Болезни Военный билет Призыв

Хиральность в биологии. Бутин К.П. Теоретическая стереохимия. Симметрия хиральных молекул

Наряду со структурными изомерами в ряду алканов существуют пространственные изомеры. Это можно представить на примере 3-метилгексана.

Атом углерода, обозначенный С*, соединён с четырьмя разными группами. В этом углеводороде при одном и том же порядке связывания атомов алкильные группы могут быть по-разному расположены в пространстве около атома углерода С*. Существует несколько способов изображения пространственных изомеров на плоскости (рис. 6.1, 6.2).

Рис. 6.1. Объемное изображение с помощью «клиньев»

Рис. 6.2. Проекционные формулы Фишера

На рисунке 6.2 в центре находится атом углерода С*, горизонтальной линией обозначена связь между углеродом С* и группами, выступающими перед плоскостью рисунка, а вертикальной - между атомом С* и группами, расположенными за плоскостью рисунка. Проекции Фишера можно поворачивать только в плоскости рисунка и только на 180 о, но не на 90 о или 270 о. Этими формулами изображены два различных соединения. Они отличаются друг от друга так же, как предмет и его зеркальное изображение или как левая и правая рука. Левая и правая руки - два очень похожих друг на друга предмета, но совместить их невозможно (не надеть левую перчатку на правую руку), значит - это два разных объекта.

Два соединения: предмет и его зеркальное изображение (I и II), несовместимые друг с другом, называются энантиомерами (от греческого “энантио” – противоположный).

Свойство соединения существовать в виде энантиомеров называется хиральностью (от греческого “хирос” - рука), а само соединение - хиральным.

Молекула 3-метилгексана не имеет плоскости симметрии и поэтому может существовать в виде энантиомеров (см. рис. 6.1).

Молекула обладает хиральностью, если она не имеет плоскости симметрии. Существует ряд элементов структуры, которые могут сделать молекулу не идентичной своему зеркальному изображению. Наиболее важным из них является хиральный атом углерода.

Хиральный атом или хиральный центр - это атом углерода, связанный с четырьмя различными группами и обозначаемый С*.

Молекула, в которой при атоме углерода находятся две или более одинаковых групп, имеет плоскость симметрии и, следовательно, не обладает хиральностью, поскольку молекула и ее зеркальное изображение идентичны. Такие молекулы называются ахиральными .

Например, изопентан не может существовать в виде энантиомеров и не обладает хиральностью.

Энантиомеры проявляют одинаковые физические свойства, кроме одного. Например, молекула 2-бромбутана существует в виде двух энантиомеров. Они имеют одинаковые температуры кипения, плавления, плотность, растворимость, показатели преломления. Отличить один энантиомер от другого можно по знаку вращения плоскополяризованного света. Энантиомеры вращают плоскость поляризованного света на один и тот же угол, но в разные стороны: один – по часовой стрелке, другой – на такой же угол, но против часовой стрелки.

Энантиомеры обладают одинаковыми химическими свойствами, скорость их взаимодействия с реагентами, не обладающими хиральностью, одинакова. В случае реакции с оптически активным реагентом скорости реакций энантиомеров различны. Иногда они отличаются настолько, что реакция данного реагента с одним из энантиомеров не протекает совсем.

8.2.2.б. Симметрийное определение хиральности

Теперь рассмотрим вопрос: к каким точечным группам симметрии должна принадлежать молекула, чтобы она была хиральной? Другими словами, каким должен быть характер диссимметрии молекулы, и какие элементы симметрии обязательно должны отсутствовать? Прежде всего очевидно, что хиральна любая истинно асимметрическая молекула, относящаяся к группе С 1 , не имеющая никаких элементов симметрии, кроме идентичности (и оси С 1 , т.к. С 1 Е). Очевидно, также, что молекулы, имеющие плоскость симметрии (s) или центр симметрии (i) ахиральны, поскольку они состоят из двух одинаковых "половинок" и в зеркальном отображении левая и правая половинки преобразуются друг в друга или без поворотов (при наличии плоскости), или с поворотом на 180 0 (при наличии центра инверсии). Молекулы, имеющие зеркально-поворотные оси (S n) также совмещаются со своим зеркальным отображением, и поэтому ахиральны. Следовательно, хиральны только молекулы, относящиеся к аксиальным точечным группам С n и D n .

Таким образом, можно сформулировать следующий симметрийный критерий хиральности:

любая молекула, которая не имеет несобственной оси вращения S n хиральна.

Старое определение оптической изомерии, а именно, "у молекулы не должно быть ни плоскости, ни центра симметрии", недостаточно точно. Поскольку S 1 s и S 2 i, если у молекулы нет несобственной оси вращения, то у нее не должно быть ни s , ни i. Существуют молекулы, у которых нет ни i, ни s , но есть ось S n , и которые поэтому ахиральны. Примером является молекула 1,3,5,7-тетраметилциклооктатетраена (XI), у которой нет ни плоскости, ни центра симметрии, но есть зеркально-поворотная ось S 4 . Она оптически неактивна.

Впервые доказательство справедливости данного выше определения хиральных молекул получено при исследовании изомерных четвертичных аммонийных солей со спирановым атомом азота IV, V, VII и IX. Изомеры IV и V асимметричны (группа C 1), изомер VII диссимметричен (группа D 2). Поэтому эти три изомера должны быть хиральными. И действительно, они были получены в оптически активной форме. Однако изомер VIII относится к группе S 4 , т.е. ахирален, и получить его в оптически активной форме нельзя.

8.2.2.в. Правила классификации молекул по симметрии

Структура молекул органических соединений бывает настолько сложной, что поиск возможных элементов симметрии часто представляет собой очень трудную задачу. Поэтому необходим какой-либо разумный практически метод последовательных действий при классификации молекул по точечным группам симметрии. Ниже описана схема метода, предложенного Ф.Коттоном в 1971 г.

1) Сначала необходимо определить, принадлежит ли молекула к одной из следующих групп: (СҐ v (симметрия конуса), DҐ h (симметрия цилиндра), I h , O h , T d (тип 4, табл. 8.1). Эти группы условно назовем "особые". Отметим, что к группе СҐ v или DҐ h принадлежат только линейные молекулы, например H-C C-Cl (СҐ v), H-C C-H, Cl-C C-Cl (DҐ h). и т.п.

2) Если молекула не принадлежит к одной из особых групп, необходимо поискать собственную ось вращения С n . Обнаружив такую ось, переходим к операции (3). Если собственной поворотной оси нет, необходимо искать центр симметрии i или зеркальную плоскость s . Если у молекулы окажется центр инверсии, она принадлежит к точечной группе С i , а если окажется зеркальная плоскость, - к точечной группе С s . Если у молекулы нет элементов симметрии (кроме Е), она относится к группе C 1 .

3) Далее находим главную ось С n , т.е. ось с наибольшим значением n. Определяем, есть ли зеркально-поворотная ось S 2n , совпадающая с главной осью. Если она существует, а других элементов, за исключением, возможно, i нет, молекула принадлежит к одной из групп S n , где n - четное число. Если ось S 2n есть, но имеются и другие элементы, или если элемент S 2n отсутствует, необходимо перейти к операции (4).

4) Ищем набор из n осей второго порядка, лежащих в плоскости, перпендикулярной С n . Если такой набор обнаружен, молекула принадлежит к одной из групп D n , D nh или D nd . Тогда переходим к операции (5). Если же таких оcей нет, молекула принадлежит к группе С n , или C nh , или C nv . Тогда переходим к операции (6).

5) Если у молекулы есть плоскость симметрии s h , перпендикулярная главной оси, она принадлежит к группе D nh . Если такого элемента нет, необходимо искать набор из n диагональных плоскостей s d (т.е. плоскостей симметрии, в которых находится главная ось, но не лежит ни одна из перпендикулярных осей второго порядка). Если отсутствуют и s d ,и s h , молекула принадлежит к группе D n .

6) Если молекула имеет s h , она принадлежит к точечной группе C nh . Если s h отсутствует, нужно искать набор из n плоскостей s v (проходящих через главную ось). Наличие таких плоскостей позволяет отнести молекулу к группе С nv . Если у молекулы нет ни s v , ни s h , она относится к точечной группе С n .

Изложенный метод иллюстрируется диаграммой, приведенной на схеме 8.1.

8.2.2.г. Типы хиральности

Адамантаны, у третичных атомов углерода которых имеется четыре разных заместителя, хиральны и оптически активны; например, соединение XIII было разделено на энантиомеры. При сравнении формул XII и XIII нетрудно видеть, что симметрия обоих соединений очень похожа. Остов адамантана можно представить как тетраэдр с "изломанными ребрами", он имеет симметрию T d которая переходит в C 1 , когда все четыре заместителя у третичных атомов углерода разные. У производного адамантана XIII нет асимметрического атома углерода, как в a -бромпропионовой кислоте, но есть центр, находящийся внутри молекулы (центр тяжести незамещенного адамантана). Асимметрический центр - это частный случай более общего понятия хиральный центр . Хиральный центр может иметь не только асимметрические молекулы, но и молекулы симметрии C n или D n . В приведенных ниже примерах хиральный центр помечен звездочкой.

Хиральный центр является лишь одним из возможных элементов хиральности. Молекулы, хиральность которых обусловлена наличием центра хиральности, безусловно, самые важные в органической химии. Однако кроме центрального существуют еще и аксиальный , планарный и спиральный типы хиральности.

Аксиальной хиральностью обладают молекулы, имеющие хиральную ось. Хиральную ось легко получить, мысленно "растягивая" центр хиральности:

Хиральную ось имеют такие классы молекул, как аллены и дифенилы. В алленах центральный атом углерода sp-типа имеет две взаимно-перпендикулярные p-орбитали, каждая из которых перекрывается с p-орбиталью соседнего атома углерода, в результате чего остающиеся связи концевых атомов углерода располагаются в перпендикулярных плоскостях. Сам аллен хирален, так как имеет зеркально-поворотную ось S 4 , но несимметрично замещенные аллены типа авС=С=Сав хиральны.

Аллены хиральны только в том случае, если оба концевых атома углерода замещены несимметрично:

При любом нечетном числе кумулированных двойных связей четыре концевые группы располагаются уже не в разных, а в одной плоскости, например, для 1,2,3-бутатриена:

Такие молекулы ахиральны, но для них наблюдается цис-транс-изомерия.

Так, соединение XIV было разделено на оптические изомеры.

Если одну или обе двойные связи симметрично замещенного аллена заменить на циклическую систему, то полученные молекулы будут тоже обладать аксиальной хиральностью, например:

В бифенилах, содержащих четыре объемистые группы в орто-положениях, свободное вращение вокруг центральной связи затруднено из-за стерических препятствий, и поэтому два бензольных кольца не лежат в одной плоскости. По аналогии с алленами, если одно или оба бензольных кольца замещены симметрично, молекула ахиральна; хиральны же молекулы только с двумя несимметрично замещенными кольцами, например:

Изомеры, которые можно разделить только благодаря тому, что вращение вокруг простой связи затруднено, называются атропоизомерами.

Иногда для предотвращения свободного вращения в бифенилах достаточно трех и даже двух объемистых заместителей в орто-положениях. Так, удалось разделить на энантиомеры бифенил-2,2-дисульфокислоту (XV). В соединении XVI свободное вращение полностью не заторможено, и, хотя его можно получить в оптически активной форме, при растворении в этаноле оно быстро рацемизуется (наполовину за 9 мин. при 25 0).

Для некоторых хиральных молекул определяющим структурным элементом является не центр, не ось, а плоскость. Простейшую модель планарной хиральности легко сконструировать из любой плоской фигуры, не имеющей осей симметрии, лежащих в этой плоскости, и отдельной точки вне плоскости. Наиболее изучены планарно-хиральные производные ферроцена (XVII). Другими примерами являются ареновые комплексы хромтрикарбонила (XVIII), а также соединения XIX и XX.

Спиральная хиральность обусловлена спиральной формой молекулы. Спираль может быть закручена влево или вправо, давая энантиомерные спирали. Например, в гексагелицене одна часть молекулы из-за пространственных препятствий вынуждена располагаться над другой.

8.2.2.д. Хиральность макроциклических молекул

Макроциклы, содержащие несколько десятков атомов, соединенных в кольцо, способны образовывать удивительные типы молекулярных структур, обладающих левой или правой спиральностью.

Например, в соединении XXI главная цепь имеет вид ленты Мебиуса, которая должна существовать в виде двух энантиомерных форм. Соединение XXI было синтезировано и действительно оказалось хиральным.

Циклы, состоящие из 60 или более членов могут существовать в виде узлов (XXII), завязанных слева направо или справа налево, и поэтому должны быть хиральными.

Хиральными могут быть также соответствующим образом замещенные катенаны и ротаксаны. Эти соединения состоят из двух или нескольких самостоятельных частей, которые не связаны между собой валентными связями, но тем не менее удерживаются вместе. Катенаны построены из двух или нескольких циклов, соединенных как звенья цепи; в ротаксанах линейная молекула продета сквозь циклическую молекулу и не может из нее выскользнуть благодаря наличию объемных концевых групп.

Катенаны и ротаксаны можно получить или статистическим синтезом, или направленным синтезом. Принцип статистического синтеза пояснен следующей схемой.

Соединение А связывается по двум концам с соединением Б в присутствии огромного избытка макроциклического соединения В. До реакции с молекулами Б какая-то часть молекул А должна случайно оказаться продетой сквозь цикл В, и поэтому наряду с продуктами Д и Е образуется некоторое количество и ротаксана Г. Примеры приведены ниже.

Хиральные катенаны и ротаксаны в настоящее время еще не получены.

Молекулы, в которых имеется хотя бы один атом углерода, соединенный с четырьмя различными заместителями, называются асимметрическими или хиральными . Другими словами, это молекулы, не имеющие ни центра, ни плоскости симметрии.

Хиральность (др.-греч. χειρ - рука) - свойство молекулы не совмещаться в пространстве со своим зеркальным отражением. Термин основан на древнегреческом названии наиболее узнаваемого хирального предмета - руки. Так, левая и правая руки являются зеркальными отражениями, но не могут быть совмещены друг с другом в пространстве.

Теперь нам необходимо познакомиться с представлением о поляри­зованном свете, поскольку это явление используется для изучения и опи­сания хиральных молекул. Свет становится плоскополяризованным в ре­зультате прохождения обычного света через поляризатор.

Если пропускать плоскополяризованный свет через раствор хирального вещества, плоскость, в которой происходят колебания, начинает вращаться. Вещества, которые вызывают такое вращение, называются оптически активными . Угол вращения измеряют прибором, который на­зывается поляриметр (или анализатор).

Способность какого-либо вещества вращать плоскость поляризации света характеризуют удельным вращением. Удельное вращение определя­ют как угол вращения плоскости поляризации раствором, содержащим в 1 мл 1 г оптически активного вещества при длине трубки 0,1 м. Наблю­даемый угол вращения зависит от длины трубки (чем больше длина, тем больше вращение) и от концентрации (обычно чем ниже концентрация, тем меньше вращение).

Если плоскость поляризации вращается вправо (по часовой стрелке) от наблюдателя, соединение называют правовращающим, а удельное вра­щение записывают со знаком (+). При вращении влево (против часовой стрелки) соединение называют левовращающим, а удельное вращение за­писывают со знаком (-).

Посмотрим, как связана оптическая активность с молекулярным строением вещества. Ниже приведено пространственное изображение хиральной молекулы и ее зеркального отражения:

Оптические изомеры (энантиомеры)

На первый взгляд может показаться, что это одна и та же молекула, изображенная по-разному. Однако, если Вы соберете модели обеих форм и попытаетесь совместить их так, чтобы все атомы совпали друге другом, Вы быстро убедитесь, что это невозможно, т. е. оказывается, что молеку­ла несовместима со своим зеркальным отражением.

Таким образом, две хиральные молекулы, относящиеся друг к дру­гу как предмет и его зеркальное изображение, не тождественны. Эти мо­лекулы (вещества) являются изомерами, получившими название энантиомеров или оптических изомеров . Большинство химических и физических свойств пары энантиомеров идентичны. Это относится к температурам кипения и плавления, плотности, поверхностному натяжению, растворимости, устойчивости и реакционной способности по отношению к большинству реагентов.

Энантиомеры, однако, отличаются друг от друга в двух отношениях.

1) Они по-разному действуют на плоскополяризованный свет. Один энантиомер вращает плоскость поляризации света в одном направлении на определенную величину. Другой энантиомер будет вращать плоскость поляризации на точно такую же ве­личину, но в противоположном направлении.

2) Энантиомеры по-разному реагируют с другими хиральными моле­кулами, в частности с веществами природного происхождения, образую­щимися в биологических объектах. Например, если один из энантиомеров токсичен, то другой может и не обладать этим свойством. Если один из энантиомеров представляет собой витамин, то второй такими свойствами не обладает. Эти различия в биохимических свойствах энантиомеров связа­ны с тем, что биохимические процессы в живом организме катализируются ферментами (энзимами). Ферменты представляют собой хиральные соеди­нения белковой природы. Для того чтобы соединение было биологически активным, его геометрия должна соответствовать строению определенно­го участка фермента.
Итак, подведем итоги:
Молекулы, не имеющие элементов симметрии, называются хиральными. Эти молекулы обладают необычным свойством - спо­собностью вращать плоскость поляризации плоскополяризованного света.
Изомеры, молекулы которых хиральны и являют­ся зеркальными изображениями друг друга, называются энантиомерами.
Энантиомеры имеют идентичные физические и хими­ческие свойства и различаются только направлением вращения плоскости поляризации света и характером взаимодействия с другими хиральными веществами, например ферментами.

Хиральная чистота живого. В вопросе о происхождении жизни одним из загадочных остается факт наличия абсолютной хиральной чистоты (от греч. cheir – рука): у живых существ – содержание в молекулах белков только «левых» аминокислот, а в нуклеиновых кислотах – «правых» сахаров. Подобное явление могло возникнуть только вследствие утраты предбиологической средой первичной зеркальной симметрии (равное содержание правых и левых изомеров аминокислот и сахаров). Неживой природе присуща тенденция установления зеркальной симметрии (рацемации).

Опыты последних лет показали, что только в хирально чистых растворах практически могли возникнуть биологически значимое удлинение цепочки полинуклеотидов и процесс саморепликации. Рацемический полинуклеотид не в состоянии реплицироваться, так как его основания направлены в разные стороны и у него нет спиральной организации. Живые системы организованы так, что тРНК из правых сахаров присоединяют к себе только левые аминокислоты. Поэтому возникновение жизни, по-видимому, исключалось до разрушения зеркальной симметрии предбиологической среды (В. Гольданский, Л. Морозов) и появления самореплицирующихся систем. Все живые организмы поддерживают свою хиральную чистоту, и эволюция не снабдила их средствами для обитания в рацемической среде.

Возникновение генетического кода. Аминокислоты и нуклеотиды в растворе случайно соединяются друг с другом с помощью пептидных (для аминокислот) или фосфодиэфирных (для нуклеотидов) связей в линейные структуры – большие полимеры. Так образуются полипептиды (белки) и полинуклеотиды (рибонуклеиновая и дезоксирибонуклеиновая кислоты). Как только полимер образовался, он будет стимулировать образование других полимеров. Полинуклеотиды при этом оказываются матрицей при реакции полимеризации, и таким образом они определяют последовательность нуклеотидов в новых полинуклеотидах. Например, полимер, состоящий из нуклеотидов полиуредиловой кислоты (poly U), оказывается матрицей для синтеза полимера, состоящего из нуклеотидов полиадениловой кислоты (poly А) в результате комплиментарного связывания соответствующих субъединиц. Новая молекула оказывается как бы слепком с исходной матрицы. По выражению Д. Уотсона, механизм комплиментарного матричного копирования «изящен и прост».

Не совсем понятно, почему именно урацил, аденин, цитозин и гуанин оказались теми буквами генетического алфавита, который смог закодировать информацию обо всем живом. Возможно, это чистая случайность, и на месте этих четырех нуклеотидов могли бы быть другие. Молекула РНК обладает также химической индивидуальностью – последовательность нуклеотидов определяет характер свертывания (конформации) молекулы в растворе, различные для каждой последовательности нуклеотидов трехмерные изгибы макромолекулы.

Молекула РНК одноцепочечная, а молекула ДНК имеет две цепочки. Двухцепочечная структура способна репарировать (исправлять) повреждения одной из цепей и поэтому ДНК – более надежный инструмент для хранения и передачи генетической информации, В ходе миллионов лет добиологической эволюции эта способность ДНК была замечена отбором. При возникновении достаточно сложной системы свойство хранения информации приняла ДНК, белки стали катализаторами реакций, а РНК сохранила функцию посредника между ДНК и белками.

Возможность сохранения и передачи информации посредством матричного принципа редупликации привела к возможности создания генотипа и генетического кода, уникальная пространственная структура молекулы (аналог фенотипа) определила возможность действия естественного отбора наиболее подходящих для конкретной ситуации макромолекул.

Природа «нашла» механизм генетического кода, испробовав на протяжении не менее миллиарда лет немыслимое число разнообразных комбинаций. Без такого механизма, позволяющего сохранять информацию и одновременно (в результате неизбежных время от времени ошибок копирования – мутаций) получать материал для ее изменения, жизнь никогда не возникла бы в той форме, в какой она представлена на Земле.

Все изложенное – не более как правдоподобные гипотезы возможных путей возникновения жизни, и здесь можно ожидать новых интересных открытий. Так, в последние годы показано, что давно известные бактерии, обитающие в горячих источниках, на дне океанов, в желудках некоторых жвачных животных, поглощающие углекислый газ, водород и выделяющие метан (метанообразующие бактерии), сохранили многие черты протобионтов.

В проблеме возникновения жизни на Земле еще много неясного. Занесена ли жизнь на Землю или она здесь возникла? Обнаружение в конце XX в. следов ископаемых прокариот (по-видимому, цианобактерий) в метеоритах вновь оживило интерес к гипотезе панспермии, выдвинутой еще в конце XIX в. С. Аррениусом и поддержанной В.И. Вернадским (он считал жизнь «вечным явлением»), а в наше время – известным микробиологом Г.А. Заварзиным. Однако, учитывая, что все больше фактов и расчетов указывает, что вся наша Вселенная образовалась в результате «большого взрыва» 12–20 млрд лет назад, то гипотеза панспермии не решает проблему возникновения жизни, а лишь переносит место ее возникновения с Земли на другие космические тела и несколько отодвигает срок возникновения жизни.

Другая нерешенная загадка в области происхождения жизни на Земле образно сформулирована Н.Н. Воронцовым: «Складывается впечатление, что буквально сразу после остывания земной коры на нашей планете возникла жизнь. Как будто бы к планете стоило поднести спичку, чтобы на ней вспыхнуло пламя жизни!» . Важным был не только сугубо химический, но и экологический аспект появления живого. Жизнь сразу же должна была существовать в виде экосистем. Неизбежное возрастание биоразнообразия (на протяжении сотен миллионов лет – «микробиального») должно было вести к увеличению устойчивости таких примитивных экосистем, быстрому росту их биопродуктивности и биомассы на планете. Раз возникнув (неважно каким образом), жизнь должна была (в геологическом масштабе времени – мгновенно) охватить всю планету.

Конечно, в происхождении жизни остается (и всегда будет оставаться) много вопросов. Прошел ли биологический обмен через коацерватное состояние или первоначально возникает генетический код? Почему некоторые редкие элементы в земной коре (молибден, магний) стали играть большую роль в биологическом обмене, чем обычные элементы (кремний, кальций)? Подобных вопросов много, они ждут своего объяснения. Но научно достоверной остается возможность возникновения жизни из неорганических веществ посредством действия физических факторов среды, и действия предбиологического отбора. Научно доказанной является возможность усложняющегося взаимодействия элементарных частиц и молекул, приводящего к возникновению самоинструктирующих макромолекул.

Молекулы, обладающие одинаковым химическим строением, могут различаться пространственным строением, т.е. существовать в виде пространственных изомеров - стереоизомеров .

Пространственное строение молекул - это взаимное расположение атомов и атомных групп в трехмерном пространстве.

Стереоизомеры - соединения, в молекулах которых имеется одинаковая последовательность химических связей атомов, но различное расположение этих атомов относительно друг друга в пространстве.

В свою очередь стереоизомеры могут быть конфигурационными и конформационными изомерами , т. е. различаться соответственно конфи- гурацией и конформацией.

Конфигурация - это порядок расположения атомов в пространстве без учета различий, возникающих вследствие вращения вокруг одинарных связей.

Конфигурационные изомеры могут переходить друг в друга путем разрыва одних и образования других химических связей и могут существовать раздельно в виде индивидуальных соединений. Они подразделяются на два основных типа - энантиомерыи диастереомеры.

Энантиомеры - стереоизомеры, относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отображение.

В виде энантиомеров могут существовать только хиральные молекулы.

Хиральность - это свойство объекта быть несовместимым со своим зеркальным отражением. Хиральными (от греч. cheir - рука), или асимметричными, объектами являются левая и правая рука, а также перчатки, ботинки и др. Эти парные предметы представляют собой объект и его зеркальное отражение (рис. 8, а). Такие предметы не могут быть полностью совмещены друг с другом.

В то же время существует множество окружающих нас предметов, которые совместимы со своим зеркальным отражением, т. е. они являются ахиральными(симметричными), например тарелки, ложки, стаканы и т. д. Ахиральные предметы обладают, по крайней мере одной плоскостью симметрии, которая делит объект на две зеркально-идентичные части (см. рис. 8, б ).

Подобные взаимоотношения наблюдаются также в мире молекул, т. е. молекулы делятся на хиральные и ахиральные. У ахиральных молекул есть плоскости симметрии, у хиральных их нет.

В хиральных молекулах имеется один или несколько центров хиральности. В органических соединениях в качестве центра хиральности чаще всего выступает асимметрический атом углерода.

Рис. 8. Отражение в зеркале хирального объекта (а) и плоскость симметрии, разрезающая ахиральный объект (б)

Асимметрическим является атом углерода, связанный с четырьмя различными атомами или группами.



При изображении стереохимической формулы молекулы символ «С» асимметрического атома углерода обычно опускается.

Чтобы определить, является молекула хиральной или ахиральной, нет необходимости изображать ее стереохимической формулой, достаточно внимательно рассмотреть все атомы углерода в ней. Если находится хотя бы один атом углерода с четырьмя разными заместителями, то этот атом углерода асимметричен и молекула за редкими исключениями хиральна. Так, из двух спиртов - пропанола-2 и бутанола-2 - первый ахирален (две группы СН 3 у атома С-2), а второй - хирален, так как в его молекуле у атома С-2 все четыре заместителя разные (Н, ОН, СН 3 и С 2 Н 5). Асимметрический атом углерода иногда помечают звездочкой (С*).

Следовательно, молекула бутанола-2 способна существовать в виде пары энантиомеров, которые не совмещаются в пространстве (рис. 9).

Рис. 9. Энантиомеры хиральных молекул бутанола-2 не совмещаются

Свойства энантиомеров. Энантиомеры обладают одинаковыми химическими и физическими свойствами (температуры плавления и кипения, плотность, растворимость и т. д.), но проявляют различную оптическую активность,т. е. способность отклонять плоскость поляризованного света.

При прохождении такого света через раствор одного из энантиомеров происходит отклонение плоскости поляризации влево, другого - вправо на один тот же по величине угол α. Значение угла α, приведенное к стандартным условиям, является константой оптически активного вещества и называется удельным вращением [α]. Левое вращение обозначается знаком «минус» (-), правое - знаком «плюс» (+), а энантиомеры называют соответственно лево- и правовращающими.

С проявлением оптической активности связаны другие названия энантиомеров - оптические изомеры или оптические антиподы.

Каждое хиральное соединение может иметь и третью, оптически неактивную форму - рацемат . Для кристаллических веществ это обычно не просто механическая смесь кристаллов двух энантиомеров, а новая молекулярная структура, образованная энантиомерами. Рацематы оптически неактивны, так как левое вращение одного энантиомера компенсируется правым вращением равного количества другого. В этом случае перед названием соединения иногда ставят знак «плюс-минус» (?).