Болезни Военный билет Призыв

Хлорат натрия химические свойства. Натрия хлорат: экотоксичность. Механизмы электрохимического получения

Изобретение относится к области производства хлората натрия, широко используемого в различных областях промышленности. Электролиз раствора хлорида натрия осуществляют сначала в хлорных диафрагменных электролизерах. Образующиеся хлоридно-щелочные растворы и электролитический хлор-газ смешивают с получением хлорид-хлоратного раствора. Полученный раствор смешивают с маточником стадии кристаллизации и направляют на бездиафрагменный электролиз с последующей выпаркой хлорид-хлоратных растворов и кристаллизацией хлората натрия. Продукты диафрагменного электролиза могут частично отводиться для получения из хлор-газа соляной кислоты для подкисления хлоратного электролиза и использования хлоридно-щелочных растворов для орошения санитарных колонн. Технический результат - понижение расхода электроэнергии и возможность организации автономного производства. 1 з.п.ф-лы.

Изобретение относится к области производства хлората натрия, широко используемого в различных областях промышленности. Мировое производство хлората натрия достигает нескольких сот тысяч тонн в год. Хлорат натрия применяется для получения двуокиси хлора (отбеливатель), хлората калия (бертолетова соль), хлоратов кальция и магния (дефолианты), перхлората натрия (полупродукт для производства твердого ракетного топлива), в металлургии при переработке урановой руды и т.д. Известен способ получения хлората натрия химическим способом, при котором растворы гидроксида натрия подвергаются хлорированию с получением хлората натрия. По своим технико-экономическим показателям химический способ не выдерживает конкуренции с электрохимическим, поэтому в настоящее время практически не употребляется (Л.М.Якименко "Производство хлора, каустической соды и неорганических хлорпродуктов", Москва, из-во "Химия", 1974, с. 366). Известен способ получения хлората натрия путем электролиза раствора хлорида натрия в каскаде бездиафрагменных электролизеров с получением хлорид-хлоратных растворов, из которых кристаллический хлорат натрия выделяется методом выпарки и кристаллизации (K.Wihner, L.Kuchler "Chemische Technologie", Bd.1, "Anorganische Technologie", s.729, Munchen, 1970; Л.М.Якименко, Т. А.Серышев "Электрохимический синтез неорганических соединений, Москва, из-во "Химия", 1984, стр. 35-70). Этот способ наиболее близок к предлагаемому изобретению. Основная технологическая стадия, бездиафрагменный электролиз растворов хлорида натрия, протекает с выходом по току 85-87%. Процесс ведут на окисно-рутениевых анодах при температуре 70-80 o C, pH 7 при постоянном подкислении электролита 10%-ным раствором соляной кислоты. Перед подачей на стадию выделения твердого продукта электролит подщелачивают до избытка щелочи 1 г/л с добавлением восстановителя для разрушения коррозионно- активного гипохлорита натрия, всегда присутствующего в продуктах электролиза. Побочным анодным процессом при электролизе хлоридных растворов является выделение Cl 2 , что не только снижает выход по току, но и требует очистки электролизных газов в санитарных колоннах, орошаемых раствором щелочи. Осуществление процесса поэтому связано с существенным расходом соляной кислоты и щелочи: на 1 т хлората натрия тратится ~120 кг 31% соляной кислоты и 44 кг 100% NaOH. По этой же причине хлоратные производства организуются там, где есть хлорный электролиз, поставляющий каустическую соду и электролитический хлор и водород для синтеза соляной кислоты, в то время как зачастую имеется потребность в автономном производстве хлората натрия в точках, удаленных от хлорных производств. Но и там, где хлорное производство и хлоратный электролиз расположены рядом, при остановках и отключениях хлорного электролиза по тем или иным причинам происходит и вынужденное отключение хлоратного электролиза, Таким образом, известный способ имеет существенные недостатки: большие энергетические затраты (не очень высокий выход по току) и невозможность организации автономного производства. Задачей предлагаемого изобретения является создание способа получения хлората натрия электролизом растворов хлорида натрия с пониженными энергетическими затратами. Поставленная задача решается предложенным способом, при котором сначала хлорид натрия перерабатывается в хлорных диафрагменных электролизерах с получением газообразного хлоргаза и электролитических щелоков состава 120-140 г/л NaOH и 160-180 г/л NaCl, которые затем в полных объемах или частично подвергают взаимодействию между собой с получением хлорид-хлоратного раствора 50-60 г/л NaClO 3 и 250-270 г/л NaCl, направляемого на бездиафрагменный электролиз. Процесс хлоратного бездиафрагменного электролиза осуществляют при подкисленнии соляной кислотой. Полученный при этом хлоратный раствор, содержащий и хлорид натрия, направляют на стадии выпарки, а затем кристаллизации хлората. Маточник со стадии кристаллизации вместе с продуктами взаимодействия щелочи и хлора от диафрагменного электролиза направляют на бездиафрагменный хлоратный электролиз. Перед подачей на стадию выделения твердого продукта электролит подщелачивают до избытка щелочи 1 г/л с добавлением восстановителя для разрушения гипохлорита натрия. При частичном отведении продуктов электролиза хлорных диафрагменных электролизеров хлор используется для получения соляной кислоты, применяемой для подкисления хлоратного электролиза, а щелочь используется для орошения санитарных колонн при очистке электролизных газов. При такой схеме 30-35 г хлорида натрия из 300-310 г, содержащихся в каждом литре исходного раствора, перерабатывается в условиях хлорного электролиза. Такая схема обуславливает снижение энергетических затрат, т.к. выход по току хлорного электролиза выше, а напряжение на электролизерах ниже, чем в хлоратном электролизе, и при проведении частично электрохимического окисления хлорида натрия в хлорат в условиях хлорного электролиза улучшаются показатели всего процесса в целом. Кроме того, при использовании описываемой схемы снижаются затраты на охлаждение электролиза, т. к. хлорные электролизеры в охлаждении не нуждаются. Заметим, что более глубокое срабатывание хлорида в условиях хлорного электролиза, чем оговорено (около 10%), приводит к невозможности сбалансировать технологическую схему по хлоридам, хлоратам и воде и потому не имеет смысла. В рамках предложенной схемы возможно получение дополнительного эффекта при подаче на хлоратный электролиз растворов с увеличенной по NaClO 3 концентрацией, получаемых из более концентрированных по NaОH, чем диафрагменные щелока, растворов щелочи, для хлорирования которых может утилизироваться хлор, содержащий инерты. Электрощелока хлорного электролиза могут смешиваться с хлор-газом не полностью, а частично. При этом часть электрощелоков диафрагменного электролиза, не направленная на хлорирование, отводится для использования в санитарных колоннах, а эквивалентная часть электролитического хлора может быть использована для синтеза соляной кислоты. Направление электрощелоков из диафрагменных электролизеров в санитарные колонны, а электролитического хлор-газа на получение соляной кислоты решает проблему автономного хлоратного производства, так как поставка щелочи и кислоты со стороны уже не будет требоваться. Доля хлорида натрия, перерабатываемая в хлорных электролизерах, определяется тем, будут ли полученные продукты использоваться только для получения в результате их взаимодействия хлорид-хлоратных щелоков, после смешения с маточником со стадии кристаллизации на бездиафрагменный электролиз, или электрощелока хлорных электролизеров будут использоваться только для подщелачивания, а электролитический хлор - для синтеза хлорной кислоты для подкисления в схеме хлоратного электролиза, или часть продуктов будет использоваться в одном направлении, а часть в другом. Преимуществами предложенного способа являются: 1) снижение энергетических затрат за счет проведения начальной стадии электролиза с большим выходом по току и при меньшем напряжении, чем в обычном хлоратном электролизе: выход по току 92-94% и напряжение 3,2 В в хлорном электролизе против 85-90% и 3,4 В и выше соответственно в хлоратном; 2) возможность получения одновременно с основным продуктом - хлоратом натрия - щелочных растворов, необходимых по технологической схеме для подщелачивания и орошения санитарных колонн; 3) возможность использования хлора, получаемого в хлорных электролизерах, для получения на месте соляной кислоты для подкисления хлоратного электролиза. Пример В опытном электролизере ведут хлорный диафрагменный электролиз раствора хлорида натрия концентрации 300 г/л на окисно-рутениевых анодах при плотности тока 1000 А/м 2 и температуре 90 o C. Полученные электролитические щелока, содержащие 140 г/л NaOH и 175 г/л NaCl, смешивают с анодным хлор-газом и получают хлорид-хлоратный раствор состава 270 г/л NaCl и 50 г/л NaClO 3 . Этот раствор подают далее на бездиафрагменный хлоратный электролиз, проводимый в каскаде из 4 электролизеров с окисно-рутениевыми анодами при плотности тока 1000 А/м 2 и температуре 80 o C с получением конечного раствора следующего состава: 105 г/л NaCl и 390 г/л NaClO 3 . Таким образом, из одного 1 л исходного хлоридного раствора нарабатывается с учетом 10% уменьшения объема раствора за счет уноса паров воды с электролизными газами и испарения 355 г хлората натрия, из которых 50 г (14,1%) получилось после смешения продуктов хлорного диафрагменного электролиза, а 305 (85,9%) наработано в процессе хлоратного электролиза. Напряжение на хлорном электролизере было 3,3 В при выходе по току 93%. Среднее напряжение на хлоратном электролизере составило 3,4 В при выходе по току 85%. Удельный расход электроэнергии W (кВтч/т), вычисленный по данным эксперимента по формуле W = 1000E/mBT, где E - напряжение на ячейке (B); m - электрохимический эквивалент (г/Ач); BT - выход по току в долях единицы,
составил для хлорного электролиза 2517 кВтч/т, а для хлоратного - 5996 кВтч/т, что с учетом доли хлората, выработанного в результате смешения продуктов хлорного электролиза, дает 5404,9 кВтч/т. Расход электроэнергии без применения хлорного электролизера составил на этой же установке 6150 кВтч/т. Таким образом, снижение энергетических затрат составило 12,1%.

Формула изобретения

1. Способ получения хлората натрия путем электролиза раствора хлорида натрия с последующей выпаркой хлорид-хлоратных растворов и кристаллизацией хлората натрия с возвратом маточника стадии кристаллизации в процесс, отличающийся тем, что сначала электролиз раствора хлорида натрия осуществляют в хлорных диафрагменных электролизерах с получением щелочно-хлоридных растворов и электролитического хлор-газа, которые смешивают с получением хлорид-хлоратного раствора и направляют после смешения с маточником стадии кристаллизации на бездиафрагменный электролиз. 2. Способ по п.1, отличающийся тем, что продукты диафрагменного электролиза отводят частично для получения из хлор-газа соляной кислоты для подкисления хлоратного электролиза и использования хлоридно-щелочных растворов для орошения санитарных колонн.

Перхлорат натрия — это кристаллическое вещество без цвета и запаха. Обладает гигроскопичностью и образует несколько кристаллогидратов. С химической точки зрения, представляет собой натриевую соль хлорной кислоты. Не горюч, но обладает токсичным действием. Химическая формула перхлората натрия - NaClO 4 .

Получение

Описываемое вещество может быть получено как химическим путем, так и электрохимическим. В первом случае обычно пользуются обычной реакцией обмена между хлорной кислотой и гидроксидом или карбонатом натрия. Также возможно термическое разложение хлората натрия. При 400-600 °C он образует перхлорат и хлорид натрия. Но данный способ довольно опасен, так как есть угроза взрыва при протекании реакции.

Теоретически можно осуществлять химическое окисление хлората натрия. Самым эффективным окислителем в данном случае будет оксид свинца (IV) в кислой среде. Обычно в реакционную смесь добавляют хлорную кислоту.

Чаще всего в промышленности пользуются электрохимическим способом. Он дает более чистый продукт, да и в целом более эффективен. В качестве сырья используют все тот же хлорат натрия, который при окислении на платиновом аноде дает перхлорат. Для экономичности процесса хлорат натрия получают на более дешевых электродах типа графитового. Существует также перспективный метод получения перхлората натрия в одну стадию. В качестве анода здесь используется перекись свинца.

Механизмы электрохимического получения

Полностью механизм окисления хлората в перхлорат до конца еще не изучен, существуют лишь предположения относительно него. Исследования ведутся до сих пор.

Наиболее обоснованным является вариант, основанным на предположении об отдаче электрона на аноде хлорат-иона (ClO 3 -), в результате которого образуется радикал ClO 3 . Он в свою очередь взаимодействует с водой, образуя перхлорат.

Это предположение высказывается в ряде авторитетных научных работ. Также оно подтверждается результатами исследований процессов окисления хлоратов до перхлоратов в водных растворах, меченных тяжелыми изотопами кислорода 18 O. Было выяснено, что 18 O входит сначала в состав хлората и только затем в ходе окислительного процесса переходит в состав перхлорат-иона. Но необходимо учитывать, что смена материала анода (например, с платинового на графитовый) может также изменить механизм реакции.

Второй вариант протекания процесса заключается в окислении ионов хлората кислородом, который образуется при отдаче электронов гидроксид-ионом.

Согласно этому варианту, скорость реакции напрямую зависит от концентрации хлората в электролите, т. е. с понижением его концентрации скорость должна увеличиваться.

Существует также вариант, основанный на одновременной отдаче электронов как хлорат-ионом, так и гидроксид-ионом. Образующиеся в результате реакций радикалы обладают высокой активностью и окисляются кислородом, который выделяется от OH - .

Физические свойства

Перхлорат натрия очень хорошо растворим в воде. Его растворимость гораздо сильнее, чем у других перхлоратов. По этой причине при производстве перхлоратов сначала получают перхлорат натрия, а потом при необходимости переводят его в другие соли хлорной кислоты. Также он хорошо растворим в жидком аммиаке, ацетоне, перекиси водорода, этаноле и этиленгликоле.

Как уже было сказано выше, он обладает гигроскопичностью, и при гидролизе перхлорат натрия образует кристаллогидраты (моно- и дигидраты). Также может образовывать сольваты с другими соединениями. При температуре 482 °C плавится с разложением на хлорид натрия и кислород. При использовании добавок пероксида натрия, оксида марганца (IV), оксида кобальта (II, III) температура разложения понижается до 150-200 °C.

Химические свойства

Натриевая соль хлорной кислоты — очень сильный окислитель, настолько, что окисляет многие органические вещества до углекислого газа и воды.

Обнаружить перхлорат-ион можно с помощью реакции с солями аммония. При прокаливании смеси протекает реакция:

3NaClO4 + 8NH 4 NO 3 → 3KCl + 4N 2 + 8HNO 3 + 12H 2 O.

Еще один способ обнаружения — это реакция обмена с калием. Перхлорат калия гораздо менее растворим в воде, поэтому будет выпадать в осадок.

NaClO 4 + KCl → KClO 4 ↓ + NaCl.

С другими перхлоратами может образовывать комплексные соединения: Na 2 , Na, Na.

Применение

Из-за образования кристаллогидратов, применение перхлората натрия крайне затруднено. В основном его применяют как гербицид, хотя последнее время все меньше. Почти весь перхлорат натрия переводят в другие перхлораты (например, калия или аммония) или хлорную кислоту и используют в синтезе многих других соединений за счет сильных окислительных свойств. Также его можно использовать в аналитической химии для определения и осаждения катионов калия, рубидия и цезий, причем как из водных, так и из спиртовых растворов.

При термическом разложении всех перхлоратов выделяется кислород. Благодаря этому, соли можно применять как источник кислорода в ракетных двигателях. Некоторые перхлораты могут использоваться во взрывотехнике. Перхлорат калия применяется в медицине для лечения гипертиреоза. Это заболевание обусловлено повышенной функцией щитовидной железы, а любой перхлорат обладает свойством уменьшать деятельность этой железы, что и необходимо для приведения организма в норму.

Опасность

Сам по себе перхлорат натрия негорючий, но при взаимодействии с некоторыми другими веществами может привести к пожару или взрыву. В огне он может выделять токсичные газы или пары (хлор или хлороксиды). Тушение можно производить водой.

Перхлорат натрия при комнатной температуре практически не испаряется, но при его распылении он может попасть в организм. При его вдыхании возникает кашель, раздражение слизистых оболочек. При попадании на кожу появляются покраснения. В качестве первой помощи, рекомендуется промывать места попадания обильным количеством воды с мылом, а также избавиться от загрязненной одежды. При длительном воздействии на организм, он попадает в кровь и приводит к образования метгемоглобина.

При введении животным (в частности грызунам) 0,1 г перхлората натрия у них повысилась рефлекторная возбудимость, появились судороги и столбняк. После введения 0,22 г крысы погибали через 10 часов. При введении такой же дозы голубям, у них появлялись только мягкие симптомы отравления, но через 18 часов они погибали. Это говорит о том, что отправление перхлоратом натрия развивается очень медленно.

106,44 г/моль Плотность 2,490; 2,493 г/см³ Термические свойства Т. плав. 255; 261; 263 °C Т. кип. разл. 390 °C Мол. теплоёмк. 100,1 Дж/(моль·К) Энтальпия образования -358 кДж/моль Химические свойства Растворимость в воде 100,5 25 ; 204 100 г/100 мл Растворимость в этилендиамине 52,8 г/100 мл Растворимость в диметилформамиде 23,4 г/100 мл Растворимость в моноэтаноламине 19,7 г/100 мл Растворимость в ацетоне 0,094 г/100 мл Классификация Рег. номер CAS 7775-09-9 PubChem Рег. номер EINECS Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). SMILES

Cl(=O)=O]

InChI
Рег. номер EC 231-887-4 Кодекс Алиментариус Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). RTECS FO0525000 ChemSpider Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Хлорат натрия - неорганическое соединение, соль металла натрия и хлорноватой кислоты с формулой NaClO 3 , бесцветные кристаллы, хорошо растворимые в воде.

Получение

  • Хлорат натрия получают действием хлорноватой кислоты на карбонат натрия :
texvc не найден; См. math/README - справку по настройке.): \mathsf{Na_2CO_3 + 2\ HClO_3\ \xrightarrow{\ }\ 2\ NaClO_3 + H_2O + CO_2\uparrow }
  • или пропуская хлор через концентрированный раствор гидроксид натрия при нагревании:
Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{6\ NaOH + 3\ Cl_2\ \xrightarrow{\ }\ NaClO_3 + 5\ NaCl + 3\ H_2O }
  • Электролиз водных растворов хлорида натрия :
Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{6\ NaCl + 3\ H_2O \ \xrightarrow{e^-}\ NaClO_3 + 5\ NaCl + 3\ H_2\uparrow }

Физические свойства

Хлорат натрия - бесцветные кристаллы кубической сингонии , пространственная группа P 2 1 3 , параметры ячейки a = 0,6568 нм, Z = 4.

При 230-255°С переходит в другую фазу, при 255-260°С переходит в моноклинную фазу.

Химические свойства

  • Диспропорционирует при нагревании:
Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{10\ NaClO_3 \ \xrightarrow{390-520^oC}\ 6\ NaClO_4 + 4\ NaCl + 3\ O_2\uparrow }
  • Хлорат натрия - сильный окислитель, в твёрдом состоянии в смеси с углеродом , серой и другими восстановителями детонирует при нагревании или ударе.

Применение

  • Хлорат натрия нашел применение в пиротехнике.

Напишите отзыв о статье "Хлорат натрия"

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М .: Советская энциклопедия, 1992. - Т. 3. - 639 с. - ISBN 5-82270-039-8.
  • Справочник химика / Редкол.: Никольский Б.П. и др.. - 2-е изд., испр. - М.-Л.: Химия, 1966. - Т. 1. - 1072 с.
  • Справочник химика / Редкол.: Никольский Б.П. и др.. - 3-е изд., испр. - Л. : Химия, 1971. - Т. 2. - 1168 с.
  • Рипан Р., Четяну И. Неорганическая химия. Химия металлов. - М .: Мир, 1971. - Т. 1. - 561 с.

Отрывок, характеризующий Хлорат натрия

– Ну и где же Вы «гуляли», мадонна Изидора? – наигранно милым голосом спросил мой мучитель.
– Хотела навестить свою дочь, ваше святейшество. Но не смогла...
Мне было совершенно безразлично, что он думал, и сделала ли его моя «вылазка» злым. Душа моя витала далеко, в удивительном Белом Городе, который показывал мне Истень, а всё окружающее казалось далёким и убогим. Но Караффа надолго уходить в мечты, к сожалению, не давал... Тут же почувствовав моё изменившееся настроение, «святейшество» запаниковал.
– Впустили ли Вас в Мэтэору, мадонна Изидора? – как можно спокойнее спросил Караффа.
Я знала, что в душе он просто «горел», желая быстрее получить ответ, и решила его помучить, пока он мне не сообщит, где сейчас находится мой отец.
– Разве это имеет значение, Ваше святейшество? Ведь у Вас находится мой отец, у которого Вы можете спросить всё, на что естественно, не отвечу я. Или Вы ещё не успели его достаточно допросить?
– Я не советую Вам разговаривать со мной подобным тоном, Изидора. От того, как Вы намерены себя вести, будет во многом зависеть его судьба. Поэтому, постарайтесь быть повежливее.
– А как бы Вы себя вели, если бы вместо моего, здесь оказался Ваш отец, святейшество?..– стараясь поменять, ставшую опасной тему, спросила я.
– Если бы мой отец был ЕРЕТИКОМ, я сжёг бы его на костре! – совершенно спокойно ответил Караффа.
Что за душа была у этого «святого» человека?!.. И была ли она у него вообще?.. Что же тогда было говорить про чужих, если о своём родном отце он мог ответить такое?..
– Да, я была в Мэтэоре, Ваше святейшество, и очень жалею, что никогда уже более туда не попаду... – искренне ответила я.
– Неужто Вас тоже оттуда выгнали, Изидора? – удивлённо засмеялся Караффа.
– Нет, Святейшество, меня пригласили остаться. Я ушла сама...
– Такого не может быть! Не существует такого человека, который не захотел бы остаться там, Изидора!
– Ну почему же? А мой отец, святейшество?
– Я не верю, что ему было дозволено. Я думаю, он должен был уйти. Просто его время, вероятно, закончилось. Или недостаточно сильным оказался Дар.
Мне казалось, что он пытается, во что бы то ни стало, убедить себя в том, во что ему очень хотелось верить.
– Не все люди любят только себя, знаете ли... – грустно сказала я. – Есть что-то более важное, чем власть или сила. Есть ещё на свете Любовь...
Караффа отмахнулся от меня, как от назойливой мухи, будто я только что произнесла какую-то полную чушь...
– Любовь не управляет, миром, Изидора, ну, а я желаю им управлять!
– Человек может всё... пока не начинает пробовать, ваше святейшество – не удержавшись, «укусила» я.
И вспомнив что-то, о чём обязательно хотела узнать, спросила:
– Скажите, Ваше святейшество, известна ли Вам правда о Иисусе и Магдалине?
– Вы имеете в виду то, что они жили в Мэтэоре? – я кивнула. – Ну, конечно же! Это было первое, о чём я у них спросил!
– Как же такое возможно?!.. – ошеломлённо спросила я. – А о том, что они не иудеи, Вы тоже знали? – Караффа опять кивнул. – Но Вы ведь не говорите нигде об этом?.. Никто ведь об этом не знает! А как же ИСТИНА, Ваше святейшество?!..
– Не смешите меня, Изидора!.. – искренне рассмеялся Караффа. – Вы настоящий ребёнок! Кому нужна Ваша «истина»?.. Толпе, которая её никогда не искала?!.. Нет, моя дорогая, Истина нужна лишь горстке мыслящих, а толпа должна просто «верить», ну, а во что – это уже не имеет большого значения. Главное, чтобы люди подчинялись. А что им при этом преподносится – это уже является второстепенным. ИСТИНА опасна, Изидора. Там, где открывается Истина – появляются сомнения, ну, а там где возникают сомнения – начинается война... Я веду СВОЮ войну, Изидора, и пока она доставляет мне истинное удовольствие! Мир всегда держался на лжи, видите ли... Главное, чтобы эта ложь была достаточно интересной, чтобы смогла за собой вести «недалёкие» умы... И поверьте мне, Изидора, если при этом Вы начнёте доказывать толпе настоящую Истину, опровергающую их «веру» неизвестно во что, Вас же и разорвёт на части, эта же самая толпа...
– Неужели же столь умного человека, как Ваше святейшество, может устраивать такое самопредательство?.. Вы ведь сжигаете невинных, прикрываясь именем этого же оболганного, и такого же невинного Бога? Как же Вы можете так бессовестно лгать, Ваше святейшество?!..

Хлораты натрия, кальция и магния все еще применяют в качестве неселективных гербицидов - для очистки железнодорожного полотна, промплощадок и др.; как дефолианты при уборке хлопка. Кислотное разложение хлоратов используют при получении двуокиси хлора "на месте" (on-site) для отбеливания высокопрочной целлюлозы.

K2 К сожалению, серьезным недостатком этого способа является низкое качество бытовых дезинфицирующих средств и отбеливателей. После смягчения политики "обязательной стандартизации" производители средств типа "белизна" стали использовать собственные технические условия, понизив содержание гипохлорита в продукте со стандартных 5% масс. до 3% и менее. Теперь для получения того же количества хлората с хорошим выходом потребуется не просто израсходовать намного больше "белизны" но и удалить большую часть воды из раствора. Вероятно, наиболее удобным может быть предварительное концентрирование "белизны" частичным вымораживанием.

Профессиональные жидкие средства для нейтрализации стоков на судах содержат до 40% гипохлорита натрия.

K3 Диспропорционирование гипохлорита в хлорид и хлорат протекает с высокой скоростью при pH
K4 Действительно, высокоэффективный источник питания значительной мощности для электролиза - половина успеха дела и тема для особого разговора.

Здесь же хотелось бы напомнить о необходимости соблюдать правила электробезопасности.

Работы, связанные с электролизом в значительных масштабах, считаются особо опасными относительно поражения электрическим током. Это связано с тем, что контакт кожи экспериментатора с проводящим электролитом практически неизбежен. Выделение газов на электродах вызывает образование коррозионно-активных аэрозолей электролита, которые способны оседать на компонентах электрооборудования, особенно при использовании принудительного воздушного охлаждения. Последствия могут быть весьма печальны - от коррозии металлических частей и выхода блока питания из строя до пробоя изоляции с попаданием сетевого напряжения на электролизер и всеми последствиями для экспериментатора.

Ни в коем случае не следует устанавливать высоковольтные части установки в непосредственной близости от электролизера. Все компоненты источника питания следует располагать на достаточном расстоянии от электролизера и таким образом, чтобы полностью исключить как попадание на них электролита в случае аварии электролизера, так и осаждение токопроводящих аэрозолей. При этом сильноточные провода от источника до электролизера должны иметь достаточное сечение, соответствующее току процесса. Все проводники (и их соединения), непосредственно связанные с электросетью, должны быть герметично изолированы влагостойкой изоляцией.

Обязательна гальваническая развязка электролизера от электросети. Обычный трансформатор обеспечивает адекватную изоляцию, но категорически запрещается питание электролизера непосредственно от автотрансформаторов типа ЛАТР и т.п., так как при этом электролизер может оказаться прямо соединенным с фазным проводом сети. Однако ЛАТР (или бытовой автотрансформатор) вполне можно использовать для регулирования напряжения на первичной обмотке основного трансформатора. Следует только позаботиться о том, чтобы мощность ЛАТРа была не меньше мощности основного трансформатора.

При долговременной работе установки защита электронных компонентов от перегрева и короткого замыкания была бы полезной. Для начала вполне возможно ограничиться установкой плавкого предохранителя в первичной обмотке трансформатора на ток, соответствующий его номинальной мощности. Питание на электролизер также разумно подавать через соответствующий плавкий предохранитель (лучше - регулируемый электромагнитный расцепитель), имея в виду, что короткое замыкание в электролизере вполне возможно.

Вопрос о необходимости заземления установки в данном случае не такой простой. Дело в том, что во многих жилых помещениях заземление изначально отсутствует и его непросто устроить собственными силами. В некоторых случаях вместо заземления хитрые электрики организуют "зануление", соединяя шину заземления и нейтраль сети непосредственно у потребителя. При этом "заземляемый" прибор оказывается непосредственно подключен к токоведущему контуру сети. В наших условиях можно рекомендовать отдать приоритет качественной изоляции электролизера от сети и экспериментатора от всей установки.

Правилами безопасности не следует пренебрегать еще и по той причине, что длительный эксперимент в любительской лаборатории всегда привлекает внимание других людей, навыки и поведение которых экспериментатор не может контролировать. Помните об окружающих и работайте безопасно.

Также зарегистрирован в: США

Основные сведения:

Тип пестицида Гербицид, Почвенный стерилянт Группа по химическому строению Неорганические соединения Характер действия Регистрационный номер CAS 7775-09-9 Шифр КФ (Код Фермента) 231-887-4 Шифр Международного совместного аналитического совета по пестицидам (CIPAC) 7 Химический код Агентства по охране окружающей среды США (US EPA) 073301 Химическая формула ClNaO 3 SMILES .Cl(=O)=O Международный химический идентификатор (InChI) InChI=1/ClHO3.Na/c2-1(3)4;/h(H,2,3,4);/q;+1/p-1 Структурная формула

Молекулярная масса (г/моль) 106.44 Название по ИЮПАК sodium chlorate Название по CAS chloric acid натриевая соль Другая информация - Устойчивость к гербициду по HRAC Не известно Устойчивость к инсектициду по IRAC Не определяется Устойчивость к фунгициду по FRAC Не определяется Физическое состояние
Широкий спектр, системный, который перемещает ко всем частям сорняка. Phytoxic ко всем предприятиям.
Белый порошок

Выпуск:

натрия хлорат: поведение в окружающей среде

650000 A5 Высокий Insoluble A5 - Most organic Растворительs - 255 A5 - Разлагается до кипения A4 - 260 A3 - Огнеопасность не высокая A5 - P: 1.26 X 10 -03 Рассчитывается - Log P: -2.9 A5 Низкий 2.499 L3 - -2 A4 - 5.2 X 10 -06 A2 Intermediate state 5.2 X 10 -09 A3 - Не летуч 3.50 X 10 -16 Рассчитывается Не летуч ДТ50 (типичный) 200 F3 Устойчивый ДТ50 (лабораторный при 20 o C): 143.3 A5 Устойчивый ДТ50 (полевой): - - - ДТ90 (лабораторный при 20 o C): - - - ДТ90 (полевой): - - - Примечание: Значение: Стабильный A5 Стабильный Примечание: Значение: Стабильный A5 Очень устойчивый Примечание: - - - - - - 6.90 Рассчитывается Высокая выщелачиваемость Значение: 4.51 X 10 +01 Рассчитывается - Примечание: - Рассчитывается Средний 10 F3 Very mobile Kf: - - 1/n: - - Примечание: - - -
Показатель Значение Пояснение
Растворимость в воде при 20 o C (мг/л)
Растворимость в органических растворителях при 20 o C (мг/л)
Температура плавления (o C)
Температура кипения (o C)
Температура разложения (o C)
Температура вспышки (o C)
Коэффициент распределения в системе октанол/вода при pH 7, 20 o C
Удельная плотность (г/мл) / Удельный вес
Константа диссоциации (pKa) при 25 o C
Примечание: Very Сильная кислота
Давление паров при 25 o C (МПа)
Константа закона Генри при 25 o C (Па*м 3 /моль)
Константа закона Генри при 20 o C (безразмерная)
Период распада в почве (дни)
По данным лабораторных исследований евросоюза ДТ50 составляет 46.7-314.6 дней
Водный фотолиз ДТ50 (дни) при pH 7
-
Водный гидролиз ДТ50 (дни) при 20 o C и pH 7
Not senstive to pH
Водное осаждение ДТ50 (дни)
Только водная фаза ДТ50 (дни)
Индекс потенциального вымывания GUS
Индекс роста концентрации в грунтовых водах SCI (мкг/л) при дозе внесения 1 кг/га (л/га)
-
Potential for particle bound transport index
Koc - коэффициент распределения органического углерода (мл/г)
pH устойчивость:
Примечание:
Изотерма адсорбции Фрейндлиха -
-
Максимальное УФ-поглощение (л/(моль*см))

натрия хлорат: экотоксичность

BCF: - - CT50 (дни): - - - Рассчитывается Низкий > 5000 A5 Крыса Низкий (мг/кг): - - (ppm пищи): - - 2510 A5 Утка кряква Низкий - - - 10000 G2 Не известные виды Низкий 500 A5 Данио рерио - 919.3 A5 Низкий 500 A5 Дафния магна (Дафния большая, Блоха водяная большая) - - - - - - - - - - - - - 134 A5 Ряска малая Низкий 1595 A5 Зеленые водоросли (Scenedesmus subspicatus) Низкий - - - > 75 A5 Орально Умеренно > 750 A5 Умеренно - - - Другие почвенные макро-организмы, например Ногохвостки LR50 / EC50 / NOEC / Действие (%) - - - LR50 (г/га): 84.4 A5 Хищный клещ Умеренно опасен at 1 кг/га Действие (%): - - - LR50 (г/га): 250.6 A5 Наездник Умеренно опасен at 1 кг/га Действие (%): - - - Минерализация азота: -47Действие (%)
Минерализация углерода: 10.4Действие (%) A5 [Доза: 1.67 g/kg почва, 100 дней] - NOEAEC мг/л: - - - NOEAEC мг/л: - - -
Показатель Значение Источник / Качественные показатели / Другая информация Пояснение
Коэффициент биоконцентрации -
Потенциал биоаккумуляции
ЛД50 (мг/кг)
Млекопитающие - Короткопериодный пищевой NOEL -
Птицы - Острая ЛД50 (мг/кг)
Птицы - Острая токсичность (СК50 / ЛД50)
Рыбы - Острая 96 часовая СК50 (мг/л)
Рыбы - Хроническая 21 дневная NOEC (мг/л)
Водные беспозвоночные - Острая 48 часовая ЭК50 (мг/л)
Водные беспозвоночные - Хроническая 21 дневная NOEC (мг/л)
Водные ракообразные - Острая 96 часовая СК50 (мг/л)
Донные микроорганизмы - Острая 96 часовая СК50 (мг/л)
NOEC , static, Вода (мг/л)
Донные микроорганизмы - Хроническая 28 дневная NOEC , Осадочная порода (мг/кг)
Водные растения - Острая 7 дневная ЭК50 , биомасса (мг/л)
Водоросли - Острая 72 часовая ЭК50 , рост (мг/л)
Водоросли - Хроническая 96 часовая NOEC , рост (мг/л)
Пчелы - Острая 48 часовая ЛД50 (мкг/особь)
Почвенные черви - Острая 14-дневная СК50 (мг/кг)
Почвенные черви - Хроническая 14-дневная максимально недействующая концентрация вещества, размножение (мг/кг)
Другие Членистоногие (1)
Другие Членистоногие (2)
Почвенные микроорганизмы
Имеющиеся данные по мезомиру (мезокосму)

натрия хлорат: здоровье человека

Основные показатели:

> 5000 A5 Крыса Низкий > 2000 A5 Крыса - > 3.9 A5 Крыса - Не определен A5 - Не определен A5 - 0.35 A5 Крыса, SF=200 - - - - - - - - - - Общие: Профессиональные:
Показатель Значение Источник / Качественные показатели / Другая информация Пояснение
Млекопитающие - Острая оральная ЛД50 (мг/кг)
Млекопитающие - Кожная ЛД50 (мг/кг массы тела)
Млекопитающие - Ингаляционная СК50 (мг/л)
ДСД - допустимая суточная доза (мг/кг массы тела в день)
ARfD - среднесуточная норма потребления (мг/кг массы тела в день)
AOEL - допустимый уровень системного воздействия на оператора
Поглощение кожей (%)
Директива по Опасным Веществам 76/464/ЕС
Виды ограничений
по категории
,
Примеры Европейских