Болезни Военный билет Призыв

История графов. Примеры использования теории графов

Теория графов - раздел математики, используемый в информатике и программировании, экономике, логистике, химии.

Что такое граф

Часто для описания строения систем используют графические схемы. Элементы в них изображают кружками, точками, квадратами и т. п., а связи между элементами - линиями или стрелками. При этом ни то, как изображаются элементы, ни длина или форма линий не важны - имеет значение только, какие элементы соединены. Итак, граф - это пара вида (A, M), где A - конечное множество вершин, а M - множество ребер - линий, связывающих некоторые вершины.

Основные понятия теории графов

У ориентированного графа или орграфа (см. рисунок ниже) ребра ориентированы, называются дугами и изображаются стрелками. Дуга может быть обозначена упорядоченной парой вершин, которые она связывает, - начальной и конечной.

У неориентированного графа (см. рисунок ниже) ребра изображаются линиями без ориентации. Соответственно, пара вершин, которую связывает ребро, является неупорядоченной. Обе эти вершины есть концы ребра.

Если вершины a и b - концы ребра (или начало и конец дуги) графа, то говорят, что вершины a и b инцидентны этому ребру (дуге), также ребро (дуга) инцидентно вершинам a и b. Если вершины a и b - концы ребра, то они (a и b) называются смежными.

Чаще всего рассматривают графы, ребра которых имеют один тип - являются ориентированными или нет.

Если ребра имеет одинаковые начало и конец, то их называют кратными ребрами, а граф, в котором они присутствуют, называется мультиграфом.

Теория графов также использует понятие «петля» - ребро, выходящее и заходящее в одну и ту же вершину. Граф, в котором есть петли, называется псевдографом.

Чаще всего встречаются неориентированные графы, у которых нет кратных ребер и нет петель. Такие графы называются обыкновенными. Они не имеют кратных ребер, поэтому можно отождествить ребро и соответствующую пару вершин.

Каждая вершина орграфа характеризуется:

  • Полустепенью исхода. Это количество дуг, выходящих из нее.
  • Полустепенью захода. Это количество дуг, которые входят в данную вершину.

Сумма полустепеней захода орграфа, а также сумма полустепеней исхода равны общему количеству дуг графа.

У неориентированного графа каждая вершина характеризуется степенью вершины. Так называется количество ребер, которые инцидентны вершине. Общая сумма степеней вершин графа есть количество ребер, умноженное на два: каждое ребро будет давать вклад, который равен двум.

Вершина со степенью 0 называется изолированной.

Висячей вершиной является вершина со степенью 1.

Теория графов называет пустым графом такой, в котором нет ни одного ребра. Полный граф - это обыкновенный граф, в котором смежны любые 2 вершины.

Взвешенные графы - это графы, вершинам или ребрам (дугам) которых или и вершинам, и ребрам (дугам) сразу, приписываются некоторые числа. Они называются весами. На втором рисунке показан неориентированный граф, ребра которого взвешены.

Графы: изоморфизм

Понятие изоморфизма используется в математике. В частности, теория графов определяет его так: два графа U и V изоморфны, если в этих графах существует биекция между множествами их вершин: каждые 2 вершины в графе U соединены ребром в том и только том случае, если в графе V связаны ребром те же вершины (которые могут по-другому называться). На рисунке ниже показаны два изоморфных графа, в которых между вершинами, окрашенными в одинаковые цвета и в первом, и во втором графе, существует вышеописанная биекция.

Пути и циклы

Путем в неориентированном или ориентированном графе является последовательность ребер, где каждое следующее начинается в вершине, в которой заканчивается предыдущее. Простой путь - такой, в котором все вершины, исключая, может быть, начальную и конечную, и ребра различны. Циклом в орграфе называется путь, у которого совпадают начальная и конечная вершины и который включает не менее одного ребра. Циклом в неориентированном графе является путь, который содержит не менее трех различных ребер. На втором рисунке циклом является, например, путь (3, 1), (6, 3), (1, 6).

Теория графов в программировании используется для построения граф-схем алгоритмов.

Теория графов находит применение, например, в геоинформационных системах (ГИС). Существующие или вновь проектируемые дома, сооружения, кварталы и т. п. рассматриваются как вершины, а соединяющие их дороги, инженерные сети, линии электропередачи и т. п. - как рёбра. Применение различных вычислений, производимых на таком графе, позволяет, например, найти кратчайший объездной путь или ближайший продуктовый магазин, спланировать оптимальный маршрут.

Теория графов содержит большое количество нерешённых проблем и пока не доказанных гипотез.

Основные сферы применения теории графов:

В химии (для описания структур, путей сложных реакций, правило фаз также может быть интерпретировано как задача теории графов); компьютерная химия - сравнительно молодая область химии, основанная на применении теории графов. Теория графов представляет собой математическую основу хемоинформатики. Теория графов позволяет точно определить число теоретически возможных изомеров у углеводородов и других органических соединений;

В информатике и программировании (граф-схема алгоритма);

В коммуникационных и транспортных системах. В частности, для маршрутизации данных в Интернете;

В экономике;

В логистике;

В схемотехнике (топология межсоединений элементов на печатной плате или микросхеме представляет собой граф или гиперграф).

Выделяют особый вид графа, дерево. Дерево - это связный ациклический граф. Связность означает наличие путей между любой парой вершин, ацикличность - отсутствие циклов и то, что между парами вершин имеется только по одному пути. На Рис 1.3 представлено двоичное дерево .

Двоичное дерево - древовидная структура данных, в которой каждый узел имеет не более двух потомков (детей). Как правило, первый называется родительским узлом , а дети называются левым и правым наследниками .

Матричное представление графов. Матрица инциденций.

Развитие алгоритмических подходов к анализу свойств графов требует определенных способов описания графов, более пригодных для практических вычислений, в том числе с использованием ЭВМ. Рассмотрим три наиболее распространенных способа представления графов.

Предположим, что все вершины и все ребра неориентированного графа или все вершины и все дуги (включая петли) ориентированного графа пронумерованы начиная с единицы. Граф (неориентированный или ориентированный) может быть представлен в виде матрицы типа , где- число вершин, а- число ребер (или дуг). Для неориентированного графа элементы этой матрицы задаются следующим образом:

Для ориентированного графа элементы матрицы задаются так:

Матрицу типа, определенную указанным образом, называютматрицей инциденций.

Пример получения матрицы инциденций. Для изображенного ниже графа (Рис. 2.1 а Рис 2.1 б).

Рис 2.1 а Рис. 2.1 б

Матрица смежности.

Несмотря на то, что представление графа в виде матрицы инциденций играет весьма большую роль в теоретических исследованиях, практически этот способ весьма неэффективен. Прежде всего, в матрице в каждом столбце только два ненулевых элемента, что делает этот способ представления графа неэкономным при большом количестве вершин. Кроме того, решение практических задач с помощью матрицы инциденций весьма трудоемко.

Оценим, например, временные затраты на решение с помощью матрицы инциденций такой простой задачи в ориентированном графе: для данной вершины найти ее "окружение" - множество преемников и множество предшественников вершины, т.е. множество всех вершин, непосредственно достижимых из, и множество всех вершин, из которых она непосредственно достижима.

Для решения этой задачи на матрице инциденций ориентированного графа нужно идти по строке с номером до появления ненулевого элемента (+1 или –1). В случае если обнаружена +1, в соответствующем столбце надо найти строку, в которой записано число –1. Номер строки, в которой стоит это число, дает номер вершины, непосредственно достижимой из данной вершины. Если обнаружена –1, в столбце надо найти строку, в которой записана 1, и получить номер вершины, из которой непосредственно достижима данная вершина. Для получения всего "окружения" надо проделать указанный поиск для всех ненулевых элементов k-й строки. Наиболее трудоемкой процедурой является поиск ненулевого элемента в столбце. Число таких процедур поиска равно степени вершины. Будем в этом случае говорить, что сложность алгоритма анализа окружения вершинысоставляет(порядка).

Можно увидеть, что поиск "окружения" всех вершин займет время порядка произведения числа вершин ориентированного графа на сумму степеней всех вершин, которая, как можно показать, пропорциональна числу дуг ориентированного графа. Таким образом, сложность алгоритма поиска "окружения" составляет , т.е. поиск занимает время порядка произведения числа вершин на число дуг.

Более эффективной матричной структурой, представляющей граф, служит матрица смежности вершин , или булева матрица графа. Это квадратная матрица В порядка n , элементы которой определяют следующим образом:

для неориентированного графа:

для ориентированного графа:

Для изображенного ниже графа (Рис. 2.2 а ) матрицей инциденций будет матрица, представленная на (Рис 2.2 б).

Книга К.Бержа - первая по теории графов на русском языке. Между тем в последние годы интерес к теории резко усилился как со стороны математиков, так и представителей самых различных дисциплин. Это объясняется тем, что методы теории графов успешно решают многочисленные задачи теории электрических цепей, теории транспортных цепей, теории информации, кибернетики и др.
В книге Бержа теория графов излагается последовательно, начиная с самых основ. Предполагается, что читатель обладает весьма скромными математическими познаниями, хотя и имеет некоторую математическую культуру. В текст включены многочисленные, зачастую забавные, примеры. Книга может быть использована для первоначального изучения теории графов. Математики-профессионалы также найдут в ней много интересного.

Алгорифм для непосредственного выявления эйлерова цикла.
[Флёрн (Fleury)]. Рассмотрим связный мультиграф G, все вершины которого имеют четную степень, и постараемся нарисовать его одним росчерком, не прибегая в процессе построения к исправлениям уже начерченной части траектории. Достаточно придерживаться следующего правила:
1 Выходим из произвольной вершины а; каждое пройденное ребро зачеркиваем.
2 Никогда не идем по такому ребру и, которое в рассматриваемый момент является перешейком (т.е. при удалении которого граф, образованный незачеркнутыми ребрами, распадается на две компоненты связности, имеющие хотя бы по одному ребру),

Соблюдая это правило, мы всегда будем находиться в благоприятном положении, потому что когда мы находимся в х = а, граф (из незачеркнутых ребер) имеет две вершины нечетной степени: х и а; если отбросить изолированные вершины, то останется связный граф, который в силу теоремы 1 имеет эйлерову цепь, начинающуюся в х.

Содержание
Введение
Глава 1. Основные определения
Множества и многозначные отображения
Граф. Пути и контуры
Цепи и циклы
Глава 2. Предварительное изучение квазиупорядоченности
Квазипорядок, определяемый графом
Индуктивный граф и базы
Глава 3. Порядковая функция и функция
Гранди для бесконечного графа
Общие соображения относительно бесконечных графов
Порядковая функция
Функции Гранди
Операции над графами
Глава 4. Основные числа теории графов
Цикломатическое число
Хроматическое число
Число внутренней устойчивости
Число внешней устойчивости
Глава 5. Ядра графа
Теоремы существования и единственности
Приложение к функциям Гранди
Глава 6. Игры на графе
Игра Ним
Общее определение игры (с полной информацией)
Стратегии
Глава 7. Задача о кратчайшем пути
Процессы по этапам Некоторые обобщения
Глава 8. Транспортные сети
Задача о наибольшем потоке Задача о наименьшем потоке
Задача о потоке, совместимом с множеством значений
Бесконечные транспортные сети
Глава 9. Теорема о полустепенях
Полу степени исхода и захода
Глава 10. Паросочетание простого графа
Задача о наибольшем паросочетании
Дефицит простого графа
Венгерский алгорифм
Обобщение на бесконечный случай
Приложение к теории матриц
Глава 11. Факторы
Гамильтоновы пути и гамильтоновы контуры
Нахождение фактора
Нахождение частичного графа с заданными полустепенями
Глава 12. Центры графа
Центры
Радиус
Глава 13. Диаметр сильно связного графа
Общие свойства сильно связных графов без петель
Диаметр
Глава 14. Матрица смежности графа
Применение обычных матричных операций
Задачи на подсчет
Задача о лидере
Применение булевых операций
Глава 15. Матрицы инциденций
Вполне унимодулярные матрицы
Вполне унимодулярные системы
Цикломатические матрицы
Глава 16. Деревья и прадеревья
Деревья
Аналитическое исследование
Прадеревья
Глава 17. Задача Эйлера
Эйлеровы циклы Эйлеровы контуры
Глава 18. Паросочетание произвольного графа
Теория чередующихся цепей
Нахождение частичного графа с заданными степенями вершин
Совершенное паросочетание
Приложение к числу внутренней устойчивости
Глава 19. Фактороиды
Гамильтоновы циклы и фактороиды
Необходимое и достаточное условие существования фактороида
Глава 20. Связность графа
Точки сочленения
Графы без сочленений
h-связные графы
Глава 21. Плоские графы
Основные свойства
Обобщение
Добавления
I. Off общей теории, игр
II. О транспортных задачах
III. Об использовании, понятия потенциала в транспортных сетях
IV. Нерешенные задачи, и недоказанные предположения
V. О некоторых основных принципах подсчета (Ж. Риге)
VI. Дополнения к русскому переводу (А.А. Зыков и Г.И. Кожухин)
Литература
Теория графов и книга К. Бержа (послесловие к русскому переводу)
Указатель символов
Именной указатель
Предметный указатель.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теория графов и её применение, Берж К. - fileskachat.com, быстрое и бесплатное скачивание.















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • познакомить учащихся с понятием “Граф”, основными принципами его построения;
  • формировать умение выделять отношения, связывающие объекты;
  • развивать внимание, способность к логическому рассуждению;
  • воспитывать взаимопомощь, умение работать в коллективе
  • закрепление полученных знаний на практике
  • развитие памяти, внимания;
  • развитие самостоятельности;
  • воспитание познавательной активности.
  • Оборудование:

    • компьютерный класс, оснащенный современной техникой, видеопроектор, экран;
    • компьютеры с ОС Windows XP, программа Microsoft Office 2003 PowerPoint;
    • оборудование доски (тема урока, новые термины). Раздаточный материал.

    План урока.

    II. Изложение нового материала. (10 мин.)

    III. Закрепление материала. Практическая работа. (15-20 мин.)

    IV. Подведение итога урока.(2 мин)

    V. Домашнее задание.

    I. Организационный момент. Актуализация знаний.

    Здравствуйте! Наш урок называется “Графы”. Мы познакомимся с понятие “Графы”, научимся их изображать и решать задачи по этой теме.

    II Изложение нового материала.

    Первая работа по теории графов принадлежит Леонарду Эйлеру (1736 г.), хотя термин “граф” впервые ввел в 1936 году венгерский математик Денеш Кениг. Графами были названы схемы, состоящие из точек и соединяющих эти точки отрезков прямых или кривых (примеры графов изображены на рисунке 1)

    С помощью графов часто упрощалось решение задач, сформулированных в различных областях знаний: в автоматике, электронике, физике, химии и др. С помощью графов изображаются схемы дорог, газопроводов, тепло- и электросети. Помогают графы в решении математических и экономических задач.

    Граф – (от греческого grapho – пишу) - это средство наглядного представления элементов объекта связей между ними. Это замечательные математические объекты, с их помощью можно решать очень много различных, внешне не похожих друг на друга задач.

    Граф – это некоторая информационная модель

    Граф состоит из вершин или узлов, связанных дугами или отрезками - рёбрами. Линия может быть направлена, т. е. иметь стрелку (дуга), если не направлена – ребро. Две вершины, соединённые дугой или ребром называются смежными.

    Примеры графов (Слайд 4, 5, 6)

    Задание 1 (Слайд 7):

    Между девятью планетами солнечной системы установлено космическое сообщение. Рейсовые ракеты летают по следующим маршрутам:

    Земля – Меркурий; Плутон – Венера; Земля – Плутон; Плутон – Меркурий; Меркурий – Венера; Уран – Нептун; Нептун – Сатурн; Сатурн – Юпитер; Юпитер – Марс; Марс – Уран.

    Можно ли долететь на рейсовых ракетах с Земли до Марса?

    Решение: Нарисуем схему условия: планеты изобразим точками, а маршруты ракет – линиями.

    Теперь сразу видно, что долететь с Земли до Марса нельзя.

    Две вершины, соединённые дугой или ребром называются смежными. Каждому ребру или дуге соотносится какое-нибудь число. Число может обозначать расстояние между населёнными пунктами, время перехода от одной вершины к другой и т. д.

    Задание 2 (9 слайд) – решение у доски. Маша пришла в зоопарк и хочет увидеть как можно больше зверей. По какой тропинке ей надо идти? Желтая, красная, зеленая?

    Задание 3 (11 слайд) – решение у доски. Пять футбольных команд А, Б, В, Г, Д должны сыграть в матчи друг с другом. Уже сыграли А с Б, В, Г; Б с А, В, Д. сколько матчей уже сыграно? Сколько осталось сыграть?

    Представление графов (Слайд 12)

    Граф может быть представлен в виде списка дуг (АВ; 7), графически или с помощью таблицы.

    Списки дуг Графическая форма Табличная форма
    (АВ; 7),
    А В С
    А 3
    В 4
    С 3 4

    III. Закрепление материалы: учащимся предлагается разделить на группы и выполнить задания. Работая в малой группе, ученики обсуждают модели, основываясь на теоретических знаниях, полученных в начале урока. Тем самым достигается повторение и закрепление материала.

    Задание 2 (Слайд 13)

    IV. Итог урока

    Ребята, какие новые слова вы сегодня узнали? (Граф, вершина графа, ребра графа.)

    Что могут обозначать вершины графа? (Города; объекты, которые; связаны.)

    Что обозначают ребра графа (Пути, движения, направления)

    Приведите пример, где в жизни мы можем с ними встретиться?

    Как изображаются графы?

    V. Домашнее задание. (Слайд 15)

    Теория графов - один из обширнейших разделов дискретной математики, широко применяется в решении экономических и управленческих задач, в программировании, химии, конструировании и изучении электрических цепей, коммуникации, психологии, психологии, социологии, лингвистике, других областях знаний. Теория графов систематически и последовательно изучает свойства графов, о которых можно сказать, что они состоят из множеств точек и множеств линий, отображающих связи между этими точками. Основателем теории графов считается Леонард Эйлер (1707-1882), решивший в 1736 году известную в то время задачу о кёнигсбергских мостах.

    Графы строят для того, чтобы отобразить отношения на множествах . Пусть, например, множество A = {a 1 , a 2 , ... a n } - множество людей, а каждый элемент будет отображён в виде точки. Множество B = {b 1 , b 2 , ... b m } - множество связок (прямых, дуг, отрезков - пока не важно). На множестве A задано отношение знакомства между людьми из этого множества. Строим граф из точек и связок. Связки будут связывать пары людей, знакомых между собой. Естественно, число знакомых у одних людей может отличаться от числа знакомых у других людей, а некоторые вполне могут и не быть ни с кем знакомы (такие элементы будут точками, не соединёнными ни с одной другой). Вот и получился граф!

    То, что мы сначала назвали "точками", следует называть вершинами графа, а то, что называли "связками" - рёбрами графа.

    Теория графов не учитывает конкретную природу множеств A и B . Существует большое количество самых разных конкретных задач, при решении которых можно временно забыть о специфическом содержании множеств и их элементов. Эта специфика никак не сказывается на ходе решения задачи, независимо от её трудности! Например, при решении вопроса о том, можно ли из точки a добраться до точки e , двигаясь только по соединяющим точки линиям, неважно, имеем ли мы дело с людьми, городами, числами и т.д. Но, когда задача решена, мы получаем решение, верное для любого содержания, которое было смоделировано в виде графа. Не удивительно поэтому, что теория графов - один из самых востребованных инструментов при создании искусственного интеллекта: ведь искусственный интеллект может обсудить с собеседником и вопросы любви, и вопросы музыки или спорта, и вопросы решения различных задач, причем делает это без всякого перехода (переключения), без которого в подобных случаях не обойтись человеку.

    А теперь строгие математические определения графа.

    Определение 1. Графом называется система объектов произвольной природы (вершин) и связок (рёбер), соединяющих некоторые пары этих объектов.

    Определение 2. Пусть V – (непустое) множество вершин, элементы v V – вершины. Граф G = G (V ) с множеством вершин V есть некоторое cемейство пар вида: e = (a , b ) , где a ,b V , указывающих, какие вершины остаются соединёнными. Каждая пара e = (a , b ) - ребро графа. Множество U - множество рёбер e графа. Вершины a и b – концевые точки ребра e .

    Графы как структура данных. Широким применением теории графов в компьютерных науках и информационных технологиях обусловлено добавлением к вышеизложенным определениям понятия графа как структуры данных. В компьютерных науках и информационных технологиях граф определяется как нелинейная структура данных. Что же тогда - линейная структура данных и чем от них отличаются графы? Линейные структуры данных характеризуются тем, что связывают элементы отношениями типа "простого соседства". Линейными структурами данных являются, например, массивы, таблицы, списки, очереди, стеки, строки. В противоположность им нелинейные структуры данных - такие, в которых элементы располагаются на различных уровнях иерархии и подразделяются на три вида: исходные, порождённые и подобные. Итак, граф - нелинейная структура данных.

    Слово граф греческого происхождения, от слов "пишу", "описываю". Из начала этой статьи известно, что именно описывает граф: описывает он отношения. То есть, любой граф описывает отношения. И наоборот: любое отношение можно описать в виде графа.

    Основные понятия теории графов

    Понятие инцидентности необходимо и при составлении алгоритмов решения многих практических задач с графами. Например, можно ознакомиться с программной реализацией обхода в глубину графа, представленного матрицей инцидентности . Идея проста: можно двигаться лишь через вершины, соединённые рёбрами. А уж если рёбрам приписаны какие-то значения ("весы", чаще всего в виде чисел, такие графы называются взвешенными или помеченными), то можно решать сложные прикладные задачи, некоторые из которых упомянуты в завершающем параграфе этого урока.

    Классические задачи теории графов и их решения

    Один из первых опубликованных примеров работ по теории графов и применения графов - работа о "задаче с Кёнигсбергскими мостами" (1736 г.), автором которой является выдающийся математик 18-го века Леонард Эйлер. В задаче даны река, острова, которые омываются этой рекой, и несколько мостов. Вопрос задачи: возможно ли, выйдя из некоторого пункта, пройти каждый мост только по одному разу и вернуться в начальный пункт? (рисунок ниже)

    Задачу можно смоделировать следующим образом: к каждому участку суши прикрепляется одна точка, а две точки соединяются линией тогда и только тогда, когда соответствующие участки суши соединены мостом (рисунок ниже, соединительные линии начерчены пунктиром). Таким образом, построен граф.

    Ответ Эйлера на вопрос задачи состоит в следующем. Если бы у этой задачи было положительное решение, то в получившемся графе существовал бы замкнутый путь, проходящий по рёбрам и содержащий каждое ребро только один раз. Если существует такой путь, то у каждой вершины должно быть только чётное число рёбер. Но в получившемся графе есть вершины, у которых нечётное число рёбер. Поэтому задача не имеет положительного решения.

    По устоявшейся традиции эйлеровым графом называется граф, в котором можно обойти все вершины и при этом пройти одно ребро только один раз. В нём каждая вершина должна иметь только чётное число рёбер. Задача средней трудности на эйлеровы графы - в материале "Основные виды графов ".

    В 1847 г. Кирхгоф разработал теорию деревьев для решения совместной системы линейных алгебраических уравнений, позволяющую найти значение силы тока в каждом проводнике (дуге) и в каждом контуре электрической цепи. Абстрагируясь от электрических схем и цепей, которые содержат сопротивления, конденсаторы, индуктивности и т.д., он рассматривал соответствующие комбинаторные структуры, содержащие только вершины и связи (рёбра или дуги), причём для связей не нужно учитывать, каким типам электрических элементов они соответствуют. Таким образом, Кирхгоф заменил каждую электрическую цепь соответствующим графом и показал, что для решения системы уравнений необязательно рассматривать в отдельности каждый цикл графа электрической цепи.

    Кэли в 1858 г., занимаясь чисто практическими задачами органической химии, открыл важный класс графов, называемых деревьями. Он стремился перечислить изомеры насыщенных углеводородов, с данным числом атомов углерода. Кэли прежде всего сформулировал задачу абстрактно: найти число всех деревьев с p вершинами, каждое из которых имеет вершины со степенями 1 и 4. Ему не удалось сразу решить эту задачу, и он стал изменять её формулировку таким образом, чтобы можно было решить новую задачу о перечислении:

    • корневых деревьев (в которых выделена одна из вершин);
    • всех деревьев;
    • деревьев, у которых степени вершин не превышают 4;
    • деревьев, у которых степени вершин равны 1 и 4 (постановка задачи из химии).

    Задачи с графами для закрепления основных понятий

    Пример 1. Пусть A - множество чисел 1, 2, 3 : A = {1, 2, 3} . Построить граф для отображения отношения "

    Решение. Очевидно, что числа 1, 2, 3 следует представить в виде вершин графа. Тогда каждую пару вершин должно соединять одно ребро. Решая эту задачу, мы пришли к таким основным понятиям теории графов, как ориентированные и неориентированные графы . Неориентированные графы - такие, рёбра которых не имели направления. Или, как говорят ещё чаще, порядок двух концов ребра не существенен. В самом деле, граф, построенный в самом начале этого урока и отображавший отношение знакомства между людьми, не нуждается в направлениях рёбер, так как можно утверждать, что "человек номер 1" знаком с "человеком номер 2" в той же мере, как и "человек номер 2" с "человеком номер 1". В нашем же нынешнем примере одно число меньше другого, но не наоборот. Поэтому соответствующее ребро графа должно иметь направление, показывающее, какое всё же число меньше другого. То есть, порядок концов ребра существенен. Такой граф (с рёбрами, имеющими направление) называется ориентированным графом или орграфом.

    Итак, в нашем множестве A число 1 меньше числа 2 и числа 3, а число 2 меньше числа 3. Этот факт отображаем рёбрами, имеющими направление, что показывается стрелками. Получаем следующий граф:

    Пример 2. Пусть A - множество чисел 2, 4, 6, 14 : A = {2, 4, 6, 14} . Постоить граф для отображения отношения "делится нацело на" на этом множестве.

    Решение. В этом примере часть рёбер будут иметь направление, а некоторые не будут, то есть строим смешанный граф . Перечислим отношения на множестве: 4 делится нацело на 2, 6 делится нацело на 2, 14 делится нацело на 2, и ещё каждое число из этого множества делится нацело на само себя. Это отношение, то есть когда число делится нацело на само себя, будем отображать в виде рёбер, которые соединяют вершину саму с собой. Такие рёбра называются петлями . В данном случае нет необходимости давать направление петле. Таким образом, в нашем примере три обычных направленных ребра и четыре петли. Получаем следующий граф:

    Пример 3. Пусть даны множества A = {α, β, γ} и B = {a, b, c} . Построить граф для отображения отношения "декартово произведение множеств".

    Решение. Как известно из определения декартова произведения множеств , в нём нет упорядоченных наборов из элементов одного и того же множества. То есть в нашем примере нельзя соединять греческие буквы с греческими и латинские с латинскими. Этот факт отображается в виде двудольного графа , то есть такого, в котором вершины разделены на две части так, что вершины, принадлежащие одной и той же части, не соединены между собой. Получаем следующий граф:

    Пример 4. В агентстве по недвижимости работают менеджеры Игорь, Сергей и Пётр. Обслуживаются объекты О1, О2, О3, О4, О5, О6, О7, О8. Построить граф для отображения отношений "Игорь работает с объектами О4, О7", "Сергей работает с объектами О1, О2, О3, О5, О6", "Пётр работает с объектом О8".

    Решение. Граф, отображающий данные отношения, будет так же двудольным, так как менеджер не работает с менеджером и объект не работает с объектом. Однако, в отличии от предыдущего примера, граф будет ориентированным. В самом деле, например, Игорь работает с объектом О4, но не объект О4 работает с Игорем. Часто, когда такое свойство отношений очевидно, необходимость давать рёбрам направления может показаться "математической тупостью". Но всё же, и это вытекает из строгого характера математики, если отношение носит односторонний характер, то давать направления рёбрам нужно. В приложениях отношений эта строгость окупается, например, в программах, предназначенных для планирования, где тоже применяются графы и маршрут по вершинам и рёбрам должен проходить строго в заданном направлении. Итак, получаем следующий ориентированный двудольный граф:

    И вновь к примерам с числами.

    Пример 5. Пусть задано множество C = {2, 3, 5, 6, 15, 18} . Построить граф, реализующий отношение, определяющее все пары чисел a и b из множества C , у которых при делении второго элемента на первый получаем частное, которое является целым числом больше 1.

    Решение. Граф, отображающий данные отношения, будет ориентированным, так как в условии есть упоминание о втором и первом элементе, то есть, ребро будет направлено от первого элемента ко второму. Из этого однозначно понятно, какой элемент является перым, а какой вторым. Ещё добавим терминологии: ориентированные рёбра принято называть дугами. В нашем графе будет 7 дуг: e 1 = (3, 15) , e 2 = (3, 18) , e 3 = (5, 15) , e 4 = (3, 6) , e 5 = (2, 18) , e 6 = (6, 18) , e 7 = (2, 6) . В этом примере рёбра (дуги) графа просто пронумерованы, но порядковые номера - не единственное, что можно приписать дуге. Дуге можно приписать также весы означающие, например, стоимость пересылки груза из одного пункта в другой. Но с весами дуг мы познакомимся позже и подробнее. Итак, получаем следующий ориентированный граф:

    Как мы уже знаем из теоретической вступительной части, теория графов не учитывает специфическую природу множеств и с помощью одного и того же графа можно задать отношения на множествах с самым разным содержанием. То есть, от этого самого содержания при моделировании задачи можно абстрагироваться. Перейдём к примерам, иллюстрирующим это замечательное свойство теории графов.

    Пример 6. На кусочке шахматной доски размером 3 Х 3 размещены два белых коня и два чёрных коня так, как показано на рисунке ниже.

    Можно ли переместить коней в состояние, которое изображено на следующем рисунке, не забывая, что две фигуры не могут находиться на одной клетке?

    Решение. В конструируемом графе пары вершин будут связаны отношением "ход коня". То есть, одна вершина - та, из которой конь ушёл, а другая - та, в которую пришёл, а промежуточная клетка буквы "г" будет за пределами этого отношения. Получаем следующий граф:

    И всё же конструкция получилась громозкой. В ней видны клетки шахматной доски, а многие рёбра графа пересекаются. Нельзя ли абстрагироваться от физического вида шахматной доски и вообразить отношения проще? Оказывается, можно. В новом графе соседними вершинами будут те, которые связаны отношением "ход коня", а не соседние по шахматной доске (рисунок ниже).

    Теперь легко увидеть, что ответ на вопрос этой задачи - отрицательный. В начальном состоянии между двумя белыми конями нет чёрного коня, а в конечном состоянии этот чёрный конь должен быть. Рёбра графа размещены так, что два находящихся рядом коня не могут перепрыгнуть друг через друга.

    Пример 7. Задача о волке, козе и капусте. На одном берегу реки находятся человек (Ч), лодка, волк (В), коза (Кз) и капуста (Кп). В лодке одновременно могут находиться человек и не более одного из перевозимых объектов. Человек должен перевезти на другой берег все объекты, соблюдая условие: нельзя оставлять без присмотра волка вместе с козой и козу вместе с капустой.

    Решение. В конструируемом графе вершины - конфигурации, а рёбра - отношение "связь одним плаваньем лодки" между конфигурациями. Конфигурация означает расположение объектов на первоначальном берегу и на противоположном берегу. Каждая конфигурация отображается в виде (A |B ) , где A - объекты, находящиеся на первоначальном берегу, а B - объекты, находящиеся на противоположном берегу. Первоначальная конфигурация, таким образом, - (ЧВКпКз | ) . Например, после переправки на другой берег козы конфигурация будет (ВКп |ЧКз ) . Конечная конфигурация всегда ( |ЧВКпКз ) . Теперь можем построить граф, зная уже, что означают вершины и рёбра:

    Разместим вершины графа так, чтобы рёбра не пересекались, а соседними были вершины, которые связаны отношением на графе. Тогда увидеть отношения будет намного проще (для увеличения рисунка щёлкните по нему левой кнопкой мыши):


    Как видим, существуют два различных непрерывных маршрута из начальной конфигурации в конечную. Поэтому задача имеет два различных решения (и оба правильные).

    Теория графов и важнейшие современные прикладные задачи

    На основе теории графов разработаны методы решения прикладных задач, в которых в виде графов моделируются весьма сложные системы. В этих моделях узлы содержат отдельные компоненты, а рёбра отображают связи между компонентами. Обычно для моделирования транспортных сетей, систем массового обслуживания, в сетевом планировании используются взвешенные графы. Мы о них уже говорили, это графы, в которым дугам присвоены весы.

    Графы-деревья применяются, например, для построения деревьев решений (служат для анализа рисков, анализа возможных приобретений и убытков в условиях неопределённостей). С применением теории графов разработаны и другие многочисленные математические модели для решения задач в конкретных предметных областях.

    Графы и задача о потоках

    Постановка задачи. Имеется система водопроводных труб, представленная графом на рисунке ниже.

    Каждая дуга графа отображает трубу. Числа над дугами (весы) - пропускная способность труб. Узлы - места соединения труб. Вода течёт по трубам только в одном направлении. Узел S - источник воды, узел T - сток. Требуется максимизировать объём воды, протекающей от источника к стоку.

    Для решения задачи о потоках можно воспользоваться методом Форда-Фулкерсона. Идея метода: поиск максимального потока производится по шагам. В начале работы алгоритма поток полагается равным нулю. На каждом последующем шаге значение потока увеличивается, для чего ищется дополняющий путь, по которому поступает дополнительный поток. Эти шаги повторяются до тех пор, пока существуют дополнительные пути. Задача успешно применяется в различных распределённых системах: система электоснабжения, коммуникационная сеть, система железных дорог и других.

    Графы и сетевое планирование

    В задачах планирования сложных процессов, состоящих из множества работ, часть из которых выполняется параллельно, а часть последовательно, широкое применение получили взвешенные графы, известные под названием сети ПЕРТ (PERT).

    PERT - Program (Project) Evaluation and Review Technique - техника оценки и анализа программ (проектов), которая используется при управлении проектами.

    Сеть ПЕРТ - взвешенный ациклический ориентированный граф, в котором каждая дуга представляет работу (действие, операцию), а вес дуги - время, требуемое для её выполнения.

    Если в сети есть дуги (a , b ) и (b , c ) , то работа, представленная дугой (a , b ) , должна быть завершена до начала выполнения работы, представленной дугой (b , c ) . Каждая вершина (v i ) представляет момент времени, к которому должны быть завершены все работы, задаваемые дугами, оканчивающимися в вершине (v i ) .

    В таком графе:

    • одна вершина, не имеющая предшественников, определяет момент времени начала выполнения работ;
    • одна вершина, не имеющая последователей, соответствует моменту времени завершения комплекса работ.

    Путь максимальной длины между этими вершинами графа (из начала в конец процесса выполнения работ), называется критическим путём. Для сокращения времени выполнения всего комплекса работ необходимо найти работы, лежащие на критическом пути, и уменьшить их продолжительность за счёт, например, привлечения дополнительных исполнителей, механизмов, новых технологий.

    Весь блок "Теория графов"