Болезни Военный билет Призыв

Химические свойства вольфрама. Характеристики и применение вольфрама. Применение и использование вольфрама Вольфрам химические свойства

Вольфрам - это химический элемент периодической системы Менделеева, который принадлежит к VI группе. В природе вольфрам встречается в виде смеси из пяти изотопов. В своем обычном виде и при обычных условиях он представляет собой твердый металл серебристо-серого цвета. Он также является самым тугоплавким из всех металлов.

Основные свойства вольфрама

Вольфрам - это металл, обладающий замечательными физическими и химическими свойствами. Практически во всех отраслях современного производства применяется вольфрам. Формула его обычно выражается в виде обозначения оксида металла - WO 3 . Вольфрам считается самым тугоплавким из металлов. Предполагается, что лишь сиборгий может быть еще более тугоплавок. Но точно пока этого утверждать нельзя, так как сиборгий имеет очень малое время существования.

Этот металл имеет особые физические и химические свойства. Вольфрам имеет плотность 19300 кг/м 3 , температура плавления его составляет 3410 °С. По этому параметру он занимает второе место после углерода - графита или алмаза. В природе вольфрам встречается в виде пяти стабильных изотопов. Их массовые числа находятся в интервале от 180 до 186. Вольфрам обладает 6-й валентностью, а в соединениях она может составлять 0, 2, 3, 4 и 5. Металл также имеет достаточно высокий уровень теплопроводности. Для вольфрама этот показатель составляет 163 Вт/(м*град). По этому свойству он превышает даже такие соединения, как сплавы алюминия. Масса вольфрама обусловлена его плотностью, которая равна 19кг/м 3 . Степень окисления вольфрама колеблется от +2 до +6. В высших степенях своего окисления металл имеет кислотные свойства, а в низших - основные.

При этом сплавы низших соединений вольфрама считаются неустойчивыми. Самыми стойкими являются соединения со степенью +6. Они проявляют и наиболее характерные для металла химические свойства. Вольфрам имеет свойство легко образовывать комплексы. Но металлический вольфрам обычно является очень стойким. Он начинает взаимодействовать с кислородом лишь при температуре +400 °С. Кристаллическая решетка вольфрама относится к типу кубических объемноцентрированных.

Взаимодействие с другими химическими веществами

Если вольфрам смешать с сухим фтором, то можно получить соединение под названием "гексафторид", который плавится уже при температуре 2,5 °С, а закипает при 19,5 °С. Похожее вещество получают при соединении вольфрама с хлором. Но для такой реакции необходима достаточно высокая температура - порядка 600 °С. Однако вещество легко противостоит разрушительному действию воды и практически не подвергается изменениям на холоде. Вольфрам - металл, который без кислорода не производит реакции растворения в щелочах. Однако он легко растворяется в смеси HNO 3 и HF. Самые главные из химических соединений вольфрама - это его трехокись WO 3 , Н 2 WO 4 - вольфрамовая кислота, а также ее производные - соли вольфраматы.

Можно рассмотреть некоторые химические свойства вольфрама с уравнениями реакций. Например, формула WO 3 + 3H 2 = W+3H 2 O. В ней металл вольфрам восстанавливается из оксида, проявляется его свойство взаимодействия с водородом. Это уравнение отражает процесс получения вольфрама из его триоксида. Следующей формулой обозначается такое свойство, как практическая нерастворимость вольфрама в кислотах: W + 2HNO3 + 6HF = WF6 + 2NO + 4H2O. Одним из наиболее примечательных веществ, содержащих вольфрам, считается карбонил. Из него получают плотные и ультратонкие покрытия из чистого вольфрама.

История открытия

Вольфрам - металл, получивший свое название из латинского языка. В переводе это слово означает «волчья пена». Такое необычное название появилось из-за поведения металла. Сопровождая добытую оловянную руду, вольфрам мешал выделению олова. Из-за него в процессе выплавки образовывались только шлаки. Об этом металле говорили, что он «поедает олово, как волк ест овцу». Для многих интересно, кто открыл химический элемент вольфрам?

Это научное открытие было сделано одновременно в двух местах разными учеными, независимо друг от друга. В 1781 году химик из Швеции Шееле получил так называемый «тяжелый камень», проводя опыты с азотной кислотой и шеелитом. В 1783 году братья-химики из Испании по фамилии Элюар также сообщил об открытии нового элемента. Точнее, ими был открыт оксид вольфрама, растворявшийся в аммиаке.

Сплавы с другими металлами

В настоящее время различают однофазные и многофазные вольфрамовые сплавы. Они содержат один или несколько посторонних элементов. Самое известное соединение - это сплав вольфрама и молибдена. Добавление молибдена придает вольфраму прочность при его растяжении. Также к категории однофазных сплавов принадлежат соединения вольфрама с титаном, гафнием, цирконием. Самую большую пластичность вольфраму придает рений. Однако практически применять такой сплав - довольно трудоемкий процесс, так как рений очень тяжело добыть.

Так как вольфрам является одним из самых тугоплавких материалов, то получать вольфрамовые сплавы - непростая задача. Когда этот металл только начинает закипать, другие уже переходят в жидкость или состояние газа. Но современные ученые умеют получать сплавы при помощи процесса электролиза. Сплавы, содержащие вольфрам, никель и кобальт, используются для нанесения защитного слоя на непрочные материалы.

В современной металлургической промышленности также получают сплавы, используя вольфрамовый порошок. Для его создания необходимы особенные условия, включая создание вакуумной обстановки. Из-за некоторых особенностей взаимодействия вольфрама с другими элементами металлурги предпочитают создавать сплавы не двухфазной характеристики, а с применением 3, 4 и более составляющих. Эти сплавы особенно прочны, но при четком соблюдении формул. При малейших отклонениях процентных составляющих сплав может получиться хрупким и непригодным к использованию.

Вольфрам - элемент, применяющийся в технике

Из этого металла изготавливают нити накаливания обыкновенных лампочек. А также трубки для рентгеновских аппаратов, составляющие вакуумных печей, которые должны использоваться при крайне высоких температурах. Сталь, в состав которой входит вольфрам, имеет очень высокий уровень прочности. Такие сплавы используются для изготовления инструментов в самых различных областях: для бурения скважин, в медицине, машиностроении.

Главное преимущество соединения стали и вольфрама - износоустойчивость, маловероятность повреждений. Самый известный в строительстве вольфрамовый сплав носит название «победит». Также этот элемент широко используется в химической промышленности. С его добавлением создают краски, пигменты. Особенно широкое применение в этой сфере получил оксид вольфрама 6. Его применяют для изготовления карбидов и галогенидов вольфрама. Другое название этого вещества - триоксид вольфрама. 6 используется как желтый пигмент в красках для керамики и изделий из стекла.

Что такое тяжелые сплавы?

Все сплавы на основе вольфрама, которые обладают высоким показателем плотности, называют тяжелыми. Их получают только при помощи методов порошковой металлургии. Вольфрам всегда является основой тяжелых сплавов, где его содержание может составлять до 98 %. Кроме этого металла, в тяжелые сплавы добавляется никель, медь и железо. Однако в них могут входить и хром, серебро, кобальт, молибден. Самую большую популярность получили сплавы ВМЖ (вольфрам - никель - железо) и ВНМ (вольфрам - никель - медь). Высокий уровень плотности таких сплавов позволяет им поглощать опасное гамма-излучение. Из них изготавливают маховики колес, электрические контакты, роторы для гироскопов.

Карбид вольфрама

Около половины всего вольфрама применяется для изготовления прочных металлов, особенно вольфрамового карбида, который имеет температуру плавления 2770 С. Карбид вольфрама представляет собой химическое соединение, в котором содержится равное количество атомов углерода и вольфрама. Этот сплав имеет особые химические свойства. Вольфрам придает ему такую прочность, что по этому показателю он превосходит сталь в два раза.

Карбид вольфрама широко используется в промышленности. Из него изготавливают режущие предметы, которые должны быть очень устойчивы к высоким температурам и истиранию. Также из этого элемента изготавливают:

  • Детали самолетов, двигатели автомобилей.
  • Детали для космических кораблей.
  • Медицинские хирургические инструменты, которые применяются в сфере полостной хирургии. Такие инструменты дороже обычной медицинской стали, однако они более производительны.
  • Ювелирные изделия, особенно обручальные кольца. Такая популярность вольфрама связана с его прочностью, которая для венчающихся символизирует прочность взаимоотношений, а также внешним видом. Характеристики вольфрама в отполированном виде таковы, что он в течение очень длительного времени сохраняет зеркальный, блестящий вид.
  • Шарики для шариковых ручек класса люкс.

Победит - сплав вольфрама

Приблизительно во второй половине 1920-х годов во многих странах начали выпускаться сплавы для режущих инструментов, которые получали из карбидов вольфрама и металлического кобальта. В Германии такой сплав назывался видиа, в Штатах - карбола. В Советском Союзе такой сплав получил название «победит». Эти сплавы оказались прекрасными для обработки чугунной продукции. Победит является металлокерамическим сплавом с чрезвычайно высоким уровнем прочности. Он изготавливается в виде пластинок различных форм и размеров.

Процесс изготовления победита сводится к следующему: берется порошок карбида вольфрама, мелкий порошок никеля или кобальта, и все перемешивается и прессуется в специальных формах. Спрессованные таким образом пластины подвергаются дальнейшей температурной обработке. Это дает очень твердый сплав. Эти пластины используются не только для резки чугуна, но и для изготовления бурильных инструментов. Пластинки из победита напаиваются на бурильное оборудование при помощи меди.

Распространенность вольфрама в природе

Этот металл очень мало распространен в окружающей среде. После всех элементов он занимает 57-е место и содержится в виде кларка вольфрама. Также металл образует минералы - шеелит и вольфрамит. Вольфрам мигрирует в подземные воды либо в виде собственного иона, либо в виде всевозможных соединений. Но его наибольшая концентрация в подземных водах ничтожно мала. Она составляет сотые доли мг/л и практически не меняет их химические свойства. Вольфрам также может попадать в природные водоемы из стоков заводов и фабрик.

Влияние на человеческий организм

Вольфрам практически не поступает в организм с водой или пищей. Может существовать опасность вдыхания вольфрамовых частиц вместе с воздухом на производстве. Однако, несмотря на принадлежность к категории тяжелых металлов, вольфрам не токсичен. Отравления вольфрамом случаются лишь у тех, кто связан с вольфрамовым производством. При этом степень влияния металла на организм бывает разной. Например, вольфрамовый порошок, карбид вольфрама и такое вещество, как ангидрит вольфрамовой кислоты, могут вызывать поражение легких. Его главные симптомы - общее недомогание, лихорадка. Более сильные симптомы возникают при отравлении сплавами вольфрама. Это происходит при вдыхании пыли сплавов и приводит к бронхитам, пневмосклерозу.

Металлический вольфрам, попадая внутрь человеческого организма, не всасывается в кишечнике и постепенно выводится. Большую опасность могут представлять вольфрамовые соединения, относящиеся к растворимым. Они откладываются в селезенке, костях и коже. При длительном воздействии вольфрамовых соединений могут возникать такие симптомы, как ломкость ногтей, шелушение кожи, различного рода дерматиты.

Запасы вольфрама в различных странах

Самые большие ресурсы вольфрама находятся в России, Канаде и Китае. По прогнозам ученых, на отечественных территориях располагается около 943 тысяч тонн этого металла. Если верить этим оценкам, то подавляющая часть запасов расположена в Южной Сибири и на Дальнем Востоке. Очень незначительной является доля разведанных ресурсов - она составляет всего лишь порядка 7 %.

По количеству разведанных залежей вольфрама Россия уступает лишь Китаю. Большая их часть расположена в районах Кабардино-Балкарии и Бурятии. Но в этих месторождениях добывается не чистый вольфрам, а его руды, содержащие также молибден, золото, висмут, теллур, скандий и другие вещества. Две трети получаемых объемов вольфрама из разведанных источников заключены в труднообогатимых рудах, где главным вольфрамосодержащим минералом является шеелит. На долю легкообогатимых руд приходится всего лишь треть всей добычи. Характеристики вольфрама, добываемого на территории России, ниже, чем за рубежом. Руды содержат большой процент триоксида вольфрама. В России очень мало россыпных месторождений металла. Вольфрамовые пески также являются низкокачественными, с большим количеством оксидов.

Вольфрам в экономике

Глобальное производство вольфрама начало свой рост примерно с 2009 года, когда стала восстанавливаться азиатская промышленность. Крупнейшим производителем вольфрама остается Китай. Например, в 2013 году на долю производства этой страны приходился 81 % от мирового предложения. Около 12 % спроса на вольфрам связано с производством осветительных приборов. По прогнозам экспертов, использование вольфрама в этой сфере будет сокращаться на фоне применения светодиодных и люминесцентных ламп как в бытовых условиях, так и на производстве.

Считается, что будет расти спрос на вольфрам в сфере производства электронной техники. Высокая износостойкость вольфрама и его способность выдерживать электричество делают этот металл наиболее подходящим для производства регуляторов напряжения. Однако по объему этот спрос пока остается довольно незначительным, и считается, что к 2018 году он вырастет лишь на 2 %. Однако согласно прогнозам ученых, в ближайшее время должен произойти рост спроса на цементированный карбид. Это связано с ростом автомобильного производства в США, Китае, Европе, а также увеличением горнодобывающей промышленности. Считается, что к 2018 году спрос на вольфрам увеличится на 3,6 %.

При комнатной температуре вольфрам стоек к атмосферной коррозии, но при нагреве уже до 750 К окисляется до WO 3 , реагирует с галогенами: с фтором – при комнатной температуре, а йодом при температуре около 900 К.

При нагреве высоких температур он реагирует с углеродом, кремнием и бором, образуя соответственно карбиды,силициды,бориды. Сера и фосфор в обычных условий на вольфрам не действуют. На воздухе растворяется в горячих водных растворах щелочей, но слабо поддается действию кислот, кроме плавиковой и азотной при нагреве.

Водород и азот не дают химических соединений с вольфрамом,в плоть до

3000 0 С, хотя в некоторых источниках имеются указания на возможность образования гидрида WH 2 .

Cкислородом вольфрам образует три устойчивых оксида:

WO 2 – бурового цвета;

WO 3 – желтого цвета;

W 2 O 5 – синеватого цвета.

Все эти оксиды образуются при температуре около 800 К на воздухе или в кислороде, причем все они очень летучи, имеют невысокую температуру плавления. Например, WO 3 плавится при температуре 1645 К.

На практике, чтобы отличить вольфрамовую проволоку, от молибденовой пользуются простым приемом: кончик проволоки поджигают спичкой. Если при этом наблюдается желтый или бурый дымок, значит, это проволока вольфрамовая, если белый – молибденовая.

Углерод восстанавливает оксиды W:

При температуре 825 К;

При температуре 1325 К;

При температуре 1425 К.

С азотом вольфрам образует нитриды при температурах более 1600 К, но выше отметки 2275 К они разлагаются.

При взаимодействии с углеродом и температурах выше 1800 К вольфрам образует карбиды W 2 CиWC. ПлотностьW 2 C – 16000 кг/м 3 , WC– 9000 кг/м 3 , твердость около 9 единиц по Мосу. При температуре 2875 К кабрид WC разлагается по реакции

На рис.73 приведена диаграмма состояния W–C.

Как видно из диаграммы, карбиды вольфрама имеют температуру плавления значительно ниже таковой для самого металла. Так, WC плавится при температуре около 2875 К, W 2 C – 3065 К. Кроме того, карбиды могут образовывать с вольфрамом эвтектические сплавы с температурой плавления значительно низшей чем у металла, который плавится при 3683 К. Поэтому нужно обратить внимание ракетчиков на опасность реакции образования карбидов на границе графит – вольфрам, которая имеет место при нагреве выше 2675 К. Предупреждение связано с тем, что в конструкции вкладыша критического сечения сопла твердотопливного двигателя сочетаются вольфрамовая внутренняя облицовка с графитовой обоймой.

Во избежание приведенной реакции между вольфрамовой облицовкой и графитом обоймы наносится так называемый «барьерный» слой из карбида тантала или титана (ТаС, TiC).

В связи с высокой плотностью вольфрама и его дефицитностью конструкторы и технологи стремятся заменить его на более легкие и менее дефицитные материалы, о чем будет сказано далее.


Рис. 73. Диаграмма состояния W-C

Рис. 74. Схема массопереноса в лампе

накаливания: 1 –стенка колбы, где образуется WJ 2 ; 2 –спираль, где WJ 2 разлагается на W и J


Хотя реакция вольфрама с йодом не имеет отношения к ракетной технике, все же на ней хотелось бы коротко остановиться.

При температуре выше 850 К вольфрам с парами йода образует иодид, который представляет собой легко сублимирующую соль йодидной кислоты:

При температуре2475 К йодид разлагается:

Эти две реакции используются для переноса вольфрама, например, в лампах накаливания: несмотря на низкую упругость паров в них вольфрам все же испаряется в вакууме. Пары его садятся на стенки стеклянной колбы лампы и прозрачность ее уменьшается. Если колбу заполнить парами йода, то последний станет реагировать с вольфрамом на горячей стенке лампы и образует WJ 2 , который за счет диффузии попадает на нагретую вольфрамовую спираль и разложится. Свободный йод снова переместиться к стенке, а вольфрамостанется на спирали, и так без конца. В конечном результате повышается светимость и долговечность йодозаполненных ламп.

Эта же реакция используется в технике для получения чистых тугоплавких металлов: вольфрама, тантала, молибдена, гафния и др.

Эту реакцию можно использовать и для получения тонких оболочек из вольфрама. Кроме йодидного метода для этой цели можно использовать карбонильный, т.е. разложение WCO 2 . В реактивных топливныхдвигателях вольфрам в чистом виде, как правило, не применяется ввиду низкой термической стойкости, а применяется в виде так называемых псевдосплавов с медью. Об этом будет сказано ниже.

В ядерной технике вольфрам может применяться в качестве плакирующего слоя ТВЭЛов на основе UC–ZrC повышения их прочности, уменьшения испарения и распухания. Он может входить в состав металлокерамических элементов типа

W - UC или W – UO 2 и т.п. Такие ТВЭлы могут работать при температуре до 2000 К, так как вольфрам, несмотря на многие недостатки, является жаропрочным металлом, медленно испаряется и защищает от осколков деления и излучений. В разделе «Углеродные материалы» вольфрам рассматривается, как армирующий материал в углеметаллопластиках, которые применяются для изготовления узлов и деталей РДТТ, работающих в жестких условиях высоких температур и высокоскоростных газовых потоков.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ – филиал

федерального государственного автономного образовательного учреждения

высшего профессионального образования

«Национальный исследовательский ядерный университет «МИФИ»

Кафедра ХиТМСЭ

ВОЛЬФРАМ

реферат по дисциплине

«Избранные главы по химии элементов»

Студент гр. Д- 143

Андросов В. О.

«____»___________ 2014 г.

Проверил

доцент кафедры ХиТМСЭ

Безрукова С.А.

«____»_________ 2014 г.

Северск 2014

Введение

    История происхождения названия

    Получение

    Физические свойства

    Химические свойства

  1. Применение

    1. Металлический вольфрам

      Соединения вольфрама

    2. Изотопы

  2. Биологическая роль

Заключение

Список литературы

Введение

Вольфра́м - химический элемент с атомным номером 74 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом W (лат. Wolframium). При нормальных условиях представляет собой твёрдый блестящий серебристо-серый переходный металл.

Вольфрам - самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент - углерод. При стандартных условиях химически стоек.

История происхождения названия

Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием «волчья пена» - «Spuma lupi» на латыни, или «Wolf Rahm» по-немецки. Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

В настоящее время в США, Великобритании и Франции для вольфрама используют название «tungsten» (швед. tung sten - «тяжелый камень»).

В 1781 году знаменитый шведский химик Шееле, обрабатывая азотной кислотой минерал шеелит, получил жёлтый «тяжёлый камень» (триоксид вольфрама). В 1783 году испанские химики братья Элюар сообщили о получении из саксонского минерала вольфрамита как растворимой в аммиаке жёлтой окиси нового металла, так и самого металла. При этом один из братьев, Фаусто, был в Швеции в 1781 году и общался с Шееле. Шееле не претендовал на открытие вольфрама, а братья Элюар не настаивали на своём приоритете.

Получение

Сырьём для получения Вольфрама служат вольфрамитовые и шеелитовые концентраты (50-60% WO 3).

Из концентратов непосредственно выплавляют ферровольфрам (сплав железа с 65-80% Вольфрама), используемый в производстве стали; для получения Вольфрама, его сплавов и соединений из концентрата выделяют вольфрамовый ангидрид.

В промышленности применяют несколько способов получения WО 3:

1. Шеелитовые концентраты разлагают в автоклавах раствором соды при 180-200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту):

1. CaWO 4 (тв) +Na 2 CO 3 (ж) = Na 2 WO 4 (ж) + CaCO 3 (тв)

2. CaWO 4 (тв) + 2 НCl(ж) = H 2 WO 4 (тв) +СаCl 2 (р-р).

Вольфрамитовые концентраты разлагают либо спеканием с содой при 800-900°С с последующим выщелачиванием Na 2 WO 4 водой, либо обработкой при нагревании раствором едкого натра. При разложении щелочными агентами (содой или едким натром) образуется раствор Na 2 WO 4 , загрязнённый примесями. После их отделения из раствора выделяют H 2 WO 4 . Для получения более грубых, легко фильтруемых и отмываемых осадков вначале из раствора Na 2 WO 4 осаждают CaWO 4 , который затем разлагают соляной кислотой. Высушенная H 2 WO 4 содержит 0,2 - 0,3% примесей.

Прокаливанием H 2 WO 4 при 700-800°С получают WO 3 , а уже из него - твёрдые сплавы.

2. Для производства металлического Вольфрама H 2 WO 4 дополнительно очищают аммиачным способом - растворением в аммиаке и кристаллизацией паравольфрамата аммония 5(NH 4) 2 O·12WO 3 ·nH 2 O. Прокаливание этой соли даёт чистый WO 3 .

3. Порошок Вольфрама получают восстановлением WO 3 водородом (а в производстве твёрдых сплавов - также и углеродом) в трубчатых электрических печах при 700-850°С. Компактный металл получают из порошка металлокерамическим методом, то есть прессованием в стальных пресс-формах под давлением 3000-5000 (кг*с/см 2)и термической обработкой спрессованных заготовок - штабиков. Последнюю стадию термической обработки - нагрев примерно до 3000°С проводят в специальных аппаратах непосредственно пропусканием электрического тока через штабик в атмосфере водорода. В результате получают Вольфрам, хорошо поддающийся обработке давлением (ковке, волочению, прокатке и т. д.) при нагревании.

Физические свойства

Вольфрам - блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя - время существования сиборгия очень мало). Температура плавления - 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами. Твёрдость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C - 55·10−9 Ом·м, при 2700 °C - 904·10−9 Ом·м. Хорошо поддаётся ковке и может быть вытянут в тонкую нить.

Химические свойства

Имеет валентность II, III и VI. Наиболее устойчив VI валентный вольфрам. II, III валентные соединения вольфрама неустойчивы и практического значения не имеют.

В обычных условиях Вольфрам химически стоек. При 400-500°С окисляется на воздухе до WO 3 . Пары воды интенсивно окисляют его выше 600°С до WO 3 . Галогены, сера, углерод, кремний, бор взаимодействуют с Вольфрамом при высоких температурах (фтор с порошкообразным вольфрамом - при комнатной). С водородом Вольфрам не реагирует вплоть до температуры плавления; с азотом выше 1500°С образует нитрид. При обычных условиях Вольфрам стоек к соляной, серной, азотной и плавиковой кислотам, а также к царской водке; при 100°С слабо взаимодействует с ними; быстро растворяется в смеси плавиковой и азотной кислот.

В растворах щелочей при нагревании Вольфрам растворяется слегка, а в расплавленных щелочах при доступе воздуха или в присутствии окислителей - быстро; при этом образуются вольфраматы.

Вольфрам образует четыре оксида:

    высший - WO 3 (вольфрамовый ангидрид),

    низший - WO 2 и

    два промежуточных W 10 О 29 и W 4 O 11 .

Вольфрамовый ангидрид - кристаллический порошок лимонно-жёлтого цвета, растворяющийся в растворах щелочей с образованием вольфраматов. При его восстановлении водородом последовательно образуются низшие оксиды и вольфрам.

Вольфрамовому ангидриду соответствует вольфрамовая кислота H 2 WO 4 - желтый порошок, практически не растворимый в воде и в кислотах. При ее взаимодействии с растворами щелочей и аммиака образуются растворы вольфраматов. При 188°С Н 2 WО 4 разлагается с образованием WO 3 и воды.

С хлором вольфрам образует ряд хлоридов и оксихлоридов. Наиболее важные из них: WCl 6 (tпл 275°С, tкип 348°C) и WO 2 Cl 2 (tпл 266°С, выше 300°С сублимирует), получаются при действии хлора на вольфрамовый ангидрид в присутствии угля.

С серой вольфрам образует два сульфида WS 2 и WS 3 .

Карбиды вольфрама WC (tпл2900°C) и W 2 C (tпл 2750°С) - твердые тугоплавкие соединения; получаются при взаимодействии Вольфрама с углеродом при 1000-1500°С

Вольфрам - самый тугоплавкий из металлов . Более высокую температуру плавления имеет только неметаллический элемент - углерод , но он существует в жидком виде только при высоких давлениях. При стандартных условиях вольфрам химически стоек.

История и происхождение названия

Название Wolframium перешло на элемент с минерала вольфрамит , известного ещё в XVI в. под названием «волчья пена» - лат. spuma lupi или нем. Wolf Rahm . Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова , переводя его в пену шлаков («пожирал олово как волк овцу»).

Физические свойства

Вольфрам - блестящий светло-серый металл , имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя - время существования сиборгия очень мало). Температура плавления - 3695 (3422 °C), кипит при 5828 (5555 °C) . Плотность чистого вольфрама составляет 19,25 г/см³ . Обладает парамагнитными свойствами (магнитная восприимчивость 0,32⋅10 −9). Твёрдость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C - 55⋅10 −9 Ом·м, при 2700 °C - 904⋅10 −9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с.

Вольфрам является одним из наиболее тяжёлых, твёрдых и самых тугоплавких металлов . В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддаётся ковке и может быть вытянут в тонкую нить. Металл обладает высокой устойчивостью в вакууме .

Химические свойства

2 W + 4 H N O 3 + 10 H F ⟶ W F 6 + W O F 4 + 4 N O + 7 H 2 O {\displaystyle {\mathsf {2W+4HNO_{3}+10HF\longrightarrow WF_{6}+WOF_{4}+4NO\uparrow +7H_{2}O}}}

Реагирует с расплавленными щелочами в присутствии окислителей :

2 W + 4 N a O H + 3 O 2 ⟶ 2 N a 2 W O 4 + 2 H 2 O {\displaystyle {\mathsf {2W+4NaOH+3O_{2}\longrightarrow 2Na_{2}WO_{4}+2H_{2}O}}} W + 2 N a O H + 3 N a N O 3 ⟶ N a 2 W O 4 + 3 N a N O 2 + H 2 O {\displaystyle {\mathsf {W+2NaOH+3NaNO_{3}\longrightarrow Na_{2}WO_{4}+3NaNO_{2}+H_{2}O}}}

Поначалу данные реакции идут медленно, однако при достижении 400 °C (500 °C для реакции с участием кислорода) вольфрам начинает саморазогреваться, и реакция протекает достаточно бурно, с образованием большого количества тепла.

Растворяется в смеси азотной и плавиковой кислоты, образуя гексафторвольфрамовую кислоту H 2 . Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me 2 WO X , а также соединения с галогенами, серой и углеродом. Вольфраматы склонны к образованию полимерных анионов , в том числе гетерополисоединений с включением других переходных металлов.

Применение

Главное применение вольфрама - как основа тугоплавких материалов в металлургии.

Металлический вольфрам

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение , фрезерование , строгание , долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит , состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки - ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама , карбида титана , карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
  • Сульфид вольфрама WS 2 применяется как высокотемпературная (до 500 °C) смазка .
  • Некоторые соединения вольфрама применяются как катализаторы и пигменты .
  • Монокристаллы вольфраматов (вольфраматы свинца , кадмия , кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине .
  • Дителлурид вольфрама WTe 2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Другие сферы применения

Рынок вольфрама

Цены на металлический вольфрам (содержание элемента порядка 99 %) на конец 2010 года составляли около 40-42 долларов США за килограмм, в мае 2011 года составляли около 53-55 долларов США за килограмм. Полуфабрикаты от 58 USD (прутки) до 168 (тонкая полоса). В 2014 году цены на вольфрам колебались в диапазоне от 55 до 57 USD.

Биологическая роль

Вольфрам не играет значительной биологической роли. У некоторых архебактерий и бактерий имеются ферменты , включающие вольфрам в своем активном центре. Существуют облигатно-зависимые от вольфрама формы архебактерий-гипертермофилов, обитающие вокруг глубоководных гидротермальных источников. Присутствие вольфрама в составе ферментов может рассматриваться как физиологический реликт раннего архея - существуют предположения, что вольфрам играл роль в ранних этапах возникновения жизни .

Природный вольфрам состоит из смеси пяти изотопов (180 W - 0,12(1)%, 182 W - 26,50(16) %, 183 W - 14,31(4) %, 184 W - 30,64(2) % и 186 W - 28,43(19) %) . В открыта чрезвычайно слабая радиоактивность природного вольфрама (примерно два распада на грамм элемента в год), обусловленная α-активностью 180 W, имеющего период полураспада 1,8⋅10 18 лет .

Примечания

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry . - 2013. - Vol. 85 , no. 5 . - P. 1047-1078 . - DOI :10.1351/PAC-REP-13-03-02 .
  2. Tungsten: physical properties (англ.) . WebElements. Дата обращения 17 августа 2013.

Свойства вольфрама

Вольфрам – это металл. Его нет в воде морей, нет в воздухе, да и в земной коре всего 0,0055%. Таков вольфрам, элемент , стоящий на 74-ой позиции в . Для промышленности его «открыла» Всемирная выставка во французской столице. Она состоялась в 1900-ом году. В экспозиции была представлена сталь с добавлением вольфрама .

Состав был настолько тверд, что мог разрезать любой материал. оставался «непобедимым» даже при температурах в тысячи градусов, поэтому был назван красностойким. Производители разных государств, посетившие выставку, взяли разработку на вооружение. Производство лигированной стали приобрело мировой масштаб.

Интересно, что сам элемент обнаружили еще в 18-ом веке. В 1781-ом Швед Шеелер проводил опыты с минералом тунгстен. Химик решил поместить его в азотную кислоту. В продуктах разложения ученый и обнаружил неизвестный металл серого цвета с серебристым отливом. Минерал, над которым проводились опыты, позже переименовали в шеелит, а новый элемент назвали вольфрам .

Однако, на изучение его свойств ушло немало времени, поэтому и достойное применение металлу нашли гораздо позже. Название же выбрали сразу. Слово вольфрам существовало и раньше. Испанцы называли так один из минералов, встречавшихся на месторождениях страны.

В состав камня, действительно входил элемент №74. Внешне металл порист, как будто вспенен. Поэтому пришлась кстати еще одна аналогия. В немецком языке вольфрам буквально означает «волчья пена».

Температура плавления металла соперничает с водородом, а он – самый стойкий к температурам элемент. Поэтому, и установить показатель размягчения вольфрама не могли целых сто лет. Не было печей, способных накаляться до нескольких тысяч градусов.

Когда же «выгоду» серебристо-серого элемента «раскусили», его начали добывать в промышленных масштабах. Для выставки 1900-го года, металл извлекли по старинке с помощью азотной кислоты. Впрочем, фольфрам и сейчас так добывают.

Добыча вольфрама

Чаще всего, сначала получают из отходов руд триоксид вещества. Его, при 700 градусах обрабатывают, получая чистый металл в виде пыли. Чтобы размягчить частицы приходится прибегать как раз к водороду. В нем-то вольфрам переплавляют при трех тысячах градусов Цельсия.

Сплав идет на резцы, труборезы, фрезы. для обработки металлов с применением вольфрама повышают точность изготовления деталей. При воздействии на металлические поверхности высоко трение, а это значит, что рабочие плоскости сильно нагреваются. Режущие и полирующие станки без элемента №74 могут и сами оплавится. Это делает срез неточным, несовершенным.

Вольфрам не только сложно расплавить, но и обработать. В шкале твердости металл занимает девятую позицию. Столько же баллов у корунда, из крошек которого делают, к примеру, нождачку. Тверже только алмаз. Поэтому, с его помощью вольфрам и обрабатывают.

Применение вольфрама

«Непоколебимость» 74-го элемента привлекает . Изделия из сплавов с серо-серебристым металлом невозможно поцарапать, согнуть, поломать, если, конечно, не скрести по поверхности или теми же бриллиантами.

У ювелирных украшений из фольфрама есть и еще один бесспорный плюс. Они не вызывают аллергических реакций, в отличие от золота, серебра, платины и, уж тем более, их сплавов с или . Для украшений используют карбид вольфрама, то есть его соединение с углеродом.

Оно признано самым твердым сплавом в истории человечества. Его отполированная поверхность прекрасно отражает свет. Ювелиры называют ее «серым зеркалом».

Кстати, ювелирных дел мастера обратили внимание на вольфрам после того, как из этого вещества в середине 20-го столетия стали изготавливать сердцевины пуль, снарядов и пластины для бронежилетов.

Жалобы клиентов на ломкость высших проб и серебряных украшений, заставили ювелиров вспомнить о новом элементе и попытаться его применить в своей отрасли. К тому же, цены на стали колебаться. Вольфрам стал альтернативой желтому металлу, который перестали воспринимать, как предмет капиталовложения.

Будучи драгоценным металлом, вольфрам стоит немалых денег. За килограмм просят не меньше 50-ти долларов на оптовом рынке. В год мировая промышленность затрачивает 30 тысяч тонн элемента №74. Более 90% поглощает металлургическая отрасль.

Только из вольфрама изготавливают контейнеры для хранения отходов ядерного производства. Металл не пропускает губительные лучи. Редкий элемент добавляют в сплавы для изготовления хирургических инструментов.

То, что не идет на металлургические цели, забирает химическая промышленность. Соединения вольфрама с фосфором, к примеру, — основа лаков и красок. Они не разрушаются, не тускнеют от солнечных лучей.

А раствор вольфромата натрия не поддается влаге и огню. Становится ясно, чем пропитывают водонепроницаемые и огнеупорные ткани для костюмов водолазов и пожарных.

Месторождения вольфрама

В России несколько месторождений вольфрама. Они расположены на Алтае, Дальнем Востоке, Северном Кавказе, Чукотки и в Бурятии. За пределами страны металл добывают в Австралии, США, Боливии, Португалии, Южной Кореи и КНР.

В Поднебесной даже есть легенда о молодом исследователе, который приехал в Китай искать оловянный камень. Студент поселился в одном из домов Пекина.

После бесплодных поисков, парень любил послушать рассказы дочери хозяина жилища. В один из вечеров она поведала историю темных камней, из которых была сложена домашняя печь. Оказалось, что глыбы падают со скалы на задний двор строения. Так, студент не нашел , зато, отыскал вольфрам.