Болезни Военный билет Призыв

График первообразной для функции y 2x 1. Интегралы для чайников: как решать, правила вычисления, объяснение. Объём тела вращения

Для каждого математического действия существует обратное ему действие. Для действия дифференцирования (нахождения производных функций) тоже существует обратное действие — интегрирование. Посредством интегрирования находят (восстанавливают) функцию по заданной ее производной или дифференциалу. Найденную функцию называют первообразной .

Определение. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка справедливо равенство: F′(x)=f (x) .

Примеры. Найти первообразные для функций: 1) f (x)=2x; 2) f (x)=3cos3x.

1) Так как (х²)′=2х, то, по определению, функция F (x)=x² будет являться первообразной для функции f (x)=2x.

2) (sin3x)′=3cos3x. Если обозначить f (x)=3cos3x и F (x)=sin3x, то, по определению первообразной, имеем: F′(x)=f (x), и, значит, F (x)=sin3x является первообразной для f (x)=3cos3x.

Заметим, что и (sin3x+5 )′=3cos3x , и (sin3x-8,2 )′=3cos3x , ... в общем виде можно записать: (sin3x)′=3cos3x , где С — некоторая постоянная величина. Эти примеры говорят о неоднозначности действия интегрирования, в отличие от действия дифференцирования, когда у любой дифференцируемой функции существует единственная производная.

Определение. Если функция F (x) является первообразной для функции f (x) на некотором промежутке, то множество всех первообразных этой функции имеет вид:

F (x)+C , где С — любое действительное число.

Совокупность всех первообразных F (x)+C функции f (x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается символом (знак интеграла). Записывают: ∫f (x) dx=F (x)+C .

Выражение ∫f (x) dx читают: «интеграл эф от икс по дэ икс».

f (x) dx — подынтегральное выражение,

f (x) — подынтегральная функция,

х — переменная интегрирования.

F (x) — первообразная для функции f (x) ,

С — некоторая постоянная величина.

Теперь рассмотренные примеры можно записать так:

1) 2хdx=x²+C. 2) ∫ 3cos3xdx=sin3x+C.

Что же означает знак d?

d — знак дифференциала — имеет двойное назначение: во-первых, этот знак отделяет подынтегральную функцию от переменной интегрирования; во-вторых, все, что стоит после этого знака диференцируется по умолчанию и умножается на подынтегральную функцию.

Примеры. Найти интегралы: 3) 2pxdx; 4) 2pxdp.

3) После значка дифференциала d стоит х х , а р

2хрdx=рх²+С. Сравните с примером 1).

Сделаем проверку. F′(x)=(px²+C)′=p·(x²)′+C′=p·2x=2px=f (x).

4) После значка дифференциала d стоит р . Значит, переменная интегрирования р , а множитель х следует считать некоторой постоянной величиной.

2хрdр=р²х+С. Сравните с примерами 1) и 3).

Сделаем проверку. F′(p)=(p²x+C)′=x·(p²)′+C′=x·2p=2px=f (p).

Неопределенный интеграл

Основной задачей дифференциального исчисления было вычисление производной или дифференциала заданной функции. Интегральное исчисление, к изучению которого мы переходим, решает обратную задачу, а именно, отыскания самой функции по ее производной или дифференциалу. То есть, имея dF(х)= f(х)d (7.1) или F ′(х)= f(х) ,

где f(х) - известная функция, надо найти функцию F(х) .

Определение: Функция F(х) называется первообразной функции f(х) на отрезке , если во всех точках этого отрезка выполняется равенство: F′(х) = f(х) или dF(х)= f(х)d .

Например , одной из первообразных функций для функции f(х)=3х 2 будет F(х)= х 3 , т.к. (х 3)′=3х 2 . Но первоообразной для функции f(х)=3х 2 будет также и функции и , т.к. .

Итак, данная функция f(х)=3х 2 имеет бесконечное множество первоообразных, каждая из которых отличается лишь на постоянное слагаемое. Покажем, что этот результат имеет место и в общем случае.

Теорема Две различные первообразные одной и той же функции, определенной в некотором промежутке, отличаются одна от другой на этом промежутке на постоянное слагаемое.

Доказательство

Пусть функция f(х) определена на промежутке (a¸b) и F 1 (х) и F 2 (х) - первообразные, т.е. F 1 ′(х)= f(х) и F 2 ′(х)= f(х) .

Тогда F 1 ′(х)=F 2 ′(х)Þ F 1 ′(х) - F 2 ′(х) = (F 1 ′(х) - F 2 (х))′= 0 . Þ F 1 (х) - F 2 (х)=С

Отсюда, F 2 (х) = F 1 (х)+С

где С - константа (здесь использовано следствие из теоремы Лагранжа).

Теорема, таким образом, доказана.

Геометрическая иллюстрация . Если у = F 1 (х) и у = F 2 (х) – первообразные одной и той же функции f(х) , то касательная к их графикам в точках с общей абсциссой х параллельны между собой (рис. 7.1).

В таком случае расстояние между этими кривыми вдоль оси Оу остается постоянным F 2 (х) - F 1 (х)=С , то есть эти кривые в некотором понимании "параллельны" одна другой.

Следствие .

Прибавляя к какой-то первообразной F(х) для данной функции f(х) , определенной на промежутке Х , все возможные постоянные С , мы получим все возможные первообразные для функции f(х) .

Итак, выражение F(х)+С , где , а F(х) – некоторая первообразная функции f(х) включает все возможные первообразные для f(х) .

Пример 1. Проверить, являются ли функции первообразными для функции

Решение:

Ответ : первообразными для функции будут функции и

Определение: Если функция F(х) является некоторой первообразной для функции f(х), то множество всех первообразных F(х)+ С называют неопределенным интегралом от f(х) и обозначают:

∫f(х)dх.

По определению:

f(х) - подынтегральная функция,

f(х)dх - подынтегральное выражение

Из этого следует, чтоо неопределенный интеграл является функцией общего вида, дифференциал которой равен подынтегральному выражению, а производная от которой по переменной х равна подынтегральной функции во всех точках .

С геометрической точки зрения неопределенный интеграл представляет собой семейство кривых, каждая из которых получается путем сдвига одной из кривых параллельно самой себе вверх или вниз, то есть вдоль оси Оу (рис. 7.2).

Операция вычисления неопределенного интеграла от некоторой функции называется интегрированием этой функции.

Отметим, что если производная от элементарной функции всегда является элементарной функцией, то первоообразная от элементарной функции может не представляться при помощи конечного числа элементарных функций.

Рассмотрим теперь свойства неопределенного интеграла .

Из определения 2 вытекает:

1. Производная от неопределенного интеграла равна подынтегральной функции, то есть, если F′(х) = f(х) , то

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению

. (7.4)

Из определения дифференциала и свойства (7.3)

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть (7.5)

Документ

Некотором промежутке Х. Если для любого хХ F"(x) = f(x), то функция F называется первообразной для функции f на промежутке Х. Первообразную для функции можно попытаться найти...

  • Первообразной для функции

    Документ

    ... . Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех x(a;b) выполняется равенство F(x) = f(x). Например, для функции x2 первообразной будет функция x3 ...

  • Основы интегрального исчисления Учебное пособие

    Учебное пособие

    ... ; 5. Найти интеграл. ; B) ; C) ; D) ; 6. Функция называется первообразной к функции на множестве, если: для всех; в некоторой точке; для всех; в некоторой... интервалом. Определение 1. Функция называется первообразной для функции на множестве, ...

  • Первообразная Неопределённый интеграл

    Документ

    Интегрирования. Первообразная . Непрерывная функция F (x) называется первообразной для функции f (x) на промежутке X , если для каждого F’ (x) = f (x). П р и м е р. Функция F (x) = x 3 является первообразной для функции f (x) = 3x ...

  • СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР Утверждено Учебно-методическим управлением по высшему образованию ВЫСШАЯ МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ (С ПРОГРАММОЙ) для студентов-заочников инженерно-технических специальностей

    Методические указания

    Вопросы для самопроверки Дайте определение первообразной функции . Укажите геометрический смысл совокупности первообразных функций . Что называется неопределенным...

  • Цель:

    • Формирование понятия первообразной.
    • Подготовка к восприятию интеграла.
    • Формирование вычислительных навыков.
    • Воспитание чувства прекрасного (умение видеть красоту в необычном).

    Математический анализ - совокупность разделов математики, посвященных исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

    Если до настоящего времени мы изучали раздел математического анализа, называемого диффренциальным исчислением, суть которого заключается в изучении функции в “малом”.

    Т.е. исследование функции в достаточно малых окрестностях каждой точки определения. Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

    Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

    Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

    Пример №1 .

    Пусть (х)`=3х 2 .
    Найдем f(х).

    Решение:

    Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо (х 3)`=3х 2
    Однако, легко можно заметить, что f(х) находится неоднозначно.
    В качестве f(х) можно взять
    f(х)= х 3 +1
    f(х)= х 3 +2
    f(х)= х 3 -3 и др.

    Т.к.производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

    Любую из найденных функций f(х) называют ПЕРВООБРАЗНОЙ для функции F`(х)= 3х 2

    Определение. Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞).
    Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

    Как мы уже заметили, данная функция имеет бесконечное множество первообразных (смотри пример № 1).

    Пример № 2. Функция F(х)=х есть первообразная для всех f(х)= 1/х на промежутке (0; +), т.к. для всех х из этого промежутка, выполняется равенство.
    F`(х)= (х 1/2)`=1/2х -1/2 =1/2х

    Пример № 3. Функция F(х)=tg3х есть первообразная для f(х)=3/cos3х на промежутке (-п/2; п/2),
    т.к. F`(х)=(tg3х)`= 3/cos 2 3х

    Пример № 4. Функция F(х)=3sin4х+1/х-2 первообразная для f(х)=12cos4х-1/х 2 на промежутке (0;∞)
    т.к. F`(х)=(3sin4х)+1/х-2)`= 4cos4х-1/х 2

    Лекция 2.

    Тема: Первообразная. Основное свойство первообразной функции.

    При изучении первообразной будем опираться на следующее утверждение. Признак постоянства функции: Если на промежутке J производная Ψ(х) функции равна 0, то на этом промежутке функция Ψ(х) постоянна.

    Это утверждение можно продемонстрировать геометрически.

    Известно, что Ψ`(х)=tgα, γде α-угол наклона касательной к графику функции Ψ(х) в точке с абсциссой х 0 . Если Ψ`(υ)=0 в любой точке промежутка J, то tgα=0 δля любой касательной к графику функции Ψ(х). Это означает, что касательная к графику функции в любой его точке параллельна оси абсцисс. Поэтому на указанном промежутке график функции Ψ(х) совпадает с отрезком прямой у=С.

    Итак, функция f(х)=с постоянна на промежутке J, если f`(х)=0 на этом промежутке.

    Действительно, для произвольного х 1 и х 2 из промежутка J по теореме о среднем значении функции можно записать:
    f(х 2)- f(х 1)=f`(с) (х 2 - х 1), т.к. f`(с)=0, то f(х 2)= f(х 1)

    Теорема: (Основное свойство первообразной функции)

    Если F(х) одна из первообразных для функции f(х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.

    Доказательство:

    Пусть F`(х) = f (х), тогда (F(х)+С)`= F`(х)+С`= f (х), для х Є J.
    Допустим существует Φ(х)- другая первообразная для f (х) на промежутке J, т.е. Φ`(х) = f (х),
    тогда (Φ(х)- F(х))` = f (х) – f (х) = 0, для х Є J.
    Это означает, что Φ(х)- F(х) постоянна на промежутке J.
    Следовательно, Φ(х)- F(х) = С.
    Откуда Φ(х)= F(х)+С.
    Это значит, что если F(х) - первообразная для функции f (х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
    Следовательно, любые две первообразные данной функции отличаются друг от друга постоянным слагаемым.

    Пример: Найти множество первообразных функции f (х) = cos х. Изобразить графики первых трех.

    Решение: Sin х - одна из первообразных для функции f (х) = cos х
    F(х) = Sin х+С –множество всех первообразных.

    F 1 (х) = Sin х-1
    F 2 (х) = Sin х
    F 3 (х) = Sin х+1

    Геометрическая иллюстрация: График любой первообразной F(х)+С можно получить из графика первообразной F(х) при помощи параллельного переноса r (0;с).

    Пример: Для функции f (х) = 2х найти первообразную, график которой проходит через т.М (1;4)

    Решение: F(х)=х 2 +С – множество всех первообразных, F(1)=4 - по условию задачи.
    Следовательно, 4 = 1 2 +С
    С = 3
    F(х) = х 2 +3

    Урок и презентация на тему: "Первообразная функция. График функции"

    Дополнительные материалы
    Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

    Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
    Алгебраические задачи с параметрами, 9–11 классы
    "Интерактивные задания на построение в пространстве для 10 и 11 классов"

    Первообразная функция. Введение

    Ребята, вы умеем находить производные функций, используя различные формулы и правила. Сегодня мы будем изучать операцию, обратную вычислению производной. Понятие производной часто применяется в реальной жизни. Напомню: производная – это скорость изменения функции в конкретной точке. Процессы, связанные с движением и скоростью, хорошо описываются в этих терминах.

    Давайте рассмотрим вот такую задачу: "Скорость движения объекта, по прямой, описывается формулой $V=gt$. Требуется восстановить закон движения.
    Решение.
    Мы хорошо знаем формулу: $S"=v(t)$, где S - закон движения.
    Наша задача сводится к поиску функции $S=S(t)$, производная которой равна $gt$. Посмотрев внимательно, можно догадаться, что $S(t)=\frac{g*t^2}{2}$.
    Проверим правильность решения этой задачи: $S"(t)=(\frac{g*t^2}{2})"=\frac{g}{2}*2t=g*t$.
    Зная производную функции, мы нашли саму функцию, то есть выполнили обратную операцию.
    Но стоит обратить внимание вот на такой момент. Решение нашей задачи требует уточнения, если к найденной функции прибавить любое число (константу), то значение производной не изменится: $S(t)=\frac{g*t^2}{2}+c,c=const$.
    $S"(t)=(\frac{g*t^2}{2})"+c"=g*t+0=g*t$.

    Ребята, обратите внимание: наша задача имеет бесконечное множество решений!
    Если в задаче не задано начальное или какое-то другое условие, не забывайте прибавлять константу к решению. Например, в нашей задаче может быть задано положение нашего тела в самом начале движения. Тогда вычислить константу не трудно, подставив ноль в полученное уравнение, получим значение константы.

    Как называется такая операция?
    Операция обратная дифференцированию называется – интегрированием.
    Нахождение функции по заданной производной – интегрирование.
    Сама функция будет называться первообразной, то есть образ, то из чего была получена производная функции.
    Первообразную принято записывать большой буквой $y=F"(x)=f(x)$.

    Определение. Функцию $y=F(x)$ называется первообразной функции $у=f(x)$ на промежутке Х, если для любого $хϵХ$ выполняется равенство $F’(x)=f(x)$.

    Давайте составим таблицу первообразных для различных функции. Ее надо распечатать в качестве памятки и выучить.

    В нашей таблице никаких начальных условий задано не было. Значит к каждому выражению в правой части таблицы следует прибавить константу. Позже мы уточним это правило.

    Правила нахождения первообразных

    Давайте запишем несколько правил, которые нам помогут при нахождении первообразных. Все они похожи на правила дифференцирования.

    Правило 1. Первообразная суммы равна сумме первообразных. $F(x+y)=F(x)+F(y)$.

    Пример.
    Найти первообразную для функции $y=4x^3+cos(x)$.
    Решение.
    Первообразная суммы равна сумме первообразных, тогда надо найти первообразную для каждой из представленных функций.
    $f(x)=4x^3$ => $F(x)=x^4$.
    $f(x)=cos(x)$ => $F(x)=sin(x)$.
    Тогда первообразной исходной функции будет: $y=x^4+sin(x)$ или любая функция вида $y=x^4+sin(x)+C$.

    Правило 2. Если $F(x)$ – первообразная для $f(x)$, то $k*F(x)$ – первообразная для функции $k*f(x)$. (Коэффициент можем спокойно выносить за функцию).

    Пример.
    Найти первообразные функций:
    а) $y=8sin(x)$.
    б) $y=-\frac{2}{3}cos(x)$.
    в) $y={3x}^2+4x+5$.
    Решение.
    а) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная исходной функции примет вид: $y=-8cos(x)$.

    Б) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная исходной функции примет вид: $y=-\frac{2}{3}sin(x)$.

    В) Первообразной для $x^2$ служит $\frac{x^3}{3}$. Первообразной для x служит $\frac{x^2}{2}$. Первообразной для 1 служит x. Тогда первообразная исходной функции примет вид: $y=3*\frac{x^3}{3}+4*\frac{x^2}{2}+5*x=x^3+2x^2+5x$.

    Правило 3. Если $у=F(x)$ - первообразная для функции $y=f(x)$, то первообразная для функции $y=f(kx+m)$ служит функция $y=\frac{1}{k}*F(kx+m)$.

    Пример.
    Найти первообразные следующих функций:
    а) $y=cos(7x)$.
    б) $y=sin(\frac{x}{2})$.
    в) $y={-2x+3}^3$.
    г) $y=e^{\frac{2x+1}{5}}$.
    Решение.
    а) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная для функции $y=cos(7x)$ будет функция $y=\frac{1}{7}*sin(7x)=\frac{sin(7x)}{7}$.

    Б) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная для функции $y=sin(\frac{x}{2})$ будет функция $y=-\frac{1}{\frac{1}{2}}cos(\frac{x}{2})=-2cos(\frac{x}{2})$.

    В) Первообразной для $x^3$ служит $\frac{x^4}{4}$, тогда первообразная исходной функции $y=-\frac{1}{2}*\frac{{(-2x+3)}^4}{4}=-\frac{{(-2x+3)}^4}{8}$.

    Г) Слегка упростим выражение в степени $\frac{2x+1}{5}=\frac{2}{5}x+\frac{1}{5}$.
    Первообразной экспоненциальной функции является сама экспоненциальная функция. Первообразной исходной функции будет $y=\frac{1}{\frac{2}{5}}e^{\frac{2}{5}x+\frac{1}{5}}=\frac{5}{2}*e^{\frac{2x+1}{5}}$.

    Теорема. Если $у=F(x)$ - первообразная для функции $y=f(x)$ на промежутке Х, то у функции $y=f(x)$ бесконечно много первообразных, и все они имеют вид $у=F(x)+С$.

    Если во всех примерах, которые были рассмотрены выше, требовалось бы найти множество всех первообразных, то везде следовало бы прибавить константу С.
    Для функции $y=cos(7x)$ все первообразные имеют вид: $y=\frac{sin(7x)}{7}+C$.
    Для функции $y=(-2x+3)^3$ все первообразные имеют вид: $y=-\frac{{(-2x+3)}^4}{8}+C$.

    Пример.
    По заданному закону изменения скорости тела от времени $v=-3sin(4t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 1,75.
    Решение.
    Так как $v=S’(t)$, нам надо найти первообразную для заданной скорости.
    $S=-3*\frac{1}{4}(-cos(4t))+C=\frac{3}{4}cos(4t)+C$.
    В этой задаче дано дополнительное условие - начальный момент времени. Это значит, что $t=0$.
    $S(0)=\frac{3}{4}cos(4*0)+C=\frac{7}{4}$.
    $\frac{3}{4}cos(0)+C=\frac{7}{4}$.
    $\frac{3}{4}*1+C=\frac{7}{4}$.
    $C=1$.
    Тогда закон движения описывается формулой: $S=\frac{3}{4}cos(4t)+1$.

    Задачи для самостоятельного решения

    1. Найти первообразные функций:
    а) $y=-10sin(x)$.
    б) $y=\frac{5}{6}cos(x)$.
    в) $y={4x}^5+{3x}^2+5x$.
    2. Найти первообразные следующих функций:
    а) $y=cos(\frac{3}{4}x)$.
    б) $y=sin(8x)$.
    в) $y={(7x+4)}^4$.
    г) $y=e^{\frac{3x+1}{6}}$.
    3. По заданному закону изменения скорости тела от времени $v=4cos(6t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 2.