной адинамии. Невесомость резко снижает нагрузку на сердечнососудистую систему, поскольку отпадает нужда в мышечной работе и облегчается работа сердца по перемещению крови в кровяном русле. Это, в свою очередь, вызывает изменение обменных процессов. Следствием всего этого будет уменьшение потока информации, поступающей в мозговые центры от костно-мышечного аппарата и внутренних органов. А это может сказаться на нервно-психических реакциях космонавта.

Резкие смены условий гравитации могут оказать особенно вредное воздействие на организм, ослабленный адинамией, при возвращении космонавта на Землю и входе в плотные слои атмосферы.

Отмечено, что у американских космонавтов Шепарда, Гриссома и Гленна на этапе перехода от состояния невесомости к перегрузкам наблюдалось резкое учащение пульса, повышение температуры и кровяного давления. У Карпентера эти явления были наиболее продолжительными. Длительная невесомость, по-видимому, будет снижать работоспособность космонавтов и вследствие того, что при таком состоянии затрудняется передвижение по космическому кораблю, ведение ремонтно-монтажных работ, связанных с применением инструментов. Невесомость создает ряд проблем, затрудняющих обслуживание корабля, она делает непригодными открытые контейнеры и камеры для хранения предметов. Из-за нее в кабине корабля будут свободно плавать пыль, грязь и т. д. В целом невесомость может создать серьезные трудности при полете человека на Луну, Венеру и другие планеты.

Начиная с К. Э. Циолковского (1911 г.), многие ученые (Оберт, Браун и др.) считали, что лучшей защитой космонавта от неблагоприятного действия невесомости может служить искусственная гравитация.

Чтобы понять сущность искусственной гравитации, следует иметь в виду, что на человека, когда он идет на земле, кроме сил, действие которых он отчетливо ощущает (например, сила тяжести, сила трения и др.), действуют еще силы, которые настолько малы, что он их не замечает. К ним относятся центробежная и кориолисова силы инерции. Причиной возникновения этих сил является вращение Земли.

Предположим, что основанием, на котором стоит человек, является не Земля, а внутренняя стенка космического корабля. Если этот корабль будет вращаться вокруг оси симметрии, то на человека будет действовать центробежная сила, которая прижмет его к полу, так же как сила тяжести прижимает человека к Земле. Все части человеческого тела обретут вес, так же как и все предметы, находящиеся на космическом корабле.

Посмотрим, однако, все ли при этом будет так, как на Земле. Оказывается, что нет. Величина центробежной силы зависит от радиуса вращения. А голова и руки человека, стоящего на «полу» кабины космического корабля, ближе к оси вращения, чем ноги. Следовательно, центробежная сила, заменяющая в данном случае силу тяжести, будет непрерывно нарастать в направлении от головы к ногам. Поэтому двигать ногами будет труднее, чем головой и руками. Эту разность величин центробежной силы, действующей на голову и ноги человека, называют гравитационным градиентом.

Чем меньше радиус вращения, тем ощутимее для человека этот градиент. Однако пока нет никаких экспериментальных данных о действии гравитационного градиента. Некоторые исследователи (Пенн, Дол и др.) считают, что разность величин центробежной силы, действующей на голову и ноги человека (в расчете на единицу массы), не должна превышать 15 процентов максимальной величины этой силы. Тогда, если принять, что рост человека равен 1,8 метра, радиус вращения кабины космического корабля должен быть не меньше 12 метров.

Предположим теперь, что человек не стоит на месте, а идет по космическому кораблю. Тогда, кроме центробежной силы, на него начнет действовать кориолисова сила инерции. Человек обязательно почувствует это, так как угловая скорость вращения корабля гораздо больше угловой скорости вращения Земли.

Если человек поднимается по лестнице внутри космического корабля, то кориолисова сила инерции будет стремиться сместить его вправо, если же он опускается, то кориолисова сила будет стремиться сдвинуть его влево. Если же человек будет двигаться в сторону вращения корабля, то сила Кориолиса будет прижимать его к полу, если же он будет двигаться против вращения, то сила инерции будет стремиться его приподнять. Только если человек будет перемещаться параллельно оси вращения корабля, он будет избавлен от действия этой столь непривычной для него силы.

Вы можете не интересоваться космосом, но наверняка читали о нем в книгах, видели в фильмах и играх. В большинстве произведений, как правило, присутствует гравитация - мы не обращаем на нее внимания и воспринимаем как данность. Вот только это не так.

Массивные притягивают сильнее, меньшие - слабее.

Матчасть

Земля это как раз такой массивный объект. Поэтому люди, животные, здания, деревья, травинки, смартфон или компьютер - все притягивается к Земле. Мы к этому привыкли и никогда не задумываемся о такой мелочи.

Главное следствие притяжения Земли для нас - ускорение свободного падения, также известное как g. Оно равно 9,8 м/с². Любое тело при отсутствии опоры будет одинаково ускоряться к центру Земли, набирая 9,8 метров скорости каждую секунду.

Благодаря этому эффекту мы ровно стоим на ногах, различаем «верх» и «низ», роняем вещи, и так далее. Убери притяжение Земли - и все привычные действия перевернутся с ног на голову.

Лучше всего это знают космонавты, которые проводят существенную часть своей жизни на МКС. Они заново учатся пить, ходить, справлять базовые нужды.

Вот несколько примеров.

При этом в упомянутых фильмах, сериалах, играх и прочей фантастике гравитация на космических кораблях «просто есть». Создатели даже не объясняют, откуда она там появилась - а если и объясняют, то неубедительно. Какие-то «генераторы гравитации», принцип работы которых неизвестен. Это никак не отличается от «просто есть» - лучше вообще не объяснять в таком случае. Так честнее.

Теоретические модели искусственной гравитации

Создать искусственную гравитацию можно несколькими способами.

Много массы

Первый (и самый «правильный») вариант - увеличить корабль, сделать его очень массивным. Тогда гравитационное взаимодействие будет обеспечивать требуемый эффект.

Но нереальность данного способа очевидна: для такого корабля нужно очень много материи. Да и с равномерностью распределения гравитационного поля нужно что-то делать.

Постоянное ускорение

Так как нам нужно достичь постоянного ускорения свободного падения в 9,8 м/с², то почему бы не сделать космический корабль в виде платформы, которая будет ускоряться перпендикулярно своей плоскости с этим самым g?

Таким образом нужный эффект будет достигнут - но есть несколько проблем.

Во-первых, нужно откуда-то брать топливо для обеспечения постоянного ускорения. И даже если кто-то вдруг придумает двигатель, который не требует выброса материи, закон сохранения энергии никуда не пропадет.

Во-вторых, проблема заключается в самой природе постоянного ускорения. Наши физические законы гласят: ускоряться вечно нельзя. Теория относительности же говорит обратное.

Даже если корабль периодически будет менять направление, для обеспечения искусственной гравитации он должен постоянно куда-то лететь. Никаких зависаний вблизи планет. Если корабль остановится, то гравитация пропадет.

Так что и такой вариант нам не подходит.

Карусель-карусель

А вот тут уже начинается самое интересное. Все знают, как работает карусель - и какие эффекты испытывает человек в ней.

Всё, что находится на ней, стремится выскочить наружу соразмерно скорости вращения. Со стороны карусели же получается, что на все действует сила, направленная вдоль радиуса. Вполне себе «гравитация».

Таким образом, нам нужен корабль в форме бочки, который будет вращаться вокруг продольной оси . Такие варианты довольно часто встречаются в научной фантастике.

При вращении вокруг оси возникает центробежная сила, направленная вдоль радиуса. Поделив силу на массу, мы получим искомое ускорение.

Высчитывается все это по незамысловатой формуле:

A=ω²R,

где a - ускорение, R - радиус вращения, а ω - угловая скорость, измеряемая в радианах в секунду (радиан это примерно 57,3 градуса).

Что нам нужно для нормальной жизни на воображаемом космическом крейсере? Комбинация радиуса корабля и угловой скорости, чье производное выдаст в итоге 9,8 м/с².

Нечто подобное мы видели в ряде произведений: «2001 год: Космическая одиссея» Стэнли Кубрика, сериал «Вавилон 5», «Интерстеллар» Нолана, роман «Мир-Кольцо» Ларри Нивена, вселенная игр Halo.

Во всех них ускорение свободного падения примерно равно g - все логично. Однако и в этих моделях существуют проблемы.

Проблемы «карусели»

Самую явную проблему, пожалуй, проще всего объяснить на примере «Космической одиссеи». Радиус корабля составляет примерно 8 метров - для достижения ускорения, равного g, требуется угловая скорость примерно в 1,1 рад/с. Это примерно 10,5 оборотов в минуту.

При таких параметрах в силу вступает «эффект Кориолиса» - на разной «высоте» от пола на движущиеся тела действует разная сила. И зависит она от угловой скорости.

Так что в нашей виртуальной конструкции мы не можем вращать корабль слишком быстро, поскольку это приведет к внезапным падениям и проблемам с вестибулярным аппаратом. А с учетом формулы ускорения, не можем мы себе позволить и маленький радиус корабля.

Поэтому модель «Космической одиссеи» отпадает. Примерно та же проблема и с кораблями в «Интерстелларе», хотя там с цифрами уже все не так очевидно.

Вторая проблема находится с другой стороны спектра. В романе Ларри Нивена «Мир-Кольцо» корабль представляет собой гигантское кольцо с радиусом, примерно равным радиусу земной орбиты (1 а.е. ≈ 149 млн км). Таким образом он вращается с вполне удовлетворительной скоростью для того, чтобы человек не заметил эффект Кориолиса.

Казалось бы - все сходится, но и тут есть проблема. Один оборот займет 9 дней, что создаст огромные перегрузки при таком диаметре кольца. Для этого нужен очень крепкий материал. На данный момент человечество не может произвести такую прочную конструкцию - не говоря уже о том, что где-то нужно взять столько материи и еще все построить.

В случае с Halo или «Вавилоном 5» все предыдущие проблемы вроде отсутствуют: и скорость вращения достаточная, чтобы эффект Кориолиса не имел негативного воздействия, и построить такой корабль реально (гипотетически).

Но и у этих миров есть свой минус. Имя ему - момент импульса.

Раскручивая корабль вокруг оси, мы превращаем его в гигантский гироскоп. А отклонить гироскоп от своей оси сложно из-за момента импульса, количество которого должно сохраняться в системе. А значит, лететь куда-то в определенном направлении будет тяжело. Но эта проблема решаема.

Как должно быть

Называется это решение «цилиндр О’Нила»: берем два одинаковых корабля-цилиндра, соединенные вдоль оси и вращающиеся каждый в свою сторону. В результате мы имеем нулевой суммарный момент импульса, и проблем с направлением корабля в нужном сторону быть не должно.

При радиусе корабля в 500 метров и более (как в «Вавилоне 5») все должно работать как надо.

Итог

Какие мы можем сделать выводы о реализации искусственной гравитации в космических кораблях?

Изо всех вариантов самым реальным выглядит именно вращающаяся конструкция, в которой сила, направленная «вниз», обеспечивается центростремительным ускорением. Создать же искусственную гравитацию на корабле с плоскими параллельными конструкциями вроде палуб, учитывая наше современные понимание законов физики, невозможно.

Радиус вращающегося корабля должен быть достаточным, чтобы эффект Кориолиса был незначительным для человека. Хорошими примерами из придуманных миров могут служить уже упоминавшиеся Halo и «Вавилон 5».

Для управления такими кораблями нужно построить цилиндр О’Нила - две «бочки», вращающиеся в разном направлении для обеспечения нулевого суммарного момента импульса для системы. Это позволит адекватно управлять кораблем - вполне реальный рецепт обеспечения космонавтов комфортными гравитационными условиями.

И до того момента, как мы сможем построить нечто подобное, хотелось бы, чтобы фантасты уделяли больше внимания физической реалистичности в их произведениях.

Как создают искусственную невесомость на земле для тренировки космонавтов?

  1. Загружают космонавтов в самолт и поднимают на офигеную высоту потом самолт резко идт на снижение и получается невесомость
  2. очень просто=падают с самолетом вместе с15000 метров до 3000 на специально переоборудованном Ту-134=-другие просто не выдерживают=поэтому лично я выбираю только те компании-что выполняют полеты именно на этом...
  3. Самолет должен лететь по параболической траектории - создается невесомость секунд на 30...
  4. На практике в земных условиях состояние невесомости наблюдают:

    в башнях невесомости (высоких сооружениях, внутри которых свободно падают контейнеры с исследовательской аппаратурой) ;
    в самолетах, движущихся по особым траекториям (горкам Кеплера);
    с помощью ракет-зондов, которые поднимаются в разреженные слои атмосферы, после чего их двигатели отключаются, и они переходят в режим свободного падения.
    Еще один способ получения невесомости в земных условиях иммерсия, т. е. погружение тела в жидкость с плотностью, равной плотности тела. В этом случае вес тела уравновешивается архимедовой силой, тело становится невесомым, приобретая способность свободно перемещаться в любом направлении. Именно таким образом тренируются космонавты в Центре подготовки космонавтов им. Ю. А. Гагарина для работы на космических станциях. Необходимо, однако, помнить, что гидроневесомость отличается от подлинной невесомости, прежде всего наличием сопротивления, которое оказывает телу человека водная среда.

    Своеобразной моделью состояния невесомости может служить определенное положение тела человека в постели, при котором верхняя часть тела располагается ниже горизонтальной линии, - так называемое антиортостатическое положение. В специально проводимых опытах угол наклона тела в положении вниз головой менялся от 4 до -30?. При этом оказалось, что, чем больше наклон, тем сильнее проявляется действие земной невесомости. Исследователи пришли к выводу, что 15-минутное пребывание человека под углом -30? можно использовать как тест на выносливость к невесомости.

  5. На земле- бассейны, в них репетируют работы в открытом космосе в скафандрах, В самолте, падающем в пике- несколько секунд невесомости, то же для тренеровок.
  6. создатся это на самолтах-тренажерах, и невесомость длиться примерно около 3-5 минут.
    http://www.atlasaerospace.net/zgrav.htm - вот тут посмотри
  7. на спец самолете он подымается вверх потом резко опускается и в самолете создается не надолго невесомость. а в основном тренируются под водой с аквалангами
  8. Невесомость создатся прирезком снижении самолта
  9. Созданный в Центре тренажеростроения и подготовки персонала новый тренажер, Антигравитатор, позволяет конструировать невесомость.
    В разработанном в Центре тренажеростроения и подготовки персонала комплексном тренажере внекорабельной деятельности используется компьютерно-электронно-электромеханический принцип создания безопорного пространства, пониженной гравитации (обезвешивания). В нем техническими решениями до минимума сведено использование мускульных усилий космонавтов, например, для перемещения моста тренажра, его каретки. В тренажере обеспечено резкое снижение усилий космонавта при переносе полезного груза, управления и создания условий перемещений по шести степеням свободы. Параметры, которые задаются тренажеру, позволяют моделировать степень гравитации, создавать условия любой космической среды.
    Можно предположить, что речь идт о разновидности экзоскелета.

Геннадий Бражник, 23 апреля 2011
Смотря на Мир, открой глаза... (древнегреческий эпос)
Как создать искусственную Гравитацию?
Пятидесятилетие освоения космоса, отмечаемое в этом году, показало огромный потенциал человеческого интеллекта в вопросе познания окружающей Вселенной. Международная космическая станция (МКС) - пилотируемая орбитальная станция - совместный международный проект, в котором участвуют 23 страны,
убедительно доказывает заинтересованность национальных программ в вопросах освоения как ближнего, так и дальнего космического пространства. Это относится как к научно-технической, так и к коммерческой стороне рассматриваемого вопроса. Вместе с тем, основным вопросом, стоящим на пути массового освоения космического пространства является проблема невесомости или отсутствие гравитации на существующих космических объектах. "Гравитация (всемирное тяготение, тяготение) - универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна" - такое определение дает современная наука этому явлению. Природа гравитации в настоящее время не выяснена. Теоретические разработки в рамках разных гравитационных теорий не находят своего экспериментального подтверждения, что наводит на мысль о преждевременном утверждении научной парадигмы по природе гравитационного взаимодействия, как одного из четырех фундаментальных взаимодействий. В соответствии с теорией тяготения Ньютона, гравитационная сила Земного притяжения определяется выражением F=m x g, где m -масса тела, а g - ускорение свободного падения. "Ускорение свободного падения g - ускорение, придаваемое телу в вакууме силой тяжести, то есть геометрической суммой гравитационного притяжения планеты (или другого астрономического тела) и инерциальных сил, вызванных ее вращением. В соответствии со вторым законом Ньютона, ускорение свободного падения равно силе тяжести, воздействующей на объект единичной массы. Значение ускорения свободного падения для Земли обычно принимают равным 9,8 или 10 м/с╡. Стандартное („нормальное") значение, принятое при построении систем единиц, g = 9,80665 м/с╡, а в технических расчетах обычно принимают g = 9,81 м/с╡. Значение g было определено как „среднее" в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря. Реальное ускорение свободного падения на поверхности Земли зависит от широты, времени суток и других факторов. Оно варьируется от 9,780 м/с╡ на экваторе до 9,832 м/с╡ на полюсах." Эта научная неопределенность вызывает и ряд вопросов, связанных с гравитационной постоянной в Общей теории относительности. Является ли она настолько постоянной, если в условиях земного притяжения мы имеем такой разброс параметров. Основными доводами практически всех гравитационных теорий является следующее: "Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центростремительного ускорения. Отличия обусловлены: центростремительным ускорением в системе отсчета, связанной с вращающейся Землей; неточностью формулы из-за того, что масса планеты распределена по объему, который имеет геометрическую форму, отличную от идеального шара (геоид); неоднородностью Земли, что используется для поиска полезных ископаемых по гравитационным аномалиям." На первый взгляд достаточно убедительные аргументы. При более детальном рассмотрении, становится очевидным, что эти аргументы не объясняют физическую природу явления. В системе отсчета Земли, связанной с центростремительным ускорением в каждой географической точке находятся все компоненты измерения ускорения свободного падения. Поэтому одинаковому воздействию, включая и распределенную массу Земли, и гравитационные аномалии подвергаются как объект измерения, так и измеряемая аппаратура. Следовательно, результат измерения должен быть постоянным, но этого не происходит. Кроме того, неопределенность ситуации вызывают и теоретические расчетные значения ускорения свободного падения на высоте полета МКС - g=8,8 м/с(2). Фактическое значение локальной гравитации на МКС определяются в пределах 10(−3)...10(−1) g, что и определяет невесомость. Неубедительно выглядят и заявления о том, что МКС движется с первой космической скоростью и находится как бы в состоянии свободного падения. А как же тогда геостационарные спутники? При таком расчетном значении g они давно упали бы на Землю. Кроме того, массу любого тела можно определить как количественную и качественную характеристику собственного электрического заряда. Все эти рассуждения приводят к заключению, что природа земной гравитации не зависит от соотношения масс взаимодействующих объектов, а определяется кулоновскими силами электрического взаимодействия поля тяготения Земли. Если мы летим в горизонтальном полете на самолете, на высоте десяти км, то законы гравитации выполняются полностью, но при таком же полете на МКС на высоте 350 км гравитация практически отсутствует. Это означает, что в пределах этих высот существует механизм, позволяющий определиться гравитации, как силе взаимодействия материальных тел. И значение этой силы определяется законом Ньютона. Для человека массой 100кг, сила гравитационного притяжения на уровне земли, без учета атмосферного давления, должна составлять F= 100 х 9,8= 980 н. В соответствии с существующими данными атмосфера Земли представляет собой электрически неоднородную структуру, слоистость которой определяет ионосфера. "Ионосфера (или термосфера) - часть верхней атмосферы Земли, сильно ионизирующаяся вследствие облучения космическими лучами, идущими, в первую очередь, от Солнца. Ионосфера состоит из смеси газа нейтральных атомов и молекул (в основном азота N2 и кислорода О2) и квазинейтральной плазмы (число отрицательно заряженных частиц лишь примерно равно числу положительно заряженных). Степень ионизации становится существенной уже на высоте 60 километров и неуклонно увеличивается с удалением от Земли. В зависимости от плотности заряженных частиц N в ионосфере выделяются слои D, Е и F. Слой D В области D (60-90 км) концентрация заряженных частиц составляет Nmax~ 10(2)-10(3) см−3 - это область слабой ионизации. Основной вклад в ионизацию этой области вносит рентгеновское излучение Солнца. Также небольшую роль играют дополнительные слабые источники ионизации: метеориты, сгорающие на высотах 60-100 км, космические лучи, а также энергичные частицы магнитосферы (заносимые в этот слой во время магнитных бурь). Слой D также характеризуется резким снижением степени ионизации в ночное время суток. Слой Е Область Е (90-120 км) характеризуется плотностями плазмы до Nmax~ 10(5) см−3. В этом слое наблюдается рост концентрации электронов в дневное время, поскольку основным источником ионизации является солнечное коротковолновое излучение, к тому же рекомбинация ионов в этом слое идет очень быстро и ночью плотность ионов может упасть до 10(3) см−3. Этому процессу противодействует диффузия зарядов из области F, находящейся выше, где концентрация ионов относительно велика, и ночные источники ионизации (геокороное излучение Солнца, метеоры, космические лучи и др.). Спорадически на высотах 100-110 км возникает слой ES, очень тонкий (0,5-1 км), но плотный. Особенностью этого подслоя является высокая концентрации электронов (ne~10(5) см−3), которые оказывают значительное влияние на распространение средних и даже коротких радиоволн, отражающихся от этой области ионосферы. Слой E в силу относительно высокой концентрации свободных носителей тока играет важную роль в распространении средних и коротких волн. Слой F Областью F называют теперь всю ионосферу выше 130-140 км. Максимум ионобразования достигается на высотах 150-200 км. В дневное время также наблюдается образование „ступеньки" в распределении электронной концентрации, вызванной мощным солнечным ультрафиолетовым излучением. Область этой ступеньки называют областью F1 (150-200 км). Она заметно влияет на распространение коротких радиоволн. Выше лежащую часть слоя F до 400 км называют слоем F2. Здесь плотность заряженных частиц достигает своего максимума - N ~ 10(5)-10(6) см−3. На больших высотах преобладают более легкие ионы кислорода (на высоте 400- 1000 км), а еще выше - ионы водорода (протоны) и в небольших количествах - ионы гелия." Две основные современные теории атмосферного электричества были созданы в середине ХХ века английским ученым Ч. Вильсоном и советским ученым Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, - поляризацией облаков и их взаимодействием с Землей, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов. Обобщение этих теоретических представлений электрического взаимодействия в атмосфере подразумевает рассмотрение вопроса гравитации Земли с точки зрения электростатики. На основании приведенных общеизвестных фактов, можно определить значения гравитационного электрического взаимодействия материальных тел в условиях земного притяжения. Для этого рассмотрим следующую модель. Любое материальное энергетическое тело, находясь в электрическом поле, будет осуществлять определенное кулоновское взаимодействие. В зависимости от внутренней организации электрического заряда, оно будет или притягиваться к одному из электрических полюсов, или находится в состоянии равновесия в пределах этого поля. Степень электрического заряда каждого тела определяется собственной концентрацией свободных электронов (для человека концентрацией эритроцитов). Тогда модель гравитационного взаимодействия земного притяжения можно представить в виде сферического конденсатора, состоящего из двух концентрических полых сфер, радиусы которых определяются радиусом Земли и высотой ионосферного слоя F2. В этом электрическом поле находится человек, или другое материальное тело. Электрический заряд поверхности Земли - отрицательный, ионосферы - положительный по отношению к Земле. Электрический заряд человека по отношению к поверхности Земли - положительный, следовательно, кулоновская сила взаимодействия на поверхности будет всегда притягивать человека к Земле. Наличие ионосферных слоев, подразумевает, что общая электрическая емкость такого конденсатора определяется суммарной емкостью каждого слоя при последовательном подключении: 1/Собщ = 1/С(E)+1/С(F)+1/С(F2). Поскольку проводится ориентировочный инженерный расчет, будем учитывать основные энергетические ионосферные слои, для которых возьмем следующие исходные данные: слой Е - высота 100км, слой F- высота 200км, слой F2-высота 400км. Рассмотрение слоя D и спорадического слоя Es, образующихся в ионосфере в процессе повышенной или пониженной солнечной активности, для простоты рассмотрения учитывать не будем. На рис. 1 показана схема распределения ионосферных слоев атмосферы Земли и электрическая принципиальная схема рассматриваемого процесса.
В электрической схеме на рис 1.а представлено последовательное соединение трех конденсаторов, к которым подведено постоянное напряжение Еобщ. В соответствии с законами электростатики распределение электрических зарядов на пластинах каждого конденсатора С1,С2 и С3 показано условно +/-. На основании этого распределения электрических зарядов возникает в сети локальные напряженности поля, направления которых противоположно общему прикладываемому напряжению. На этих участках сети движение электрических зарядов будет осуществляться в противоположную сторону, относительно Еобщ. На рис 1.б показана схема ионосферных слоев атмосферы Земли, которая полностью описывается электрической схемой последовательного соединения конденсаторов. Силы кулоновского взаимодействия между ионосферными слоями обозначены как Fg. По уровню концентрации электрических зарядов, верхний слой ионосферы F2 является электрически положительным по отношению к поверхности земли. В силу того, что частицы солнечного ветра, обладающие разной кинетической энергией, проникают на всю глубину атмосферы, суммарная сила кулоновского взаимодействия каждого слоя будет определяться векторной суммой общей силы тяготения Fg общ и силой тяготения отдельного ионосферного слоя. Формула расчета емкости сферического конденсатора имеет вид: С= 4х(пи)х е(а)х r1xr2/(r2-r1), где С - емкость сферического конденсатора; r1 - радиус внутренней сферы, равный сумме радиуса Земли 6 371,0 км и высоте нижнего ионосферного слоя; r2 - радиус внешней сферы, равный сумме радиуса Земли и высоте верхнего ионосферного слоя; е(а)=е(0)х е -абсолютная диэлектрическая проницаемость, где е(0)=8,85х10(-12) Фм, е ~ 1. Тогда округленные расчетные значения для емкости каждого ионосферного слоя будут иметь следующие значения: С(Е)=47 мкФ, С(F)=46 мкФ, С(F2)=25 мкФ. Общая суммарная емкость ионосферы, с учетом основных слоев будет составлять порядка 12 мкФ. Расстояние между ионосферными слоями гораздо меньше радиуса Земли, следовательно, расчет кулоновской силы, действующей на заряд можно провести по формуле плоского конденсатора: Fg= е(а) х A x U(2) /(2xd(2)), где A - площадь пластины (пи х (Rз+ h)(2)); U - напряжение; d - расстояние между слоями; е(а)=е(0)х е -абсолютная диэлектрическая проницаемость, где е(0)=8,85х10(-12) Фм, е ~ 1. Тогда расчетные значения сил кулоновского взаимодействия каждого ионосферного слоя будут иметь следующие значения: Fg(E)= 58х10(-9)х U(2); Fg(F)= 59х10(-9)х U(2); Fg(F1)= 15х10(-9)х U(2); Fgобщ= 3,98х10(-9)х U(2). Определим значение атмосферного напряжения для тела массой 100 кг. Расчетная формула будет иметь следующий вид: F=m x g= Fg(E) + Fgобщ. Подставляя известные значения в эту формулу, получаем величину U= 126 КВ. Следовательно, силы кулоновского взаимодействия ионосферных слоев будут определяться следующими величинами: Fg(E)= 920н; Fg(F)= 936н; Fg(F1)= 238н; Fgобщ= 63н. Пересчитав ускорения свободного падения каждого ионосферного слоя, с учетом Ньютоновского взаимодействия, получим следующие значения: g(E)= +9,83 м/с(2); g(F)= -8,73 м/с(2); g(F1)= - 1,75 м/с(2). Следует отметить, что данные расчетные значения не учитывают собственные параметры атмосферы, а именно давление и сопротивление среды, обусловленные концентрацией молекул кислорода и азота в каждом слое ионосферы. В результате ориентировочного инженерного расчета полученное значение g(F1)= -1,75 м/с(2) которое хорошо согласуется с фактическим значением локальной гравитации на МКС - 10(−3)...10(−1) g. Расхождения в результатах связаны с тем, что крутильные весы, используемые для измерения ускорения свободного падения, не откалиброваны в область отрицательных значений - современная наука этого и не предполагала. Для создания искусственной гравитации необходимо выполнить два условия. Создать электрически изолированную систему в соответствии с требованием теоремы Гаусса, а именно обеспечить циркуляцию вектора напряженности электрического поля по замкнутой сфере и обеспечить внутри этой сферы напряженность электрического поля, необходимую для создания силы кулоновского взаимодействия величиной 1000 н. Расчет величины напряженности поля можно провести по формуле: F= е(а) х A x Е(2) /2, где A - площадь пластины; Е - напряженность электрического поля; е(а)=е(0)х е -абсолютная диэлектрическая проницаемость, где е(0)=8,85х10(-12) Фм, е ~ 1. Подставляя данные в формулу, для 10 кв.м получим значение напряженности электрического поля, равную Е= 4,75 х 10(6) В/м. Если высота помещения составляет три метра, то для обеспечения расчетной напряженности необходимо подать постоянное напряжение на пол-потолок величиной U= E x d = 14,25 МВ. При силе тока в 1 А, необходимо обеспечить сопротивление пластин такого конденсатора величиной 14,25 МОм. Изменяя величину напряжения, можно получить разные параметры гравитации. Порядок расчетных величин показывает, что разработка систем искусственной гравитации является реальным делом. Правы были древние греки: "Смотря на мир, открой глаза...". Только такой ответ можно дать по случаю природы земной гравитации. Уже 200 лет как человечество активно изучает законы электростатики, включая закон Кулона и теорему Гаусса. Формула сферического конденсатора практически освоена уже давно. Осталось только открыть глаза на окружающий мир и начать ее применять для объяснения, казалось бы невозможного. А вот когда мы все поймем, что искусственная гравитация это реальность, тогда и вопросы коммерческого использования космических полетов станут актуальными и окажутся прозрачными для понимания.
г. Москва, апрель 2011г. Бражник Г.Н.