Болезни Военный билет Призыв

Формула нахождения косинуса. Свойства тангенса и котангенса. Вычисления и основные формулы

– уж наверняка встретятся задания по тригонометрии. Тригонометрию часто не любят за необходимость зубрить огромное количество трудных формул, кишащих синусами, косинусами, тангенсами и котангенсами. На сайте уже когда-то давались советы, как вспомнить забытую формулу, на примере формул Эйлера и Пиля .

А в этой статье мы постараемся показать, что достаточно твёрдо знать всего пять простейших тригонометрических формул, а об остальных иметь общее представление и выводить их по ходу дела. Это как с ДНК: в молекуле не хранятся полные чертежи готового живого существа. Там содержатся, скорее, инструкции по его сборке из имеющихся аминокислот. Так и в тригонометрии, зная некоторые общие принципы, мы получим все необходимые формулы из небольшого набора тех, которые нужно обязательно держать в голове.

Будем опираться на следующие формулы:

Из формул синуса и косинуса сумм, зная о чётности функции косинуса и о нечётности функции синуса, подставив -b вместо b, получаем формулы для разностей:

  1. Синус разности : sin (a-b) = sin a cos (-b) +cos a sin (-b) = sin a cos b -cos a sin b
  2. Косинус разности : cos (a-b) = cos a cos (-b) -sin a sin (-b) = cos a cos b +sin a sin b

Поставляя в эти же формулы a = b, получаем формулы синуса и косинуса двойных углов:

  1. Синус двойного угла : sin 2a = sin (a+a) = sin a cos a +cos a sin a = 2sin a cos a
  2. Косинус двойного угла : cos 2a = cos (a+a) = cos a cos a -sin a sin a = cos 2 a -sin 2 a

Аналогично получаются и формулы других кратных углов:

  1. Синус тройного угла : sin 3a = sin (2a+a) = sin 2a cos a +cos 2a sin a = (2sin a cos a )cos a +(cos 2 a -sin 2 a )sin a = 2sin a cos 2 a +sin a cos 2 a -sin 3 a = 3sin a cos 2 a -sin 3 a = 3sin a (1-sin 2 a )-sin 3 a = 3sin a -4sin 3 a
  2. Косинус тройного угла : cos 3a = cos (2a+a) = cos 2a cos a -sin 2a sin a = (cos 2 a -sin 2 a )cos a -(2sin a cos a )sin a = cos 3 a-sin 2 a cos a -2sin 2 a cos a = cos 3 a-3sin 2 a cos a = cos 3 a-3(1-cos 2 a )cos a = 4cos 3 a-3cos a

Прежде чем двигаться дальше, рассмотрим одну задачу.
Дано: угол - острый.
Найти его косинус, если
Решение, данное одним учеником:
Т.к. , то sin a = 3,а cos a = 4.
(Из математического юмора)

Итак, определение тангенса связывает эту функцию и с синусом, и с косинусом. Но можно получить формулу, дающую связь тангенса только с косинусом. Для её вывода возьмём основное тригонометрическое тождество: sin 2 a +cos 2 a = 1 и разделим его на cos 2 a . Получим:

Так что решением этой задачи будет:

(Т.к. угол острый, при извлечении корня берётся знак +)

Формула тангенса суммы – ещё одна, тяжело поддающаяся запоминанию. Выведем её так:

Сразу выводится и

Из формулы косинуса двойного угла можно получить формулы синуса и косинуса для половинного. Для этого к левой части формулы косинуса двойного угла:
cos 2 a = cos 2 a -sin 2 a
прибавляем единицу, а к правой – тригонометрическую единицу, т.е. сумму квадратов синуса и косинуса.
cos 2a +1 = cos 2 a -sin 2 a +cos 2 a +sin 2 a
2cos 2 a = cos 2 a +1
Выражая cos a через cos 2 a и выполняя замену переменных, получаем:

Знак берётся в зависимости от квадранта.

Аналогично, отняв от левой части равенства единицу, а от правой - сумму квадратов синуса и косинуса, получим:
cos 2a -1 = cos 2 a -sin 2 a -cos 2 a -sin 2 a
2sin 2 a = 1-cos 2 a

И, наконец, чтобы преобразовать сумму тригонометрических функций в произведение, используем следующий приём. Допустим, нам нужно представить в виде произведения сумму синусов sin a +sin b . Введём переменные x и y такие, что a = x+y, b+x-y. Тогда
sin a +sin b = sin (x+y)+sin (x-y) = sin xcos y+cos xsin y+sin xcos y-cos xsin y = 2sin xcos y. Выразим теперь x и y через a и b.

Поскольку a = x+y, b = x-y, то . Поэтому

Сразу же можно вывести

  1. Формулу для разбиения произведения синуса и косинуса в сумму : sin a cos b = 0.5(sin (a+b) +sin (a-b))

Рекомендуем потренироваться и вывести самостоятельно формулы для преобразования в произведение разности синусов и суммы и разности косинусов, а также для разбиения в сумму произведений синусов и косинусов. Проделав эти упражнения, вы досконально освоите мастерство вывода тригонометрических формул и не потеряетесь даже на самой сложной контрольной, олимпиаде или тестировании.

Формулы суммы и разности синусов и косинусов для двух углов α и β позволяют перейти от суммы указанных углов к произведению углов α + β 2 и α - β 2 . Сразу отметим, что не стоит путать формулы суммы и разности синусов и косинусов с формулами синусов и косинусов суммы и разности. Ниже мы перечислим эти формулы, приведем их вывод и покажем примеры применения для конкретных задач.

Yandex.RTB R-A-339285-1

Формулы суммы и разности синусов и косинусов

Запишем, как выглядят формулы суммы и разности для синусов и для косинусов

Формулы суммы и разности для синусов

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Формулы суммы и разности для косинусов

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2 , cos α - cos β = 2 sin α + β 2 · β - α 2

Данные формулы справедливы для любых углов α и β . Углы α + β 2 и α - β 2 называются соответственно полусуммой и полуразностью углов альфа и бета. Дадим формулировку для каждой формулы.

Определения формул сумм и разности синусов и косинусов

Сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.

Разность синусов двух углов равна удвоенному произведению синуса полуразности этих углов на косинус полусуммы.

Сумма косинусов двух углов равна удвоенному произведению косинуса полусуммы и косинуса полуразности этих углов.

Разность косинусов двух углов равна удвоенному произведению синуса полусуммы на косинус полуразности этих углов, взятому с отрицательным знаком.

Вывод формул суммы и разности синусов и косинусов

Для вывода формул суммы и разности синуса и косинуса двух углов используются формулы сложения. Приведем их ниже

sin (α + β) = sin α · cos β + cos α · sin β sin (α - β) = sin α · cos β - cos α · sin β cos (α + β) = cos α · cos β - sin α · sin β cos (α - β) = cos α · cos β + sin α · sin β

Также представим сами углы в виде суммы полусумм и полуразностей.

α = α + β 2 + α - β 2 = α 2 + β 2 + α 2 - β 2 β = α + β 2 - α - β 2 = α 2 + β 2 - α 2 + β 2

Переходим непосредственно к выводу формул суммы и разности для sin и cos.

Вывод формулы суммы синусов

В сумме sin α + sin β заменим α и β на выражения для этих углов, приведенные выше. Получим

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Теперь к первому выражению применяем формулу сложения, а ко второму - формулу синуса разностей углов (см. формулы выше)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Раскроем скобки, приведем подобные слагаемые и получим искомую формулу

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Действия по выводу остальных формул аналогичны.

Вывод формулы разности синусов

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Вывод формулы суммы косинусов

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Вывод формулы разности косинусов

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Примеры решения практических задач

Для начала, сделаем проверку одной из формул, подставив в нее конкретные значения углов. Пусть α = π 2 , β = π 6 . Вычислим значение суммы синусов этих углов. Сначала воспользуемся таблицей основных значений тригонометрических функций, а затем применим формулу для суммы синусов.

Пример 1. Проверка формулы суммы синусов двух углов

α = π 2 , β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 - π 6 2 = 2 sin π 3 cos π 6 = 2 · 3 2 · 3 2 = 3 2

Рассмотрим теперь случай, когда значения углов отличаются от основных значений, представленных в таблице. Пусть α = 165 ° , β = 75 ° . Вычислим значение разности синусов этих углов.

Пример 2. Применение формулы разности синусов

α = 165 ° , β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 · sin 165 ° - sin 75 ° 2 cos 165 ° + sin 75 ° 2 = = 2 · sin 45 ° · cos 120 ° = 2 · 2 2 · - 1 2 = 2 2

С помощью формул суммы и разности синусов и косинусов можно перейти от суммы или разности к произведению тригонометрических функций. Часто эти формулы называют формулами перехода от суммы к произведению. Формулы суммы и разности синусов и косинусов широко используются при решении тригонометрических уравнений и при преобразовании тригонометрических выражений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Понятия синуса, косинуса, тангенса и котангенса являются основными категориями тригонометрии — раздела математики, и неразрывно связаны с определением угла. Владение этой математической наукой требует запоминания и понимания формул и теорем, а также развитого пространственного мышления. Именно поэтому у школьников и студентов тригонометрические вычисления нередко вызывают трудности. Чтобы побороть их, следует подробнее познакомиться с тригонометрическими функциями и формулами.

Понятия в тригонометрии

Чтобы разобраться в базовых понятиях тригонометрии, следует сначала определиться с тем, что такое прямоугольный треугольник и угол в окружности, и почему именно с ними связаны все основные тригонометрические вычисления. Треугольник, в котором один из углов имеет величину 90 градусов, является прямоугольным. Исторически эта фигура часто использовалась людьми в архитектуре, навигации, искусстве, астрономии. Соответственно, изучая и анализируя свойства этой фигуры, люди пришли к вычислению соответствующих соотношений её параметров.

Основные категории, связанные с прямоугольными треугольниками — гипотенуза и катеты. Гипотенуза — сторона треугольника, лежащая против прямого угла. Катеты, соответственно, это остальные две стороны. Сумма углов любых треугольников всегда равна 180 градусам.

Сферическая тригонометрия — раздел тригонометрии, который не изучается в школе, однако в прикладных науках типа астрономии и геодезии, учёные пользуются именно им. Особенность треугольника в сферической тригонометрии в том, что он всегда имеет сумму углов более 180 градусов.

Углы треугольника

В прямоугольном треугольнике синусом угла является отношение катета, противолежащего искомому углу, к гипотенузе треугольника. Соответственно, косинус — это отношение прилежащего катета и гипотенузы. Оба эти значения всегда имеют величину меньше единицы, так как гипотенуза всегда длиннее катета.

Тангенс угла — величина, равная отношению противолежащего катета к прилежащему катету искомого угла, или же синуса к косинусу. Котангенс, в свою очередь, это отношение прилежащего катета искомого угла к противолежащему кактету. Котангенс угла можно также получить, разделив единицу на значение тангенса.

Единичная окружность

Единичная окружность в геометрии — окружность, радиус которой равен единице. Такая окружность строится в декартовой системе координат, при этом центр окружности совпадает с точкой начала координат, а начальное положение вектора радиуса определено по положительному направлению оси Х (оси абсцисс). Каждая точка окружности имеет две координаты: ХХ и YY, то есть координаты абсцисс и ординат. Выбрав на окружности любую точку в плоскости ХХ, и опустив с неё перпендикуляр на ось абсцисс, получаем прямоугольный треугольник, образованный радиусом до выбранной точки (обозначим её буквой С), перпендикуляром, проведённым до оси Х (точка пересечения обозначается буквой G), а отрезком оси абсцисс между началом координат (точка обозначена буквой А) и точкой пересечения G. Полученный треугольник АСG — прямоугольный треугольник, вписанный в окружность, где AG — гипотенуза, а АС и GC — катеты. Угол между радиусом окружности АС и отрезком оси абсцисс с обозначением AG, определим как α (альфа). Так, cos α = AG/AC. Учитывая, что АС — это радиус единичной окружности, и он равен единице, получится, что cos α=AG. Аналогично, sin α=CG.

Кроме того, зная эти данные, можно определить координату точки С на окружности, так как cos α=AG, а sin α=CG, значит, точка С имеет заданные координаты (cos α;sin α). Зная, что тангенс равен отношению синуса к косинусу, можно определить, что tg α = y/х, а ctg α = х/y. Рассматривая углы в отрицательной системе координат, можно рассчитать, что значения синуса и косинуса некоторых углов могут быть отрицательными.

Вычисления и основные формулы


Значения тригонометрических функций

Рассмотрев сущность тригонометрических функций через единичную окружность, можно вывести значения этих функций для некоторых углов. Значения перечислены в таблице ниже.

Простейшие тригонометрические тождества

Уравнения, в которых под знаком тригонометрической функции присутствует неизвестное значение, называются тригонометрическими. Тождества со значением sin х = α, k — любое целое число:

  1. sin х = 0, х = πk.
  2. 2. sin х = 1, х = π/2 + 2πk.
  3. sin х = -1, х = -π/2 + 2πk.
  4. sin х = а, |a| > 1, нет решений.
  5. sin х = а, |a| ≦ 1, х = (-1)^k * arcsin α + πk.

Тождества со значением cos х = а, где k — любое целое число:

  1. cos х = 0, х = π/2 + πk.
  2. cos х = 1, х = 2πk.
  3. cos х = -1, х = π + 2πk.
  4. cos х = а, |a| > 1, нет решений.
  5. cos х = а, |a| ≦ 1, х = ±arccos α + 2πk.

Тождества со значением tg х = а, где k — любое целое число:

  1. tg х = 0, х = π/2 + πk.
  2. tg х = а, х = arctg α + πk.

Тождества со значением ctg х = а, где k — любое целое число:

  1. ctg х = 0, х = π/2 + πk.
  2. ctg х = а, х = arcctg α + πk.

Формулы приведения

Эта категория постоянных формул обозначает методы, с помощью которых можно перейти от тригонометрических функций вида к функциям аргумента, то есть привести синус, косинус, тангенс и котангенс угла любого значения к соответствующим показателям угла интервала от 0 до 90 градусов для большего удобства вычислений.

Формулы приведения функций для синуса угла выглядят таким образом:

  • sin(900 — α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 — α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 — α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 — α) = -sin α;
  • sin(3600 + α) = sin α.

Для косинуса угла:

  • cos(900 — α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 — α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 — α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 — α) = cos α;
  • cos(3600 + α) = cos α.

Использование вышеуказанных формул возможно при соблюдении двух правил. Во-первых, если угол можно представить как значение (π/2 ± a) или (3π/2 ± a), значение функции меняется:

  • с sin на cos;
  • с cos на sin;
  • с tg на ctg;
  • с ctg на tg.

Значение функции остаётся неизменным, если угол может быть представлен как (π ± a) или (2π ± a).

Во-вторых, знак приведенной функции не изменяется: если он изначально был положительным, таким и остаётся. Аналогично с отрицательными функциями.

Формулы сложения

Эти формулы выражают величины синуса, косинуса, тангенса и котангенса суммы и разности двух углов поворота через их тригонометрические функции. Обычно углы обозначаются как α и β.

Формулы имеют такой вид:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tg(α ± β) = (tg α ± tg β) / (1 ∓ tg α * tg β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

Эти формулы справедливы для любых величин углов α и β.

Формулы двойного и тройного угла

Тригонометрические формулы двойного и тройного угла — это формулы, которые связывают функции углов 2α и 3α соответственно, с тригонометрическими функциями угла α. Выводятся из формул сложения:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 — 2sin^2 α.
  3. tg2α = 2tgα / (1 — tg^2 α).
  4. sin3α = 3sinα — 4sin^3 α.
  5. cos3α = 4cos^3 α — 3cosα.
  6. tg3α = (3tgα — tg^3 α) / (1-tg^2 α).

Переход от суммы к произведению

Учитывая, что 2sinx*cosy = sin(x+y) + sin(x-y), упростив эту формулу, получаем тождество sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Аналогично sinα — sinβ = 2sin(α — β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα — tgβ = sin(α — β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Переход от произведения к сумме

Эти формулы следуют из тождеств перехода суммы в произведение:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Формулы понижения степени

В этих тождествах квадратную и кубическую степени синуса и косинуса можно выразить через синус и косинус первой степени кратного угла:

  • sin^2 α = (1 — cos2α)/2;
  • cos^2 α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα — sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 — 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Универсальная подстановка

Формулы универсальной тригонометрической подстановки выражают тригонометрические функции через тангенс половинного угла.

  • sin x = (2tgx/2) * (1 + tg^2 x/2), при этом х = π + 2πn;
  • cos x = (1 — tg^2 x/2) / (1 + tg^2 x/2), где х = π + 2πn;
  • tg x = (2tgx/2) / (1 — tg^2 x/2), где х = π + 2πn;
  • ctg x = (1 — tg^2 x/2) / (2tgx/2), при этом х = π + 2πn.

Частные случаи

Частные случаи простейших тригонометрических уравнений приведены ниже (k — любое целое число).

Частные для синуса:

Значение sin x Значение x
0 πk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk или 5π/6 + 2πk
-1/2 -π/6 + 2πk или -5π/6 + 2πk
√2/2 π/4 + 2πk или 3π/4 + 2πk
-√2/2 -π/4 + 2πk или -3π/4 + 2πk
√3/2 π/3 + 2πk или 2π/3 + 2πk
-√3/2 -π/3 + 2πk или -2π/3 + 2πk

Частные для косинуса:

Значение cos x Значение х
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Частные для тангенса:

Значение tg x Значение х
0 πk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Частные для котангенса:

Значение ctg x Значение x
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Теоремы

Теорема синусов

Существует два варианта теоремы — простой и расширенный. Простая теорема синусов: a/sin α = b/sin β = c/sin γ. При этом, a, b, c — стороны треугольника, и α, β, γ — соответственно, противолежащие углы.

Расширенная теорема синусов для произвольного треугольника: a/sin α = b/sin β = c/sin γ = 2R. В этом тождестве R обозначает радиус круга, в который вписан заданный треугольник.

Теорема косинусов

Тождество отображается таким образом: a^2 = b^2 + c^2 — 2*b*c*cos α. В формуле a, b, c — стороны треугольника, и α — угол, противолежащий стороне а.

Теорема тангенсов

Формула выражает связь между тангенсами двух углов, и длиной сторон, им противолежащих. Стороны обозначены как a, b, c, а соответствующие противолежащие углы — α, β, γ. Формула теоремы тангенсов: (a — b) / (a+b) = tg((α — β)/2) / tg((α + β)/2).

Теорема котангенсов

Связывает радиус вписанной в треугольник окружности с длиной его сторон. Если a, b, c — стороны треугольника, и А, В, С, соответственно, противолежащие им углы, r — радиус вписанной окружности, и p — полупериметр треугольника, справедливы такие тождества:

  • ctg A/2 = (p-a)/r;
  • ctg B/2 = (p-b)/r;
  • ctg C/2 = (p-c)/r.

Прикладное применение

Тригонометрия — не только теоретическая наука, связанная с математическими формулами. Её свойствами, теоремами и правилами пользуются на практике разные отрасли человеческой деятельности — астрономия, воздушная и морская навигация, теория музыки, геодезия, химия, акустика, оптика, электроника, архитектура, экономика, машиностроение, измерительные работы, компьютерная графика, картография, океанография, и многие другие.

Синус, косинус, тангенс и котангенс — основные понятия тригонометрии, с помощью которых математически можно выразить соотношения между углами и длинами сторон в треугольнике, и найти искомые величины через тождества, теоремы и правила.

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Алексей:

Мне нужно было приобрести диплом для устройства на работу по профессии менеджер. И самое главное, что и опыт, и навыки у меня есть, но без документа я не могу, никуда устроится. Попав на ваш сайт, все-таки решился на покупку диплома. Диплом был выполнен за 2 дня!! Теперь у меня есть работа, о которой я раньше и не мечтал!! Спасибо!

Я не буду убеждать вас не писать шпаргалки. Пишите! В том числе, и шпаргалки по тригонометрии. Позже я планирую объяснить, зачем нужны шпаргалки и чем шпаргалки полезны. А здесь — информация, как не учить, но запомнить некоторые тригонометрические формулы. Итак — тригонометрия без шпаргалки!Используем ассоциации для запоминания.

1. Формулы сложения:

косинусы всегда «ходят парами»: косинус-косинус, синус-синус. И еще: косинусы — «неадекватны». Им «все не так», поэтому они знаки меняют: «-» на «+», и наоборот.

Синусы — «смешиваются» : синус-косинус, косинус-синус.

2. Формулы суммы и разности:

косинусы всегда «ходят парами». Сложив два косинуса — «колобка», получаем пару косинусов- «колобков». А вычитая, колобков точно не получим. Получаем пару синусов. Еще и с минусом впереди.

Синусы — «смешиваются» :

3. Формулы преобразования произведения в сумму и разность.

Когда мы получаем пару косинусов? Когда складываем косинусы. Поэтому

Когда мы получаем пару синусов? При вычитании косинусов. Отсюда:

«Смешение» получаем как при сложении, так и при вычитании синусов. Что приятнее: складывать или вычитать? Правильно, складывать. И для формулы берут сложение:

В первой и в третьей формуле в скобках — сумма. От перестановки мест слагаемых сумма не меняется. Принципиален порядок только для второй формулы. Но, чтобы не путаться, для простоты запоминания мы во всех трех формулах в первых скобках берем разность

а во вторых — сумму

Шпаргалки в кармане дают спокойствие: если забыл формулу, можно списать. А дают уверенность: если воспользоваться шпаргалкой не удастся, формулы можно легко вспомнить.