Болезни Военный билет Призыв

Физические свойства бериллия. Опасен ли бериллий? Изотопы и нуклеосинтез

Бериллий (лат. Beryllium), Be, химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп Ве.

Бериллий открыт в 1798 году в виде оксида ВеО, выделенной из минерала берилла Л. Вокленом. Металлический Бериллий впервые получили в 1828 году Ф. Велер и А. Бюсси независимо друг от друга. Так как некоторые соли Бериллия сладкого вкуса, его вначале называли "глюциний" (от греч. glykys - сладкий) или "глиций". Название Glicinium употребляется (наряду с Бериллием) только во Франции. Применение Бериллия началось в 40-х годах 20 века, хотя его ценные свойства как компонента сплавов были обнаружены еще ранее, а замечательные ядерные - в начале 30-х годов 20 века.

Распространение бериллия в природе . Бериллий - редкий элемент. Бериллий - типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Известно около 40 минералов Бериллия. Из них наибольшее практическое значение имеет берилл, перспективны и частично используются фенакит, гельвин, хризоберилл, бертрандит.

Физические свойства . Кристаллическая решетка Бериллия гексагональная плотноупакованная. Бериллий легче алюминия, его плотность 1847,7 кг/м3 (у Аl около 2700 кг/м3), температура плавления 1285оС, температура кипения 2470 oС.

БЕРИЛЛИЙ, Be (лат. Beryllium * а. berillium; н. Beryllium; ф. beryllium; и. berilio), — химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122. Имеет один стабильный изотоп 9 Ве. Открыт в 1798 французским химиком Л. Вокленом в виде оксида ВеО, выделенного из . Металлический бериллий независимо друг от друга получили в 1828 немецкий химик Ф. Вёлер и французский химик А. Бюсси.

Свойства бериллия

Бериллий — лёгкий светло-серый металл. Кристаллическая структура а-Be (269-1254°С) гексагональная; Я-Be (1254-1284°С) — объёмноцентрированная, кубическая. 1844 кг/м 3 , t плавления 1287°С, t кипения 2507°С. Обладает наиболее высокой из всех металлов теплоёмкостью 1,80 кДж/кг. К, высокой теплопроводностью 178 Вт/м. К при 50°С, низким удельным электрическим сопротивлением (3,6-4,5) . 10 Ом. м при 20°С; коэффициентом термического линейного расширения 10,3-13,1 . 10 -6 град -1 (25- 100°С). Бериллий — хрупкий металл; ударная 10-50 кДж/м 2 . Бериллий обладает малым поперечным сечением захвата тепловых нейтронов.

Химические свойства бериллия

Бериллий — типичный амфотерный элемент с высокой химической активностью; компактный бериллий устойчив на воздухе благодаря образованию плёнки ВеО; степень окисления берилля +2.

Соединения бериллия

При нагревании соединяется с , галогенами и другими неметаллами. С кислородом образует оксид ВеО, с азотом — нитрид Be 3 N 2 , с — карбид Ве 2 С, с — сульфид BeS. Растворим в щелочах (с образованием гидрооксобериллатов) и большинстве кислот. При высоких температурах бериллий взаимодействует с большинством металлов, образуя бериллиды. Расплавленный бериллий взаимодействует с оксидами, нитридами, сульфидами, карбидами. Из соединений бериллий наибольшее промышленное значение имеют ВеО, Ве(ОН) 2 , фторбериллаты, например Na 2 BeF 4 и др. Летучие соединения бериллий и пыль, содержащая бериллий и его соединения, токсичны.

Бериллий — редкий (кларк 6.10 -4 %), типично литофильный элемент, характерный для кислых и щелочных пород. Из 55 собственных минералов бериллий 50% принадлежит к силикатам и бериллийсиликатам, 24% — к фосфатам, 10% — к окислам, остальные — к , . Близость потенциалов ионизации определяет сродство бериллия и цинка в щелочной среде, так что они одновременно находятся в некоторых , а также входят в состав одного и того же минерала — . В нейтральных и кислых средах пути миграции бериллия и цинка резко расходятся. Некоторое рассеивание бериллия в горных породах определяется его химическим сходством с Al и Si. Особенно близки эти элементы в виде тетраэдрических группировок ВеО 4 6- , AlO 4 5- и SiO 4 4- . В гранитах проявляется большее сродство бериллия к , а в щелочных породах — к . Т. к. энергетически более выгодно замещение Аl 3+ IV на Ве 2+ IV, чем Si 4+ IV на Ве 2+ IV, то изоморфное рассеивание бериллия в щелочных породах, как правило, выше, чем в кислых. Геохимическая миграция бериллия связана с , с которым он образует весьма устойчивые комплексы BeF 4 2- , BeF 3 1- , BeF 2 0 , BeF 1+ . При повышении температуры и щёлочности эти комплексы легко гидролизуются до соединений Be(OH)F 0 , Be(OH) 2 F 1- , в виде которых бериллий мигрирует.

Об основных генетических типах месторождений бериллия и схемы обогащения см. в ст. Бериллиевые руды. В промышленности металлический бериллий получают термическим восстановлением BeF 2 магнием, бериллий высокой чистоты — переплавкой в вакууме и вакуумной дистилляцией.

Применение бериллия

Бериллий и его соединения применяют в технике (свыше 70% общего потребления металла) как легирующую добавку к сплавам на основе Cu, Ni, Zn, Al, Pb и других цветных металлов. В ядерной технике Be и ВеО используют в качестве отражателей и замедлителей нейтронов, а также в качестве источника нейтронов. Малая плотность, высокая прочность и жаростойкость, большой модуль упругости и хорошая теплопроводность позволяют применять бериллий и его сплавы как конструкционный материал в авиа-, ракетостроении и космической технике. Сплавы бериллия и оксида бериллия отвечают требованиям прочности и коррозионной устойчивости в качестве материалов для оболочек твэлов. Бериллий служит для изготовления окон рентгеновских трубок, нанесения твёрдого диффузионного слоя на поверхность стали (бериллизация), в качестве присадок к ракетному топливу. Потребителем Be и ВеО являются также электротехника и радиоэлектроника; ВеО используют как материал корпусов, теплоотводов и изоляторов полупроводниковых приборов. Благодаря высокой огнеупорности, инертности по отношению к большинству расплавленных металлов и солей оксид бериллий применяется для изготовления тиглей и специальной керамики.

Бериллий является химическим элементом с символом Be и атомным номером 4. Это относительно редкий элемент во Вселенной, обычно встречающийся как продукт расщепления больших атомных ядер, столкнувшихся с космическими лучами. В сердцевинах звезд бериллий истощается, поскольку он слит и создает большие элементы. Это двухвалентный элемент, который встречается естественным образом только в сочетании с другими элементами в минералах. Известные драгоценные камни, содержащие бериллий, включают берилл (аквамарин, изумруд) и хризоберил. В качестве свободного элемента, бериллий представляет собой прочный, легкий и хрупкий щелочноземельный металл стального цвета. Бериллий улучшает многие физические свойства других веществ при добавлении в качестве легирующего элемента в алюминий, медь (особенно сплав бериллиевой меди), железо и никель . Бериллий не образует оксидов до тех пор, пока он не достигнет очень высоких температур. Инструменты из бериллиевых медных сплавов сильны и тверды и не создают искр при ударе о поверхность стали. В структурных применениях, сочетание высокой изгибной жесткости, термической стабильности, теплопроводности и низкой плотности (в 1,85 раза больше, чем у воды), делает бериллиевый металл желательным аэрокосмическим материалом для компонентов летательных аппаратов, ракет, космических аппаратов и спутников. Из-за низкой плотности и атомной массы, бериллий относительно прозрачен для рентгеновских лучей и других форм ионизирующего излучения; поэтому он является наиболее распространенным материалом остекления для рентгеновского оборудования и компонентов детекторов частиц. Высокая теплопроводность оксида бериллия и бериллия привели к их использованию в приборах для регулирования температуры. Коммерческое использование бериллия требует наличия надлежащего оборудования для контроля пыли и промышленного контроля в любое время из-за токсичности ингаляционной пыли, содержащей бериллий, которая может вызвать хроническое опасное для жизни аллергическое заболевание у некоторых людей, называемое бериллиозом.

Характеристики

Физические свойства

Бериллий является твердым металлом стального цвета, который является хрупким при комнатной температуре и имеет плотноупакованную гексагональную кристаллическую структуру. Он имеет исключительную жесткость (модуль Юнга 287 ГПа) и достаточно высокую температуру плавления. Модуль эластичности бериллия примерно на 50% больше, чем у стали. Сочетание этого модуля и относительно низкой плотности приводит к необычайно высокой скорости звука в бериллии – около 12,9 км / с при комнатных условиях. Другими значимыми свойствами бериллия являются высокая удельная теплоемкость (1925 Дж · кг-1 · К-1) и теплопроводность (216 Вт · м-1 · К-1), которые делают бериллий металлом с лучшими характеристиками теплоотдачи на единицу массы. В сочетании с относительно низким коэффициентом линейного теплового расширения (11,4 × 10-6 К-1), эти характеристики приводят к уникальной устойчивости бериллия в условиях тепловой нагрузки .

Ядерные свойства

Естественно встречающийся бериллий, за исключением небольшого загрязнения космогенными радиоизотопами, представляет собой изотопически чистый бериллий-9, который имеет ядерный спин 3/2. Бериллий имеет большое сечение рассеяния для нейтронов с высокой энергией, около 6 амбар для энергий выше примерно 10 кэВ. Поэтому он работает как нейтронный отражатель и замедлитель нейтронов, эффективно замедляя нейтроны до диапазона тепловой энергии ниже 0,03 эВ, где полное сечение, по меньшей мере, на порядок ниже – точное значение сильно зависит от чистоты и размера кристаллитов в материале. Единственный изначальный изотоп бериллия 9Be также подвергается (n, 2n) нейтронной реакции с энергиями нейтронов более 1,9 МэВ, производя 8Be, который почти сразу разрывается на две альфа-частицы. Таким образом, для нейтронов с высокой энергией, бериллий является нейтронным множителем, который высвобождает больше нейтронов, чем поглощает. Эта ядерная реакция:

    94Be + N → 2 (42He) + 2n

Нейтроны высвобождаются, когда ядра бериллия поражаются энергичными альфа-частицами, производящими ядерную реакцию

    94Be + 42He → 126C + N

где 42He является альфа-частицей и 126C является ядром углерода-12. Бериллий также высвобождает нейтроны при бомбардировке гамма-лучами. Таким образом, природный бериллий, бомбардируемый альфа-или гамма из подходящего радиоизотопа, является ключевым компонентом большинства источников нейтронов ядерной реакции с радиоактивным изотопом для лабораторного производства свободных нейтронов. Небольшое количество трития высвобождается, когда ядра 94Be поглощают нейтроны с низкой энергией в трехступенчатой ядерной реакции

    94Be + N → 42He + 62He, 62He → 63Li + Β-, 63Li + N → 42He + 31H

Обратите внимание, что 62He имеет период полураспада всего 0,8 секунды, β- представляет собой электрон и 63Li имеет высокое сечение поглощения нейтронов. Тритий представляет собой радиоизотоп, вызывающий озабоченность в плане отходов ядерных реакторов . В качестве металла, бериллий прозрачен для большинства длин волн рентгеновских лучей и гамма-лучей, что делает его полезным для выходных окон рентгеновских трубок и других подобных устройств.

Изотопы и нуклеосинтез

В звездах создаются как стабильные, так и неустойчивые изотопы бериллия, но радиоизотопы недолговечны. Считается, что большая часть стабильного бериллия во Вселенной была первоначально создана в межзвездной среде, когда космические лучи индуцировали деление в более тяжелых элементах, обнаруженных в межзвездном газе и пыли . Изначальный бериллий содержит только один стабильный изотоп, 9Be, и поэтому бериллий является моноизотопическим элементом. Радиоактивный космогенный 10Be образуется в атмосфере Земли путем расщепления кислорода космическими лучами. 10Be накапливается на поверхности почвы, где его относительно длительный период полураспада (1,36 млн. лет) позволяет этому элементу длительно пребывать в этом состоянии перед распадом на бор-10. Таким образом, 10Be и его дочерние продукты используются для изучения естественной эрозии почв, почвообразования и развития латеритных почв, а также для измерения изменений солнечной активности и возраста ледяных ядер . Производство 10Be обратно пропорционально солнечной активности, поскольку увеличение солнечного ветра в периоды высокой солнечной активности уменьшает поток галактических космических лучей, достигающих Земли. Ядерные взрывы также образуют 10Be путем реакции быстрых нейтронов с 13C в двуокиси углерода в воздухе. Это один из показателей прошлой активности на объектах ядерного оружия. Изотоп 7Be (период полураспада 53 дня) также космогенен и показывает атмосферное обилие, связанное с солнечными пятнами, подобно 10Be. 8Be имеет очень короткий период полураспада, около 7 × 10-17 с, что способствует его значительной космологической роли, поскольку элементы, более тяжелые, чем бериллий, не могли быть получены путем ядерного синтеза в Большом взрыве. Это связано с отсутствием достаточного времени в течение фазы нуклеосинтеза Большого взрыва для получения углерода путем слияния ядер 4He и очень низких концентраций доступного бериллия-8. Британский астроном сэр Фред Хойл впервые показал, что энергетические уровни 8Be и 12C позволяют получать углерод путем так называемого процесса тройной альфа в звездах, содержащих гелий, где доступно больше времени нуклеосинтеза. Этот процесс позволяет производить углерод в звездах, но не в Большом взрыве. Таким образом, углерод, созданный звездами (основа углеродной жизни), является компонентом в элементах газа и пыли, выброшенных звездами асимптотической ветви гигантов и сверхновых (см. также нуклеосинтез Большого взрыва), а также создание всех других элементов с атомными номерами больше, чем у углерода. 2s-электроны бериллия могут способствовать химическому связыванию. Поэтому, когда 7Be распадается при захвате L-электронов, это делается путем взятия электронов из их атомных орбиталей, которые могут участвовать в склеивании. Это приводит к тому, что его скорость затухания зависит в измеряемой степени от ее химического окружения – редкое явление при распаде ядер. Самый короткоживущий из известных изотопов бериллия – 13Be, который распадается за счет нейтронного излучения. Он имеет период полураспада 2,7 × 10-21 с. 6Be также очень короткоживущий с периодом полураспада 5,0 × 10-21 с. Известно, что экзотические изотопы 11Be и 14Be обладают ядерным ореолом . Это явление можно понять, так как ядра 11Be и 14Be имеют соответственно 1 и 4 нейтрона, вращающихся практически вне классической модели Ферми.

Распространенность

Солнце имеет концентрацию бериллия 0,1 частей на миллиард (чнмрд). Бериллий имеет концентрацию от 2 до 6 частей на миллион (чнм) в земной коре. Он наиболее сконцентрирован в почвах, 6 чнм. Следовые количества 9Be содержатся в атмосфере Земли . Концентрация бериллия в морской воде составляет 0,2-0,6 частей на триллион. Однако, в проточной воде бериллий более распространен и имеет концентрацию 0,1 чнмрд . Бериллий встречается в более чем 100 минералах , но большинство из них встречается редко. Более распространенные минералы, содержащие бериллий, включают: бертрандит (Be4Si2O7 (OH) 2), берилл (Al2Be3Si6O18), хризоберил (Al2BeO4) и фенакит (Be2SiO4). Драгоценными формами берилла являются аквамарин, красный берилл и изумруд. Зеленый цвет в высококачественных формах берилла связан с разными количествами хрома (около 2% для изумруда). Две основные руды бериллия, берилл и бертранит, встречаются в Аргентине, Бразилии, Индии, Мадагаскаре, России и Соединенных Штатах. Общие мировые запасы бериллиевой руды составляют более 400 000 т. Бериллий является составной частью табачного дыма.

Производство

Извлечение бериллия из его соединений является трудным процессом из-за его высокой аффинности к кислороду при повышенных температурах и его способности уменьшать количество воды при удалении оксидной пленки. Соединенные Штаты, Китай и Казахстан являются единственными тремя странами, вовлеченными в промышленную добычу бериллия. Бериллий чаще всего экстрагируется из минерального берилла, который либо спекается с использованием экстрагента, либо расплавляется в растворимую смесь. Процесс спекания включает смешивание берилла с фторосиликатом натрия и содой при 770 ° C (1420 ° F) с образованием фторбериллата натрия, оксида алюминия и диоксида кремния. Гидроксид бериллия осаждают из раствора фторобериллата натрия и гидроксида натрия в воде. Экстракция бериллия с использованием метода расплава включает измельчение берилла в порошок и его нагревание до 1650 ° C (3000 ° F). Раствор быстро охлаждают водой и затем повторно нагревают до 250-300 ° C (482-557 ° F) в концентрированной серной кислоте, в основном, получая сульфат бериллия и сульфат алюминия. Водный аммиак затем используют для удаления алюминия и серы, оставляя гидроксид бериллия. Гидроксид бериллия, созданный с использованием либо метода агломерата, либо расплава, затем превращается во фторид бериллия или хлорид бериллия. Для образования фторида, водный фторид аммония добавляют к гидроксиду бериллия с получением осадка тетрафторбериллата аммония, который нагревают до 1000 ° С (1830 ° F) с образованием фтористого бериллия. Нагрев фторида до 900 °C (1,650 °F) с магнием дает мелкодисперсный бериллий, а дополнительный нагрев до 1300 °C (2,370 °F) создает компактный металл. Нагревание гидроксида бериллия образует оксид, который превращается в хлорид бериллия в сочетании с углеродом и хлором. Электролиз расплавленного бериллиевого хлорида затем используется для получения металла.

Химические свойства

Химическое поведение бериллия в значительной степени является результатом его небольших атомных и ионных радиусов. Таким образом, он обладает очень высоким потенциалом ионизации и сильной поляризацией при соединении с другими атомами, поэтому все его соединения являются ковалентными. Он более химически подобен алюминию, чем его близкие соседи в периодической таблице из-за того, что он имеет одинаковое отношение «заряд к радиусу». Вокруг бериллия образуется оксидный слой, что предотвращает дальнейшие реакции с воздухом, если вещество не нагревается выше 1000 °С. При воспламенении, бериллий горит блестящим огнём, образуя смесь оксида бериллия и нитрида бериллия. Бериллий легко растворяется в неокисляющих кислотах, таких как HCl и разбавленный H2SO4, но не в азотной кислоте или воде, так как в этом процессе образуется оксид. Это аналогично поведению алюминия. Бериллий также растворяется в щелочных растворах. Атом бериллия имеет электронную конфигурацию 2s2. Два валентных электрона дают состояние окисления бериллия a+2 и, следовательно, способность образовывать две ковалентные связи; единственным доказательством более низкой валентности бериллия является растворимость металла в BeCl2. Из-за правила октета, атомы стремятся найти валентность 8, чтобы напоминать благородный газ. Бериллий пытается достичь координационного числа 4, потому что две его ковалентных связи заполняют половину этого октета. Тетракоординирование позволяет соединениям бериллия, таким как фторид или хлорид, образовывать полимеры. Эта характеристика используется в аналитических методах с использованием ЭДТА (этилендиаминтетрауксусной кислоты) в качестве лиганда. ЭДТА предпочтительно образует октаэдрические комплексы, таким образом, поглощая другие катионы, такие как Al3+, которые могут мешать, например, при экстракции растворителем комплекса, образованного между Be2 + и ацетилацетоном . Бериллий (II) легко образует комплексы с сильными донорными лигандами, такими как оксиды фосфинов и оксиды арсинов. Были проведены обширные исследования этих комплексов, которые показывают стабильность связи O-Be. Растворы солей бериллия, например, сульфат бериллия и нитрат бериллия, являются кислотными из-за гидролиза 2+ 2+ + H2O ⇌ + + H3O + Другие продукты гидролиза включают тримерный ион 3+. Гидроксид бериллия, Be (OH) 2, нерастворим даже в кислых растворах с рН менее 6, то есть, при биологическом рН. Он амфотерный и растворяется в сильнощелочных растворах. Бериллий образует бинарные соединения со многими неметаллами. Безводные галогениды известны для F, Cl, Br и I. BeF2 имеет структуру, подобную кремнезему, с четырьмя тетраэдрами с общим углом. BeCl2 и BeBr2 имеют цепные структуры с краевыми тетраэдрами. Все галогениды бериллия имеют линейную мономерную молекулярную структуру в газовой фазе . Дифторид бериллия, BeF2, отличается от других дифторидов. Как правило, бериллий имеет тенденцию связываться ковалентно, гораздо больше, чем другие щелочноземельные металлы, а его фторид частично ковалентен (хотя и более ионный, чем его другие галогениды). BeF2 имеет много общего с SiO2 (кварцем), главным образом, с ковалентно связанной сетью. BeF2 имеет тетраэдрически скоординированный металл и образует стекла (трудно кристаллизуется). В кристаллической форме, фторид бериллия имеет такую же кристаллическую структуру комнатной температуры, что и кварц, и имеет также много высокотемпературных структур. Дифторид бериллия очень растворим в воде, в отличие от других дифторидов щелочноземельных металлов. (Хотя они сильно ионны, они не растворяются из-за особенно сильной энергии решетки структуры флюорита). Однако, BeF2 имеет гораздо меньшую электропроводность, когда находится в растворе или расплавлен, чем можно было бы ожидать, если бы он был полностью ионным. Оксид бериллия, BeO, представляет собой белое огнеупорное твердое вещество, которое имеет кристаллическую структуру вюрцита и теплопроводность выше, чем в некоторых металлах. BeO является амфотерным. Соли бериллия могут быть получены обработкой Be (OH) 2 кислотой. Известны сульфид, селенид и теллурид бериллия, все из которых имеют структуру сфалерита. Нитрид бериллия, Be3N2, представляет собой соединение с высокой температурой плавления, которое легко гидролизуется. Известен азид бериллия, BeN6, и фосфид бериллия, Be3P2, который имеет сходную структуру с Be3N2. Основной бериллиевый нитрат и основной ацетат бериллия имеют сходные тетраэдрические структуры с четырьмя атомами бериллия, координированными с центральным оксидным ионом. Известен ряд боридов бериллия, таких как Be5B, Be4B, Be2B, BeB2, BeB6 и BeB12. Карбид бериллия, Be2C, представляет собой огнеупорное кирпично-красное соединение, которое реагирует с водой с получением метана. Силицид бериллия не был идентифицирован.

История

Минерал берилл, содержащий бериллий, использовался, по крайней мере, с момента правления династии Птолемеев в Египте. В первом веке н.э. римский натуралист Плиний Старший упоминал в своей энциклопедии «Естественная история» о схожести берилла и изумруда («smaragdus»). Папирус Graecus Holmiensis, написанный в третьем или четвертом веке н.э., содержит примечания о том, как подготовить искусственный изумруд и берилл. Ранние анализы изумрудов и бериллов Мартина Генриха Клапрота, Торберна Олофа Бергмана, Франца Карла Ахарда и Иоганна Якоба Биндхайма всегда давали аналогичные элементы, что приводило к ошибочному выводу, что оба вещества представляют собой силикаты алюминия . Минералог René Just Haüy обнаружил, что оба кристалла геометрически идентичны, и он попросил химика Луи-Николаса Вокелина провести химический анализ. В документе 1798 года, прочитанном в Институте Франции, Вокелин сообщил, что он нашел новую «землю» при растворении гидроксида алюминия из изумруда и берилла в дополнительной щелочи. Редакторы журнала Annales de Chimie et the Physique назвали новую землю «глюцин» из-за сладкого вкуса некоторых его соединений . Клапрот предпочел название «бериллина» из-за того, что иттрия также образовывала сладкие соли. Название «бериллий» впервые было использовано Вёлером в 1828 году. Фридрих Вёлер был одним из ученых, которые независимо изолировали бериллий. Фридрих Вёлер и Антуан Бюсси независимо изолировали бериллий в 1828 году благодаря химической реакции металлического калия с хлоридом бериллия, следующим образом:

    BeCl2 + 2 K → 2 KCl +

При использовании спиртовой лампы, Вёлер нагревал чередующиеся слои хлорида бериллия и калия в платиновом тигле с проводным замыканием. Вышеуказанная реакция немедленно происходила и заставляла тигель принимать белый цвет. После охлаждения и промывки полученного серо-черного порошка, ученый увидел, что вещество состояло из мелких частиц с темным металлическим блеском . Высокореактивный калий был получен электролизом его соединений, и этот процесс был обнаружен 21 год назад. Химический метод, использующий калий, давал только мелкие зерна бериллия, из которых нельзя было отливать или забивать слиток металла. Прямой электролиз расплавленной смеси фтористого берилла и фторида натрия Паулем Лебо в 1898 году привел к образованию первых чистых (99,5 - 99,8 %) образцов бериллия. Первый коммерчески успешный процесс производства бериллия был разработан в 1932 году Альфредом Фондом и Хансом Гольдшмидтом. Процесс включает в себя электролиз смеси бериллиевых фторидов и бария, что заставляет расплавленный бериллий собираться на катоде с водяным охлаждением. Образец бериллия бомбардировался альфа-лучами от распада радия в эксперименте Джеймса Чадвика 1932 года, который раскрыл существование нейтрона. Этот же метод используется в одном классе лабораторных нейтронных источников на основе радиоизотопов, которые производят 30 нейтронов для каждого миллиона α-частиц. Производство бериллия во время Второй мировой войны стремительно увеличивалось из-за растущего спроса на твердые сплавы из бериллия и меди и люминофоры для люминесцентных ламп. В большинстве ранних флуоресцентных ламп использовался ортосиликат цинка с различным содержанием бериллия, излучающим зеленоватый свет. Небольшие добавки вольфрамата магния улучшили синюю часть спектра, чтобы получить приемлемый белый свет. На основе галогенофосфатных люминофоров были заменены люминофоры на основе бериллия, после того как бериллий оказался токсичным. Электролиз смеси фтористого берилла и фторида натрия использовался для выделения бериллия в течение XIX века. Высокая температура плавления металла делает этот процесс более энергоемким, чем соответствующие процессы, используемые для щелочных металлов. В начале 20-го века производство бериллия путем термического разложения йодистого бериллия было исследовано после успеха аналогичного процесса получения циркония, но этот процесс оказался неэкономичным для объемного производства . Чистый бериллиевый металл не был легкодоступным до 1957 года, хотя он использовался в качестве легирующего металла для упрочнения меди намного раньше. Бериллий можно получить путем восстановления соединений бериллия, таких как хлорид бериллия, с металлическим калием или натрием. В настоящее время, большую часть бериллия получают путем восстановления фтористого бериллия с очищенным магнием. В 2001 году цена вакуумных литых бериллиевых слитков на американском рынке составляла около 338 долл. США за фунт (745 долл. США за килограмм). В период с 1998 по 2008 годы, мировое производство бериллия уменьшилось с 343 до 200 тонн, из которых 176 тонн (88%) поступали из Соединенных Штатов.

Этимология

Ранних предшественников слова бериллий можно проследить во многих языках, включая латинский Beryllus; французский Béry; греческий βήρυλλος, bērullos, beryl; Prakrit veruliya (वॆरुलिय); Pāli veḷuriya (वेलुरिय), veḷiru (भेलिरु) или viḷar (भिलर्) - «бледнеть», применительно к бледному полудрагоценному камню берилла. Первоначальным источником, вероятно, является санскритское слово वैडूर्य (вайдурия), которое имеет дравидийское происхождение и может быть связано с названием современного города Белур. В течение примерно 160 лет бериллий также был известен как глюцин или глюциний (с сопровождающим химическим символом «Gl», или «G»). Название происходит от греческого слова, обозначающего сладость: γλυκυς, из-за сладкого вкуса солей бериллия.

Применения

Радиационные окна

Из-за его низкого атомного номера и очень низкого поглощения для рентгеновских лучей, самое старое и все еще одно из наиболее важных применений бериллия – в радиационных окнах для рентгеновских трубок. Крайние требования предъявляются к чистоте бериллия во избежание появления артефактов на рентгеновских снимках. Тонкая бериллиевая фольга используется в качестве радиационных окон для рентгеновских детекторов, а чрезвычайно низкое поглощение минимизирует эффекты нагрева, вызванные высокоинтенсивными рентгеновскими лучами с низкой энергией, характерными для синхротронного излучения. Вакуум-герметичные окна и лучевые трубки для радиационных экспериментов на синхротронах изготавливаются исключительно из бериллия. В научных установках для различных исследований рентгеновского излучения (например, энергодисперсионной рентгеновской спектроскопии), держатель образца обычно изготовляют из бериллия, поскольку его излучаемые рентгеновские лучи имеют гораздо более низкие энергии (~ 100 эВ), чем рентгеновские лучи большинства изученных материалов. Низкий атомный номер также делает бериллий относительно прозрачным для энергетических частиц. Поэтому он используется для построения лучевой трубы вокруг области столкновения в установках физики частиц, таких как все четыре основных экспериментальных детектора на Большом адронном коллайдере (ALICE, ATLAS, CMS , LHCb), Tevatron и SLAC. Низкая плотность бериллия позволяет продуктам столкновения достигать окружающих детекторов без значительного взаимодействия, его жесткость позволяет создавать мощный вакуум внутри трубы, чтобы минимизировать взаимодействие с газами, его термостабильность позволяет ему нормально функционировать при температурах всего в несколько градусов выше абсолютного нуля, и его диамагнитная природа не позволяет вмешиваться в сложные мультипольные магнитные системы, используемые для управления и фокусировки пучков частиц.

Механические применения

Из-за его жесткости, малой массы и стабильности размеров в широком температурном диапазоне, бериллиевый металл используется для легких конструкционных компонентов в оборонной и аэрокосмической промышленности на высокоскоростных самолетах, управляемых ракетах, космических аппаратах и спутниках. В нескольких ракетах с жидким топливом использовали ракетные сопла из чистого бериллия. Бериллиевый порошок сам изучался как ракетное топливо, но это использование никогда не имело место. Небольшое количество экстремальных высококачественных велосипедных рамок было построено с использованием бериллия . С 1998 по 2000 годы команда McLaren Formula One использовала двигатели Mercedes-Benz с поршнями из бериллиево-алюминиевого сплава. Использование компонентов бериллиевого двигателя было запрещено после протеста Scuderia Ferrari. Смешивание около 2,0% бериллия в меди привело к образованию сплава под названием бериллиевая медь, который в шесть раз сильнее, чем медь в отдельности. Бериллиевые сплавы имеют многочисленные применения из-за того, что сочетают в себе эластичность, высокую электропроводность и теплопроводность, высокую прочность и твердость, немагнитные свойства, а также хорошую стойкость к коррозии и сопротивление прочности. Эти применения включают в себя неискрящие инструменты, которые используются вблизи легковоспламеняющихся газов (бериллиевый никель), в пружинах и мембранах (бериллиевый никель и железо бериллия), используемых в хирургических инструментах и высокотемпературных устройствах. Менее 50 частей на миллион бериллия, легированного жидким магнием, приводят к значительному повышению стойкости к окислению и снижению воспламеняемости. Высокая эластичная жесткость бериллия привела к его широкому использованию в прецизионных измерительных приборах, например, в системах инерциального наведения и в опорных механизмах для оптических систем. Бериллиево-медные сплавы также применялись в качестве отвердителя в «пистолетах Джейсона», которые использовались для отделения краски от корпусов кораблей . Бериллий также использовался для консолей в высокопроизводительных патронах-картриджах, где его предельная жесткость и низкая плотность позволили снизить вес отслеживания до 1 грамма, но все же отслеживать высокочастотные каналы с минимальными искажениями. Раннее крупное применение бериллия – в тормозах для военных самолетов из-за его твердости, высокой температуры плавления и исключительной способности рассеивать тепло. Из-за экологических соображений, бериллий заменили другими материалами. Для снижения затрат, бериллий может быть легирован значительным количеством алюминия, в результате чего образуется сплав AlBeMet (торговое название). Эта смесь дешевле, чем чистый бериллий, и сохраняет при этом многие полезные свойства бериллия.

Зеркала

Бериллиевые зеркала представляют особый интерес. Зеркала большой площади, часто с сотовой опорной конструкцией, используются, например, в метеорологических спутниках, где малая масса и долговременная пространственная стабильность являются критическими факторами. Меньшие бериллиевые зеркала используются в оптических системах наведения и в системах управления огнем, например, в немецких танках Leopard 1 и Leopard 2. В этих системах требуется очень быстрое перемещение зеркала, что также требует низкую массу и высокую жесткость. Обычно бериллиевое зеркало имеет жесткое никелевое покрытие, которое легче отполировать до более тонкого оптического покрытия, чем бериллий. Однако, в некоторых применениях бериллиевая заготовка полируется без какого-либо покрытия. Это особенно применимо к криогенной работе, когда рассогласование теплового расширения может привести к искривлению покрытия. Космический телескоп Джеймса Уэбба будет иметь 18 гексагональных сегментов бериллия в его зеркалах. Поскольку этот телескоп столкнется с температурой 33 К, зеркало делается из позолоченного бериллия, способного справляться с экстремальным холодом лучше, чем стекло. Бериллий сжимается и деформируется меньше, чем стекло, и остается более однородным при таких температурах. По этой же причине, оптика космического телескопа Спитцера полностью построена из бериллиевого металла.

Магнитные применения

Бериллий немагнитен. Поэтому инструменты, изготовленные из материалов на основе бериллия, используются морскими или военными командами для уничтожения боеприпасов для работы на морских минах или вблизи них, поскольку эти мины обычно имеют магнитные взрыватели. Они также обнаружены в ремонтных и строительных материалах вблизи приборов для магнитно-резонансной томографии (МРТ) из-за генерируемых больших магнитных полей. В области радиосвязи и мощных (обычно военных) радаров, ручные инструменты из бериллия используются для настройки высокомагнитных клистронов, магнетронов, бегущих волновых трубок и т. д., которые используются для создания высоких уровней мощности СВЧ в передатчиках.

Ядерные применения

Тонкие пластины, или фольга из бериллия, иногда используются в конструкциях ядерного оружия как самый внешний слой плутониевых ям на первичных этапах создания термоядерных бомб, помещенных вокруг делящегося материала. Эти слои бериллия являются хорошими «толкателями» для имплозии плутония-239, а также хорошими нейтронными отражателями, точно так же, как и в ядерных реакторах с бериллием. Бериллий также широко используется в некоторых источниках нейтронов в лабораторных устройствах, в которых требуется относительно мало нейтронов (вместо того, чтобы использовать ядерный реактор или генератор нейтронов с ускорителем на основе частиц). С этой целью, бериллий-9 бомбардируется энергичными альфа-частицами из радиоизотопа, такого как полоний-210, радий-226, плутоний-238 или америций-241. В ядерной реакции, которая имеет место, ядро бериллия превращается в углерод-12, испускается один свободный нейтрон, перемещаясь примерно в том же направлении, что и альфа-частица. Такие ранние атомные бомбы использовались в таких источниках нейтронов бериллиевого типа, которые назывались нейтронными инициаторами типа «еж». Источники нейтронов, в которых бериллий бомбардируется гамма-излучением из радиоизотопа гамма-распада, также используются для создания лабораторных нейтронов. Бериллий также используется для изготовления топлива для реакторов CANDU. Топливные элементы имеют небольшие придатки с сопротивлением, припаянные к оболочке топлива, с использованием процесса индукционной пайки с использованием Be в качестве материала для пайки наполнителем. Подшипниковые накладки припаяны, чтобы предотвратить попадание пучка топлива в контакт с напорной трубой, а межэлементные распорные подушки спаяны для предотвращения контакта элементов. Бериллий также используется в совместной европейской исследовательской лаборатории по ядерному синтезу Torus, и он будет использоваться в более продвинутом ITER для изучения компонентов, которые сталкиваются с плазмой. Бериллий также был предложен в качестве материала оболочки для стержней ядерного топлива из-за его хорошей комбинации механических, химических и ядерных свойств. Фтористый берилл является одной из составных солей смеси эвтектических солей FLiBe, которая используется в качестве растворителя, замедлителя и хладагента во многих гипотетических проектах реактора с расплавленной солью, включая жидкий фторидный ториевый реактор (LFTR).

Акустика

Низкий вес и высокая жесткость бериллия делают его полезным в качестве материала для высокочастотных динамиков. Поскольку бериллий является дорогостоящим (во много раз дороже титана), трудно формируется из-за его хрупкости, и является токсичным при неправильном использовании, бериллиевые высокочастотные динамики используются только домами высокого класса, профессиональными аудиосистемами и публичными адресными приложениями. Некоторые высококачественные продукты были обманным образом заявлены как изготовленные из этого материала. В некоторых высококачественных картриджах для фонографов использовались кантилеверы из бериллия для улучшения отслеживания за счет уменьшения массы.

Электроника

Бериллий является примесью p-типа в составных полупроводниках III-V. Он широко используется в таких материалах, как GaAs, AlGaAs, InGaAs и InAlAs, выращенных методом молекулярно-лучевой эпитаксии (MBE) . Поперечно-прокатанный лист из бериллия является отличной конструкционной поддержкой для печатных плат в технологии поверхностного монтажа. В критических электронных приложениях, бериллий является как структурной опорой, так и теплоотводом. Такое применение также требует коэффициент теплового расширения, который хорошо согласуется с подложками из оксида алюминия и полиимида. Композиции «E-Materials» из бериллий-бериллиевого оксида были специально разработаны для этих электронных приложений и имеют дополнительное преимущество в том, что коэффициент теплового расширения может быть адаптирован к различным материалам субстрата. Оксид бериллия полезен для многих применений, которые требуют комбинированных свойств электрического изолятора и отличного теплопроводника с высокой прочностью и твердостью и очень высокой температурой плавления. Оксид бериллия часто используется в качестве опорной пластины изолятора в высокомощных транзисторах в радиочастотных передатчиках для телекоммуникаций. Оксид бериллия также изучается для использования в повышении теплопроводности гранул ядерного топлива на основе урана. Соединения бериллия использовались в люминесцентных лампах, но это использование было прекращено из-за болезни бериллиоза, которая развилась у рабочих, которые делали эти трубки.

Здравоохранение

Безопасность и гигиена труда

Бериллий представляет собой проблему безопасности для рабочих, имеющих дело с этим элементом. Воздействие бериллия на рабочем месте может привести к иммунологической реакции сенсибилизации и со временем может вызвать хроническое заболевание бериллия. Национальный институт безопасности и гигиены труда (NIOSH) в США исследует эти эффекты в сотрудничестве с крупным производителем бериллиевых продуктов. Целью этих исследований является предотвращение сенсибилизации путем разработки лучшего понимания рабочих процессов и воздействий, которые могут представлять потенциальный риск для работников, а также разработка эффективных мер вмешательства, которые уменьшат риск неблагоприятного воздействия бериллия на здоровье. Национальный институт охраны труда также проводит генетические исследования по вопросам сенсибилизации, независимо от этого сотрудничества. Руководство по аналитическим методам Национального института охраны труда содержит методы измерения профессионального облучения бериллием.

Меры предосторожности

В теле человека, в среднем, содержится около 35 микрограммов бериллия, количество, которое не считается вредным. Бериллий химически подобен магнию и поэтому может вытеснять его из ферментов, что приводит к их неисправности. Поскольку Be2 + представляет собой сильно заряженный и маленький ион, он может легко проникать во многие ткани и клетки, где он специфически нацеливается на ядра клеток, ингибируя многие ферменты, в том числе, используемые для синтеза ДНК. Его токсичность усугубляется тем фактом, что организм не имеет средств для контроля уровней бериллия, и попав в организм, бериллий не может быть удален оттуда. Хронический бериллиоз – легочное и системное гранулематозное заболевание, вызванное вдыханием пыли или паров, загрязненных бериллием; либо путем попадания большого количества бериллия в течение короткого времени, либо небольшого количества в течение длительного времени. Развитие симптомов этого заболевания может занять до пяти лет; около трети пациентов, страдающих бериллиозом, умирают, а оставшиеся в живых остаются инвалидами. Международное агентство по изучению рака (МАИР) причисляет соединения бериллия и бериллий к канцерогенам категории 1. В США, Администрация по безопасности и гигиене труда (OSHA) назначила допустимый предел воздействия бериллия (PEL) на рабочем месте со средневзвешенным временем (TWA) 0,002 мг / м3 и постоянным пределом воздействия 0,005 мг / м3 в течение 30 минут с максимальным пиковым пределом 0,025 мг / м3. Национальный институт безопасности и гигиены труда (NIOSH) установил рекомендуемый предел воздействия (REL) с постоянным показателем 0,0005 мг / м3. Значение IDLH (количество, немедленно опасное для жизни и здоровья) составляет 4 мг / м3. Токсичность тонкоизмельченного бериллия (пыль или порошок, в основном встречающиеся в промышленных условиях, где бериллий производится или обрабатывается) очень хорошо задокументирована. Твердый бериллиевый металл не связан с теми же опасностями, что и аэрозольная пыль, но любая опасность, связанная с физическим контактом, плохо задокументирована. Работники, занимающиеся обработкой готовых изделий из бериллия, обычно советуют обрабатывать их перчатками, как в качестве меры предосторожности, так и потому, что многие, если не большинство применений бериллия, не могут переносить остатки контакта с кожей, такие как отпечатки пальцев. Кратковременная болезнь бериллия в виде химического пневмонита впервые была представлена в Европе в 1933 году и в Соединенных Штатах в 1943 году. Опрос показал, что около 5% рабочих на заводах, производящих флуоресцентные лампы в 1949 году в Соединенных Штатах, страдали от болезней, связанных с бериллием. Хронический бериллиоз во многом похож на саркоидоз, а дифференциальный диагноз часто бывает затруднителен. Бериллиоз был причиной смерти некоторых ранних работников в области разработки ядерного оружия, таких как Герберт Л. Андерсон. Бериллий может быть обнаружен в угольном шлаке. Когда из этого шлака делают абразивный реактор для струйной краски и когда с его поверхности формируется ржавчина, бериллий может стать источником вредного воздействия.

Бериллий — это металл серебристо-серых оттенков с блестящими кристаллическими проявлениями на сломах, который является четвёртым по счёту химическим элементом таблицы Менделеева. Вес атома бериллия составляет 9,0122 в единице исчисления стандартной атомной массы, равной 1/12 массы изотопа углерода. Бериллий - редкоземельный металл, который соотносится к массе земли в процентном отношении 2,6·10-4 %.

Открытие Бериллия

Как и многие химические элементы, бериллий был открыт в связи с изучением свойств благородных металлов и драгоценных камней. В 1798 году известный французский Луи Никола Воклен работал с бериллом - полудрагоценным камнем, ближайшим «родственником» изумруда. В процессе экспериментов активно использовалась так называемая берилловая земля, в которой и содержался оксид бериллия ВеО. Однако в этот раз бериллий как автономный химический элемент не был идентифицирован и назван. Это произошло позже, в 1828 году, когда немецкому учёному Фридриху Вёллеру удалось получить металлический бериллий. А завершил эволюцию познания этого довольно редкого элемента французский химик Лебо, которому с помощью электролиза удалось получить чистые бериллиевые кристаллы.

Кристаллы бериллия имеют сладковатый привкус, поэтому элемент первоначально именовался «глюциний» от греческого «сладкий». С открытием бериллия со временем сформировалась новая отрасль — синтез полудрагоценных и драгоценных камней. Сегодня на основе берилла синтезируются искусственные изумруды, аквамарины, гелиодоры, которые активно используются в ювелирной промышленности. Полудрагоценный камень берилл, послуживший отправной точкой в открытии бериллия, был назван в честь южноиндийского города Веллур, который находился вблизи известных изумрудных копей Индии. Бериллий содержится и в человеческом организме в количестве, не превышающем 0,036 мг. Тем не менее, бериллий в газообразном состоянии и бериллиевая пыль являются высокотоксичными веществами, которые вызывают серьёзные патологи органов дыхания и кровообращения.

Основные физико-химические свойства

Благодаря самой высокой внутренней теплоте правления, этот металл обладает уникальными характеристиками, определяющими его востребованность в ведущих отраслях производства и науки. Вышеупомянутая редкость бериллия в природе делает этот элемент своеобразным дефицитом в мире современных металлических сплавов.

Относительно низкая температура плавления 1284°С позволяет создавать бериллиевые слитки в условиях вакуума, однако чаще всего практикуется производство бериллия в порошкообразном состоянии. Литой бериллий отличает высокая хрупкость структуры, так что наибольший интерес этот металл представляет в деформированном виде. Термическая обработка под давлением позволяет на порядок повысить конструкционную прочность бериллия, который в конечном состоянии, благодаря высокой пластичности становится схожим по многим характеристикам с магнием и алюминием. В частности, бериллий на открытом воздухе также образуют оксидную плёнку, препятствующую коррозии. Этот металл без труда растворяется во многих кислотах и даже щелочах, за исключением концентрированной азотной кислоты.

Получают бериллий путём выделения из алюминиевых сплавов с помощью разнообразных технологий очистки, а также из минералов бериллов, на которые воздействуют концентрированной серной кислотой. Металлический бериллий производится путём обработки бериллиевых оксидов и сульфатов (Ве(ОН)2 или BeSO4). Технологические процессы производства бериллия достаточно сложны и требуют значительных энергозатрат, поэтому этот металл относится к дорогостоящим материалам.

Область применения

Уникальное природное свойство бериллия — не вступать во взаимодействие с рентгеновским излучением определило активное использование этого металла в изготовлении рентгенотехнических приборов и оборудования.

Кроме того, сегодня бериллиевые сплавы применяются для изготовления нейтронных отражателей и замедлителей в ядерных реакторах. Оксид бериллия отличается предельно высокой теплопроводностью и огнеупорностью, которая также используется в производстве оборудования для ядерной энергетики.

Аэрокосмическая и авиационная промышленность — ещё две отрасли, в которых находят успешное применение прочности, антикоррозийности и огнеупорности бериллиевых сплавов. В металлургии бериллий используется в качестве легирующего элемента, увеличивающего антикоррозийную и конструкционную прочность стали.

Прежде всего несколько (их может быть гораздо больше!) ответов на вопрос: «Что может нам дать бериллий?»... Самолет, вес которого вдвое меньше обычного; ...ракетное топливо с наивысшим удельным импульсом; ...пружины, способные выдержать до 20 миллиардов (!) циклов нагрузки – пружины, не знающие усталости, практически вечные.

А в начале нашего века в справочниках и энциклопедиях о бериллии говорилось: «Практического применения не имеет». Открытый еще в конце XVIII в. бериллий 100 с лишним лет оставался «безработным» элементом, хотя химикам уже были известны его уникальные и очень полезные свойства. Для того чтобы эти свойства перестали быть «вещью в себе», требовался определенный уровень развития науки и техники. В 30-х годах академик А.Е. Ферсман называл бериллий металлом будущего. Сейчас о бериллии можно и должно говорить как о металле настоящего.

Недоразумение с периодической системой

История элемента №4 началась с того, что его долго не могли открыть. Многие химики XVIII в. анализировали берилл (основной минерал бериллия), но никто из них не смог обнаружить в этом минерале нового элемента.

Даже современному химику, вооруженному фотометрическим, полярографическим, радиохимическим, спектральным, радиоактивационным и флуориметрическим методами анализа, нелегко выявить этот элемент, словно прячущийся за спину алюминия и его соединений, – настолько похожи их признаки. Первым исследователям бериллия приходилось, разумеется, гораздо труднее.

Но вот в 1798 г. французский химик Луи Никола Воклен, занимаясь сравнительным анализом берилла и изумруда, открыл в них неизвестный окисел – «землю». Она была очень похожа на окись алюминия (глинозем), однако Воклен заметил и отличия. Окисел растворялся в углекислом аммонии (а окись алюминия не растворяется); сернокислая соль нового элемента не образовывала квасцов с сернокислым калием (а сернокислая соль алюминия такие квасцы образует). Именно этой разницей в свойствах Воклен и воспользовался для разделения окислов алюминия и неизвестного элемента. Редакция журнала «Annales de chimie», опубликовавшего работу Воклена, предложила для открытой им «земли» название «глицина» (от греческого γλυμυς – сладкий) из-за сладкого вкуса ее солей. Однако известные химики М. Клапрот и А. Экеберг сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее, в научной литературе XIX в., вплоть до 60-х годов, элемент №4 сплошь и рядом называется «глицием», «глицинием» или «глюцинием». Ныне это название сохранилось только во Франции.

Интересно отметить, что с предложением называть элемент №4 бериллием еще в 1814 г. выступал харьковский профессор Ф.И. Гизе.

Окисел был получен, но еще долгое время никому не удавалось выделить бериллий в чистом виде. Только через 30 лет Ф. Вёлер и А. Бюсси получили немного порошкообразного металла действием металлического калия на хлористый бериллий, но металл этот содержал много примесей. Прошло еще почти 70 лет, прежде чем П. Лебо смог получить (в 1898 г.) чистый бериллий электролизом бериллиево-фтористого натрия.

Сходство бериллия с алюминием принесло немало хлопот и автору периодического закона Д.И. Менделееву. Именно из-за этого сходства в середине прошлого века бериллий считали трехвалентным элементом с атомным весом 13,8. Но, будучи помещен в таблице между углеродом и азотом, как того требовал его атомный вес, бериллий вносил полную путаницу в закономерное изменение свойств элементов. Это было серьезной угрозой периодическому закону. Однако Менделеев был уверен в правильности открытой им закономерности и доказывал, что атомный вес бериллия определен неверно, что бериллий должен быть не трехвалентным, а двухвалентным элементом «с магнезиальными свойствами». Исходя из этого, Менделеев поместил бериллий во вторую группу периодической системы вместе с двухвалентными щелочноземельными металлами, исправив его атомный вес на 9.

Первое подтверждение своих взглядов Менделеев нашел в одной из малоизвестных работ русского химика И.В. Авдеева, который считал, что окись бериллия химически подобна окиси магния. А в конце 70-х годов прошлого века шведские химики Ларе Фредерик Нильсон и Отто Петерсон (некогда бывшие самыми ярыми сторонниками мнения о трехвалентном бериллии), повторно определив атомный вес бериллия, нашли его равным 9,1.

Так бериллий, бывший первым камнем преткновения на пути периодического закона, только подтвердил его всеобщность. Благодаря периодическому закону стало более четким понятие о физической и химической сущности бериллия. Образно говоря, бериллий получил, наконец, свой «паспорт».

Сейчас бериллием интересуются люди многих профессий. В каждой из них – свой подход к элементу №4, своя «бериллиевая» проблематика.

Бериллий с точки зрения геолога

Типично редкий элемент. На тонну земного вещества в среднем приходится лишь 4,2 г бериллия. Это, конечно, очень немного, но и не так уж мало, если вспомнить, например, что такого известного элемента как свинец, на Земле вдвое меньше, чем бериллия. Обычно бериллий встречается как незначительная примесь в различных минералах земной коры. И лишь ничтожная часть земного бериллия сконцентрирована в собственных бериллиевых минералах. Их известно более 30, но только шесть из них считаются более или менее распространенными (берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит). А серьезное промышленное значение приобрел пока только один берилл, известный человеку с глубокой древности.

Бериллы встречаются в гранитных пегматитах, имеющихся почти во всех странах земного шара. Это красивые зеленоватые кристаллы, достигающие иногда очень больших размеров; известны бериллы-гиганты весом до тонны и длиной до 9 м.

К сожалению, пегматитовые месторождения очень малы, и добывать там берилл в широких промышленных масштабах не удается. Однако есть и другие источники бериллия, в которых его концентрация гораздо выше. Это так называемые пневмато-гидротермальные месторождения (т.е. месторождения, образовавшиеся в результате взаимодействия высокотемпературных паров и растворов с определенными типами горных пород).

Природный бериллий состоит из единственного устойчивого изотопа 9 Be. Интересно, что бериллий – единственный элемент периодической системы, имеющий при четном номере всего один стабильный изотоп. Известны еще несколько нестабильных, радиоактивных изотопов бериллия. (О двух из них – 10 Be и 7 Be – будет сказано ниже.)

Бериллий с точки зрения металлурга

Свойства бериллия чаще всего именуются «удивительными», «чудесными» и т.п. Отчасти это справедливо, причем главная «удивительность» заключается в сочетании противоположных, иногда, казалось бы, взаимоисключающих свойств. Бериллий обладает одновременно и легкостью, и прочностью, и теплостойкостью. Этот металл серебристо-серого цвета в полтора раза легче алюминия и в то же время прочнее специальных сталей. Особенно важно, что бериллий и многие его сплавы не утрачивают полезных свойств при температуре 700...800°C и могут работать в таких условиях.

Чистый бериллий очень тверд – им можно резать стекло. К сожалению, твердости сопутствует хрупкость.

Бериллий очень устойчив против коррозии. Как и алюминий, он покрывается при взаимодействии с воздухом тонкой окисной пленкой, защищающей металл от действия кислорода даже при высоких температурах. Лишь за порогом 800°C идет окисление бериллия в массе, а при температуре 1200°C металлический бериллий сгорает, превращаясь в белый порошок BeO.

Бериллий легко образует сплавы со многими металлами, придавая им большую твердость, прочность, жаростойкость и коррозионную стойкость. Один из его сплавов – бериллиевая бронза – это материал, позволивший решить многие сложные технические задачи.

Бериллиевыми бронзами называют сплавы меди с 1...3% бериллия. В отличие от чистого бериллия они хорошо поддаются механической обработке, из них можно, например, изготовить ленты толщиной всего 0,1 мм. Разрывная прочность этих бронз больше, чем у многих легированных сталей. Еще одна примечательная деталь: с течением времени большинство материалов, в том числе и металлы, «устают» и теряют прочность. Бериллиевые бронзы – наоборот. При старении их прочность возрастает! Они немагнитные. Кроме того, они не искрят при ударе. Из них делают пружины, рессоры, амортизаторы, подшипники, шестерни и многие другие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в широком интервале температур, высокие электро- и теплопроводные характеристики. Одним из потребителей этого сплава стала авиационная промышленность: утверждают, что в современном тяжелом самолете насчитывается больше тысячи деталей из бериллиевой бронзы.

Добавки бериллия облагораживают сплавы на основе алюминия и магния. Это понятно: плотность бериллия всего 1,82 г/см 3 , а температура плавления – вдвое выше, чем у этих металлов. Самые небольшие количества бериллия (достаточно 0,005%) намного уменьшают потери магниевых сплавов от горения и окисления при плавке и литье. Одновременно улучшается качество отливок, значительно упрощается технология.

Выяснилось, что с помощью бериллия можно увеличивать прочность, жесткость и жаростойкость других металлов, не только вводя его в те или иные сплавы. Чтобы предотвратить быстрый износ стальных деталей, их иногда бериллизуют – насыщают их поверхность бериллием путем диффузии. Делается это так: стальную деталь опускают в бериллиевый порошок и выдерживают в нем при 900...1100°C в течение 10...15 часов. Поверхность детали покрывается твердым химическим соединением бериллия с железом и углеродом. Этот прочный панцирь толщиной всего 0,15...0,4мм придает деталям жаростойкость и устойчивость к морской воде и азотной кислоте.

Интересными свойствами отличаются и бериллиды – интерметаллические соединения бериллия с танталом, ниобием, цирконием и другими тугоплавкими металлами. Бериллиды обладают исключительной твердостью и стойкостью против окисления. Лучшей технической характеристикой бериллидов служит тот факт, что они могут проработать более 10 часов при температуре 1650°C.

Бериллий с точки зрения физика

В истории многих элементов есть особые вехи – открытия, после которых значение этих элементов неизмеримо возрастает. В истории бериллия таким событием стало открытие нейтрона.

В начале 30-х годов немецкие физики В. Боте и Г. Беккер, бомбардируя бериллий альфа частицами, заметили так называемое бериллиевое излучение – очень слабое, но чрезвычайно проникающее. Оно, как было доказано позже, оказалось потоком нейтронов. А еще позже это свойство бериллия легло в основу «нейтронных пушек» – источников нейтронов, применяемых в разных областях науки и техники.

Так было положено начало изучению атомной структуры бериллия. Выяснилось, что его отличают малое сечение захвата нейтронов и большое сечение их рассеяния. Иными словами, бериллий (а также его окись) рассеивает нейтроны, изменяет направление их движения и замедляет их скорость до таких величин, при которых цепная реакция может протекать более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов.

Кроме того, бериллий может выполнять роль отражателя нейтронов: менять их направление, возвращать нейтроны в активную зону реактора, противодействовать их утечка. Бериллию свойственна также значительная радиационная стойкость, сохраняющаяся и при очень высокой температуре.

На всех этих свойствах основано применение бериллия в атомной технике – он один из самых необходимых ей элементов.

Замедлители и отражатели из бериллия и его окиси позволяют намного уменьшить размеры активной зоны реакторов, увеличить рабочую температуру и эффективнее использовать ядерное топливо. Поэтому, несмотря на высокую стоимость бериллия, его использование считают экономически оправданным, особенно в небольших энергетических реакторах для самолетов и морских судов.

Окись бериллия стала важным материалом для изготовления оболочек тепловыделяющих элементов (твэлов) атомных реакторов. В твэлах особенно велика плотность нейтронного потока; в них – самая высокая температура, самые большие напряжения и все условия для коррозии. Поскольку уран коррозионно неустойчив и недостаточно прочен, его приходится защищать специальными оболочками, как правило, из BeO.

Большая теплопроводность (в 4 раза выше, чем у стали), большая теплоемкость и жаропрочность позволяют использовать бериллий и его соединения в теплозащитных конструкциях космических кораблей. Из бериллия была сделана внешняя тепловая защита капсулы космического корабля «Фрэндшип-7», на котором Джон Гленн первым из американских космонавтов совершил (после Юрия Гагарина и Германа Титова) орбитальный полет.

В еще большей мере космическую технику привлекают в бериллии легкость, прочность, жесткость, и особенно – необыкновенно высокое отношение прочности к весу. Поэтому бериллий и его сплавы все шире используются в космической, ракетной и авиационной технике.

В частности, благодаря способности сохранять высокую точность и стабильность размеров бериллиевые детали используют в гироскопах – приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников Земли.

Элемент №4 применяется и в других областях современной техники, в том числе в радиоэлектронике. В частности, керамика на основе окиси бериллия стала материалом корпусов так называемых ламп бегущей волны – очень эффективных радиоламп, не утративших своего значения под натиском полупроводников.

Рентгенотехнике металлический бериллий дал прекрасные окна для рентгеновских трубок: благодаря малому атомному весу он пропускает в 17 раз больше мягких рентгеновских лучей, чем алюминий такой же толщины.

Бериллий с точки зрения химика

Типично амфотерен, т.е. обладает свойствами и металла, и неметалла. Однако металлические свойства все же преобладают.

С водородом бериллий не реагирует даже при нагревании до 1000°C, зато он легко соединяется с галогенами, серой и углеродом. Из галогенидов бериллия наибольшее значение имеют его фторид и хлорид, используемые в процессе переработки бериллиевых руд.

Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее как и от кислорода, бериллий защищен окисной пленкой.

Окись бериллия (ВеО) обладает ценными свойствами и в некоторых случаях конкурирует с самим бериллием.

Высокая тугоплавкость (температура плавления 2570°C), значительная химическая стойкость и большая теплопроводность позволяют применять окись бериллия во многих отраслях техники, в частности для футеровки бессердечниковых индукционных печей и тиглей для плавки различных металлов и сплавов. Интересно, что окись бериллия совершенно инертна по отношению к металлическому бериллию. Это единственный материал, из которого изготовляют тигли для плавки бериллия в вакууме.

Сравнительно давно используют окись бериллия в производстве стекла. Добавки ее увеличивают плотность, твердость, показатель преломления и химическую стойкость стекол. С помощью окиси бериллия создают специальные стекла, обладающие большой прозрачностью для ультрафиолетовых и инфракрасных лучей.

Стекловолокно, в состав которого входит окись бериллия, может найти применение в конструкциях ракет и подводных лодок.

При горении бериллия выделяется много тепла – 15 тыс. ккал/кг. Поэтому бериллий может быть компонентом высокоэнергетического ракетного горючего.

Некоторые соединения бериллия служат катализаторами химических процессов. Со щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя – почти все бериллаты ядовиты.

Многие ученые считают, что изотопы бериллия 10 Ве и 7 Be образуются не в недрах земли, а в атмосфере – в результате воздействия космических лучей на ядра азота и кислорода. Незначительные примеси этих изотопов обнаружены в дожде, снеге, воздухе, в метеоритах и морских отложениях.

Однако если собрать воедино весь 10 Ве, находящийся в атмосфере, водных бассейнах, почве и на дне океана, то получится довольно внушительная цифра – около 800 т.

Изотоп 10 Be (период полураспада 2,5·10 6 лет) представляет исключительный интерес для геохимии и ядерной метеорологии. Рождаясь в атмосфере, на высоте примерно 25 км, атомы 10 Ве вместе с осадками попадают в океан и оседают на дне. Зная концентрацию 10 Ве во взятой со дна пробе и период полураспада этого изотопа, можно вычислить возраст любого слоя на дне океана.

Бериллий-10 аккумулируется также в морских илах и ископаемых костях (кости сорбируют бериллий из природных вод). В связи с этим возникло предположение о возможности определения возраста органических остатков по 10 Be. Дело в том, что довольно широко освоенный радиоуглеродный метод непригоден для определения возраста образцов в интервале 10 5 ...10 8 лет (из-за большой разницы между периодами полураспада 14 С и долгоживущих изотопов 40 K, 82 Rb, 232 Th, 235 U и 238 U). Изотоп 10 Be как раз «заполняет» этот разрыв.

Жизнь другого радиоизотопа – бериллия-7 – значительно короче: период его полураспада равен всего 53 дням. Поэтому не удивительно, что количество его на Земле измеряется граммами. Изотоп 7 Be может быть получен и в циклотроне, но это дорого обойдется. Поэтому широкого применения этот изотоп не получил. Его используют иногда для прогнозирования погоды. Он выполняет роль своеобразной «метки» воздушных слоев: наблюдая изменение концентрации 7 Ве, можно определить промежуток времени от начала движения воздушных масс. Еще реже применяют 7 Be в других исследованиях: химики – в качестве радиоактивного индикатора, биологи – для изучения возможностей борьбы с токсичностью самого бериллия.

Бериллий с точки зрения биолога и медика

Бериллий обнаружен в растениях, произрастающих на бериллийсодержащих почвах, а также в тканях и костях животных. Но если для растения бериллий безвреден, то у животных он вызывает так называемый бериллиевый рахит. Повышенное содержание солей бериллия в пище способствует образованию в организме растворимого фосфата бериллия. Постоянно «похищая» фосфаты, бериллий тем самым способствует ослаблению костной ткани – это и есть причина болезни.

Многие соединения бериллия ядовиты. Они могут стать причиной воспалительных процессов на коже и бериллиоза – специфического заболевания, вызываемого вдыханием бериллия и его соединений. При кратковременном вдыхании больших концентраций растворимых соединений бериллия возникает острый бериллиоз, представляющий собой раздражение дыхательных путей, иногда сопровождающееся отеком легких и удушьем. Есть и хроническая разновидность бериллиоза. Для нее характерны менее резкие симптомы, но большие нарушения в функциях всего организма.

Допустимые пределы содержания бериллия в воздухе очень малы – всего 0,001 мг/м 3 . Это значительно меньше допустимых норм для большинства металлов, даже таких токсичных, как свинец.

Для лечения бериллиоза применяют чаще всего химические соединения, связывающие ионы бериллия и способствующие их выведению из организма.

Три «но» бериллия

Эта глава не означает, что все предыдущее – только «теория». Но, к сожалению, факторы, ограничивающие применение бериллия, вполне реальны, и не учитывать их нельзя.

Это прежде всего хрупкость металла. Она намного усложняет процесс его механической обработки, затрудняет получение больших листов бериллия и сложных профилей, необходимых в тех или иных конструкциях. Предпринимаются упорные попытки устранить этот недостаток. Но, несмотря на некоторые успехи (изготовление металла высокой чистоты, различные технологические усовершенствования), получение пластичного бериллия продолжает оставаться трудной проблемой.

Второе – токсичность бериллия.

Тщательный контроль за чистотой воздуха, особые системы вентиляции, возможно большая автоматизация производства – все это позволяет успешно бороться с токсичностью элемента №4 и его соединений.

И наконец, третье и очень важное «но» бериллия – его высокая стоимость. Цена 1 кг бериллия в США сейчас около 150 долларов, т.е. бериллий в несколько раз дороже титана.

Однако рост потребления всегда приводит к технологическим усовершенствованиям, которые в свою очередь способствуют уменьшению издержек производства и цены. В будущем спрос на бериллий возрастет еще больше: ведь этот металл человечество начало применять чуть больше 40 лет назад. И, конечно, достоинства элемента №4 возьмут верх над его недостатками.

Из документов прошлого

Восьмидесятые годы прошлого века – время оживленных научных споров об атомном весе бериллия.

Д.И. Менделеев писал по этому поводу:

«Недоразумение длилось несколько лет. Не раз мне приходилось слышать о том, что вопрос об атомном весе бериллия грозит поколебать общность периодического закона, может потребовать глубоких в нем преобразований. В научном разноречии, касающемся бериллия, приняли участие многие силы, конечно, потому именно, что дело шло о предмете более многозначительном, чем атомность сравнительно редкого элемента; периодический закон разъяснялся в этих разноречиях, и взаимная связь элементов разных групп стала более очевидной, чем было когда-либо» .

Долгое время главными противниками двух валентности бериллия были шведские химики профессора Л.Ф. Нильсон и О. Петерсон. В 1878 г. они опубликовали статью «О получении и валентности бериллия», в конце которой были такие слова: «...наше мнение об истинном атомном весе и химической природе этого металла противоречит так называемому периодическому закону, который Менделеев предначертал для всех элементов, а именно не только потому, что при Be = 13,8 металл этот едва ли может быть помещен в менделеевскую систему, но и потому, что тогда элемент с атомным весом 9,2, как это требует периодический закон, в системе отсутствовал бы и, по-видимому, еще должен быть открыт».

В защиту периодического закона выступил чешский химик Богуслав Браунер, считавший, что известный закон Дюлонга и Пти, которым пользовались шведские химики, имеет некоторые отступления в области малых атомных весов, к которой собственно и относится бериллий. Кроме того, Браунер советовал Нильсону и Петерсону определить плотность паров хлористого бериллия, считая, что количественное определение этой характеристики поможет точно установить принадлежность элемента к той или иной группе периодической системы. Когда шведские химики повторили свои опыты и проделали то, что советовал им Браунер, они убедились в правоте Менделеева. В статье, отражавшей результаты этой работы, Нильсон и Петерсон написали: «...мы должны отказаться от ранее защищавшегося нами мнения о том, что бериллий трехвалентный элемент... Одновременно мы признаем правильность периодического закона и в этом важном случае».

В 1884 г. Нильсон писал Менделееву: «...не могу не выразить Вам моего сердечного поздравления по поводу того, что и в этом случае, как и во многих других, система оправдала себя».

Позднее в одном из изданий «Основ химии» Д.И. Менделеев отметил, что «Нильсон и Петерсон – одни из главных защитников трехатомности бериллия... доставили опытные доказательства в пользу двухатомности бериллия и, громко высказав это, показали, что в науке истина, даже при разноречиях, одинаково дорога всем, хотя бы сперва и отрицалась теми, кто ее утвердил».

Драгоценные бериллы

Основной минерал бериллия – берилл относится, как известно, к полудрагоценным камням. Но когда говорят о четырех его разновидностях – изумруде, аквамарине, воробьевите и гелиодоре, то приставку «полу» отбрасывают. Изумруды, особенно весом больше 5 каратов, ценятся не меньше бриллиантов.

Чем отличаются эти камни от обычного берилла? Ведь формула их та же – Al 2 Be 3 (Si 6 O 18). Но эта формула не учитывает примесей, которые, собственно, и превращают полудрагоценные камни в драгоценные. Аквамарин окрашен ионами двухвалентного железа, в изумруде (он же смарагд) кроме Fe 2+ есть незначительная примесь окиси хрома. Розовый цвет воробьевита объясняется примесью соединений цезия, рубидия и двухвалентного марганца, а золотисто-желтый гелиодор окрашен ионами трехвалентного железа.

Драгоценный металл из полудрагоценного камня

Высокая стоимость бериллия объясняется не только ограниченностью сырьевых ресурсов, но и сложностями технологии получения чистого металла. Основной метод производства бериллия – восстановление его фторида металлическим магнием. Фторид получают из гидроокиси, а гидроокись из бериллового концентрата. Уже первый прогон этой технологической лестницы состоит из нескольких ступеней: концентрат подвергают термообработке, измельчению, затем на него последовательно действуют серной кислотой, водой, растворами аммиака и едкого натра, специальными комплексообразователями.

Получившийся бериллат натрия гидролизуют и на центрифуге отделяют гидроокись.

Гидроокись превращается во фторид тоже лишь после нескольких операций, каждая из которых достаточно сложна и трудоемка. Восстановление магнием идет при температуре 900°C, ход процесса тщательно контролируется. Важная деталь: тепло, выделяющееся в реакции, поглощается с той же скоростью, что и выделяется. Полученный жидкий металл выливают в графитовые изложницы, но он загрязнен шлаком, и поэтому его еще раз переплавляют в вакууме.

Бериллий в быту

Сферы применения бериллия не ограничиваются «высокой» техникой. С изделиями из никель-бериллиевых сплавов (содержание Be не превышает 1,5%) можно встретиться и в повседневной жизни. Из этих сплавов изготавливают хирургические инструменты, иглы для подкожных инъекций, литые металлические зубы. Из сплава «элинвар» (никель, бериллий, вольфрам) в Швейцарии делают пружины для часов. Медно-бериллиевый сплав в США используют для изготовления втулок пишущего механизма шариковых ручек.

Искусственные изумруды

Получить изумруды искусственным путем гораздо труднее, чем большинство других драгоценных камней. Главная причина в том, что берилл – сложное комплексное соединение. Однако ученые смогли имитировать природные условия, в которых происходило образование минерала: изумруды «рождаются» при очень высоком давлении (150 тыс. атм.) и высокой температуре (1550°C). Искусственные изумруды могут использоваться в электронике.

Бериллий и сверхпроводимость

Сейчас известно более тысячи материалов, приобретающих при температуре, близкой к абсолютному нулю, свойство сверхпроводимости. В их числе – металлический бериллий. Будучи сконденсирован в виде тонкой пленки на холодную подложку, бериллий становится сверхпроводником при температуре около 8 К.

Бериллий в целебном средстве

В 1964 г. группа советских химиков во главе с вице-президентом Академии наук Таджикской ССР, доктором химических наук К.Т. Порошиным провела химический анализ древнего целебного средства «мумие». Оказалось, что это вещество сложного состава, причем в числе многих элементов, содержащихся в мумие, есть и бериллий.

География месторождений бериллия

Бериллиевое сырье имеется во многих странах мира. Наиболее крупные месторождения его находятся в Бразилии и Аргентине. На их долю приходится примерно 40% добычи берилла в капиталистических странах. Значительные запасы бериллиевых руд имеются также в странах Африки и в Индии.

Вплоть до последнего времени крупнозернистый берилл добывали вручную. В Бразилии таким кустарным способом и сейчас ежегодно добывается до 3000 т концентрата.

Лишь недавно были предложены новые методы флотации, позволяющие использовать нерентабельные ранее месторождения мелкозернистого берилла.

Бериллий и «атомная игла»

Теплоизоляционные свойства окиси бериллия могут пригодиться и при исследовании земных глубин. Так, существует проект взятия проб из мантии Земли с глубин до 32 км с помощью так называемой атомной иглы. Это миниатюрный атомный реактор диаметром всего 60 см. Реактор должен быть заключен в теплоизолирующий футляр из окиси бериллия с тяжелым вольфрамовым наконечником.

Принцип действия атомной иглы заключается в следующем: высокие температуры, создаваемые в реакторе (свыше 1100°C), вызовут плавление скальных пород и продвижение реактора к центру Земли. На глубине примерно 32 км тяжелое вольфрамовое острие должно отделиться, а реактор, став более легким, чем окружающие его породы, возьмет пробы с недостижимых пока глубин и «всплывет» на поверхность.