Болезни Военный билет Призыв

Этапы математического моделирования. Основные этапы математического моделирования

Существует несколько подходов к выделению основных этапов математического моделирования. Приведем некоторые из них.

В. И. Крутова и В. В. Попова выделяют два основных этапа . Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов.

Вторым этапом моделирования является выбор типа математической модели, что является важнейшим моментом, определяющим направление всего исследования. Обычно последовательно строится несколько моделей. Сравнение результатов их исследования с реальностью позволяет установить наилучшую из них. На этапе выбора типа математической модели при помощи анализа данных поискового эксперимента устанавливаются: линейность или нелинейность, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса.

Процесс выбора математической модели объекта заканчивается ее предварительным контролем, который также является первым шагом на пути к исследованию модели. При этом осуществляются следующие виды контроля (проверки): размерностей, порядков, характера зависимостей, экстремальных ситуаций, граничных условий, математической замкнутости, физического (экономического, биологического и др.) смысла, устойчивости модели .

Поясним, что это подразумевает:

· контроль размерностей сводится к проверке выполнения правила, согласно которому приравниваться и складываться могут только величины одинаковой размерности;

· контроль порядков величин направлен на упрощение модели. При этом определяются порядки складываемых величин и явно малозначительные слагаемые отбрасываются;

· анализ характера зависимостей сводится к проверке направления и скорости изменения одних величин при изменении других. Направления и скорость, вытекающие из математической модели, должны соответствовать физическому смыслу задачи;

· анализ экстремальных ситуаций сводится к проверке наглядного смысла решения при приближении параметров модели к нулю или бесконечности;

· контроль граничных условий состоит в том, что проверяется соответствие математической модели граничным условиям, вытекающим из смысла задачи. При этом проверяется, действительно ли граничные условия поставлены и учтены при построении искомой функции и что эта функция на самом деле удовлетворяет таким условиям;

· анализ математической замкнутости сводится к проверке того, что математическая модель дает однозначное решение;

· анализ физического смысла сводится к проверке физического содержания промежуточных соотношений, используемых при построении математической модели;

· проверка устойчивости модели состоит в проверке того, что варьирование исходных данных в рамках имеющихся данных о реальном объекте не приведет к существенному изменению решения.

С.А. Айвазян, И.С. Енюков и Л.Д. Мешалкин выделяют шесть основных этапов моделирования .

1. Исходный этап. На этом этапе осуществляется определение конечных целей моделирования, отбор показателей, включаемых в модель, разделение их на входные и выходные.

2. Формирование априорной информации, т.е. постулирование, математическая формализация и, по возможности, экспериментальная проверка исходных допущений, относящихся к качественному характеру изучаемого явления.

3. Собственно моделирование. На этом этапе устанавливают общий вид модели (структуру, аналитическую и символьную запись).

4. Статистический анализ модели – оценивание неизвестных параметров, входящих в аналитическую запись модели, исследование свойств полученных статистических оценок.

5. Анализ адекватности модели. Заключается в применении различных процедур сопоставления выводов, оценок, следствий, полученных по результатам анализа модели и реально наблюдаемой действительностью.

6. Этап уточнения модели. Проводится лишь в том случае, если необходимы уточняющие исследования, развитие и углубление информации.

Еще один подход к выделению этапов математического моделирования, представленный В.П. Трусовым, изображен на схеме (Рис. 7).

Поясним выделенные на схеме основные этапы.

1. Обследование объекта моделирования означает, что математические модели, особенно использующие численные методы, требуют для своего построения значительных интеллектуальных, финансовых и временных затрат. Поэтому решение о разработке новой модели принимается лишь в случае отсутствия иных, более простых путей решения возникших проблем (например, модификации одной из существующих моде­лей). Основной целью обследования объекта моделирования является подго­товка содержательной постановки задачи моделирования, т.е. списка основных вопросов об объекте моделирования, интересующих за­казчика.

Приведем пример содержательной по­становки задачи о баскетболисте: необходимо разработать математическую модель, позволяющую описать по­лет баскетбольного мяча, брошенного игроком в баскетбольную кор­зину.

Модель должна обеспечить решение следующих задач: вычислять положение мяча в любой момент времени, определять точность попадания мяча в корзину после броска при различных начальных параметрах.

Исходные данные: масса и радиус мяча; начальные координаты, начальная скорость и угол броска мяча; координаты центра и радиус корзины.

1. Концептуальная постановка задачи – это сфор­мулированный в терминах конкретных дисциплин (физики, химии, био­логии и т.д.) перечень основных вопросов, интересующих заказчика, а также совокупность гипотез относительно свойств и поведения объекта моделирования. Концептуальная постановка позволяет сформули­ровать математическую постановку задачи моделирования, т.е. со­вокупность математических соотношений, описывающих поведение и свойства объекта моделирования.

Для контроля правильности полученной системы математичес­ких соотношений требуется проведение ряда обязательных прове­рок (о них упоминают также В. И. Крутова и В. В. Попова):

· Контроль размерностей, включающий правило, согласно ко­торому приравниваться и складываться могут только вели­чины одинаковой размерности.

· Контроль порядков, состоящий из грубой оценки сравнитель­ных порядков складываемых величин и исключением мало­значимых параметров.

· Контроль характера зависимостей заключается в проверке того, что направление и скорость изменения выходных па­раметров модели, вытекающие из математичес­ких соотношений, такие, как это следует непосредственно из «физического» смысла изучаемой модели.

· Контроль экстремальных ситуаций – проверка того, какой вид принимают математические соотношения, а также результа­ты моделирования, если параметры модели или их комби­нации приближаются к предельно допустимым зна­чениям, чаще всего к нулю или бесконечности. В подобных экстремальных ситуациях модель часто упрощается, матема­тические соотношения приобретают более наглядный смысл, упрощается их проверка.

· Контроль граничных условий, включающий проверку того, что граничные условия действительно наложены, что они ис­пользованы в процессе построения искомого решения и что значения выходных параметров модели на самом деле удов­летворяют данным условиям.

· Контроль физического смысла - проверка физического или иного смысла исходных и промежуточных соотношений.

· Контроль математической замкнутости, состоящий в про­верке того, что выписанная система математических соотно­шений дает возможность, притом однозначно, решить по­ставленную математическую задачу. Например, если задача свелась к отысканию n неизвестных из некоторой системы алгебраических уравнений, то контроль замкнутости состоит в проверке того, что число неза­висимых уравнений должно быть n . Если их меньше n , то надо установить недостающие уравнения, а если их больше n , то либо уравнения зависимы, либо при их составлении допущена ошибка. Однако если уравнения получаются из эксперимента или в результате наблюдений, то возможна постановка задачи, при которой число уравнений превыша­ет n , но сами уравнения удовлетворяются лишь приближен­но, а решение ищется, например, по методу наименьших квадратов

3. Понятие корректности задачи имеет большое значение в при­кладной математике. Например, численные методы решения оправ­дано применять лишь к корректно поставленным задачам. Дока­зательство корректности конкретной математической задачи - до­статочно сложная проблема. Математическая модель является корректной, если для нее осу­ществлен и получен положительный результат всех контрольных проверок размерности, порядков, характера зависимостей, экстре­мальных ситуаций, граничных условий, физического смысла и ма­тематической замкнутости.

4. Выбор и обоснование методов решения задачи.

При использовании разработанных математических моделей, как правило, требуется найти зависимость некоторых неизвестных заранее параметров объекта моделирования (например, координат и скорости центра масс тела), удовлетворяющих определенной системе уравнений. Таким образом, поиск решения задачи сводится к отысканию некоторых зависимостей искомых величин от исходных параметров модели. Все методы решения задач, составляющих «ядро» математи­ческих моделей, можно подразделить на аналитические и алгорит­мические.

Аналитические методы более удобны для пос­ледующего анализа результатов, но применимы лишь для относи­тельно простых моделей. В случае, если математическая задача допускает аналитическое решение, оно, без сомнения, предпочтительнее численного.

Алгорит­мические методы сводятся к некоторому алгоритму, ре­ализующему вычислительный эксперимент с использованием ЭВМ. Точность моделирования в подобном эксперименте существенно за­висит от выбранного метода и его параметров (например, шага ин­тегрирования). Алгоритмические методы, как правило, более тру­доемки в реализации, требуют обширной библиотеки специального программного обеспечения и мощной вычислитель­ной техники.

Общим для всех численных методов является сведение мате­матической задачи к конечномерной. Это чаще всего достига­ется дискретизацией исходной задачи, т.е. переходом от функции непрерывного аргумента к функциям дискретного аргумента. На­пример, траектория центра тяжести баскетбольного мяча опреде­ляется не как непрерывная функция времени, а как дискретная функция координат от времени. Полученное решение дискретной задачи принимается за прибли­женное решение исходной математической задачи.

6. Проверка адекватности модели.

Под адекватностью математической модели понимается степень соответствия результатов моделирования – экспериментальным данным или тестовой задаче.

Проверка адекватности модели преследует две цели: убедиться в справедливости гипотез, принятых на этапах концептуальной и математической постано­вок и установить, что точность полученных результатов соответ­ствует точности, оговоренной в техническом задании.

Проверка разработанной математической модели выполняется путем сравнения с имеющимися экспериментальными данными о реальном объекте или с результатами других, созданных ранее и хорошо себя зарекомендовавших моделей. В первом случае говорят о проверке путем сравнения с экспериментом, во втором – о сравне­нии с результатами решения тестовой задачи.

Решение вопроса о точности моделирования зависит от требо­ваний, предъявляемых к модели, и ее назначения. В моделях, пред­назначенных для выполнения оценочных расчетов, удовлетворительной считается точность 10 - 15 %. В моделях, исполь­зуемых в управляющих системах, требуемая точность может быть 1 - 2% и даже более.

Как правило, различают качественное и количественное совпа­дение результатов сравнения. При качественном сравнении требуется лишь совпадение некоторых характерных особенностей исследуемых параметров (например, наличие экстре­мальных точек, возрастание или убывание параметра). При количествен­ном сравнении большое значение следует придавать точности ис­ходных данных для моделирования и соответствующих им значе­ний сравниваемых параметров.

7. Практическое использование построенной модели.

Независимо от того, в какой области применима построенная модель, необходим количественный и качественный анализ результатов моделирования.

Всесторонний анализ результатов мо­делирования позволяет:

· выполнить модификацию рассматриваемого объекта, найти его оптимальные характеристики или, по крайней мере, луч­шим образом учесть его поведение и свойства;

· обозначить область применения модели, что особенно важ­но в случае использования моделей для систем автоматичес­кого управления;

· проверить обоснованность гипотез, принятых на этапе мате­матической постановки, оценить возможность упрощения модели с целью повышения ее эффективности при сохране­нии требуемой точности;

· показать, в каком направлении следует развивать модель в дальнейшем.

Вышеописанную В.П. Трусовым периодизацию основных этапов математического моделирования, мы считаем наиболее содержательной и полной.

Исследуя научную литературу, мы выделили основные этапы математического моделирования, которые выделены у ряда ученых:

1) Построение модели. Задается некоторый «нематематический» объект – явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель.

2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи, в том числе на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах установленной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

Процесс моделирования в общем случае состоит из нескольких этапов.

1). Постановка задачи моделирования. Главное на этом этапе – четко сформулировать сущность проблемы, цель моделирования и все вопросы, на которые необходимо получить ответы в процессе моделирования. Этот этап также включает выделение важнейших свойств объекта моделирования и абстрагирование от второстепенных свойств, изучение структуры объекта и основных зависимостей, связывающих его элементы. Здесь определяются также входные, выходные и промежуточные переменные, задаются ограничения, накладываемые на условия функционирования объекта исследования.
2). Разработка математической модели. Это этап формализации проблемы, выражения её в виде конкретных уравнений, неравенств и т.д. На этом этапе необходимо иметь ввиду, что чрезмерное усложнение модели затрудняет процесс исследования, увеличивает сроки разработки и приводит к росту затрат на разработку. Поэтому необходимо учитывать реальные возможности и сопоставлять затраты на разработку математической модели с ожидаемым эффектом. При неоправданном усложнении модели затраты на моделирование могут превысить эффект от использования модели.
3). Математический анализ модели и выбор метода решения. На этом этапе выясняются общие свойства модели, выполняется доказательство существования решения поставленной задачи. Если будет доказано, что математическая задача не имеет решения, то следует скорректировать либо модель, либо постановку задачи, либо и то и другое. Если же решение задачи существует, то выбирается метод ее решения.
4). Разработка алгоритма решения задачи. Для реализации модели разрабатывается компьютерная программа, либо используются существующие пакеты прикладных программ. Использование таких пакетов упрощает реализацию моделей, а разработка собственной программы даёт возможность большему пониманию методов решения задачи, а также возможность усовершенствования используемых методов и их адаптации для решения конкретной задачи. Если выбран второй вариант, то перед разработкой программы разрабатывается алгоритм решения задачи, блок-схема алгоритма, составляется словесное описание этого алгоритма.
5). Подготовка исходной информации. На этой стадии уточняются перечни входной, промежуточной и выходной информации, перечень постоянных коэффициентов, пределы изменения входных и выходных переменных. Здесь необходимо также уточнить размерность всех величин, входящих в математическую модель.
6). Разработка и отладка программы. На этом этапе ведется разработка и отладка программы на одном из современных языков программирования, например, Visual Basic, Visual Basic for Applications, Delphi, C++ и т.д.
7). Проверка математической модели на адекватность. После разработки и отладки программы решается вопрос об адекватности модели объекту-оригиналу, о степени ее практической применимости. Модель считается адекватной реальному объекту, если полученные путём моделирования значения выходных параметров совпадают с реальными с заданной степенью точности. Анализ полученных результатов позволяет обнаруживать недостатки математической модели. Выявленные недостатки модели устраняются в последующих циклах моделирования. Начав разработку и исследование с простой модели, можно быстро получить полезные результаты, а затем можно перейти к созданию более совершенной модели.
8). Исследование модели на ЭВМ. На этом этапе выполняется непосредственное выполнение расчетов на ЭВМ, то есть выполняется решение задачи с использованием численных методов. Благодаря высокому быстродействию современных компьютеров удается провести многочисленные эксперименты с моделью в очень короткие сроки.
9). Анализ результатов исследования и их применение. На этом этапе выполняется сравнительный анализ вариантов моделирования. Анализ результатов исследования дает возможность сделать вывод относительно характеристик исследуемого объекта, его линейности, инерционности, наличия запаздывания по определённым каналам и т.п.
10). Разработка рекомендаций. На основании результатов анализа производится разработка заключений и рекомендаций по использованию модели и результатов моделирования.

Моделирование – это итеративный (повторяющийся) процесс, поэтому возможен возврат с любого этапа к любому предыдущему этапу.

Главная особенность моделирования в том, что оно дает возможность опосредованного познания с помощью объектов-заме- стителей. Модель выступает как своеобразный инструмент для познания, который исследователь ставит между собой и объектом, с помощью которого изучает интересующий его объект. Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно (когда объект недосягаем, как, например, ядро Земли и глубины Вселенной, либо еще реально не существует: будущее состояние экономики, будущие потребности общества и т.п.), или это исследование требует много времени и средств.

Процесс моделирования состоит из трех структурных элементов: субъект (исследователь); объект исследования; модель, опосредствующая отношения познающего субъекта и познаваемого объекта (рис. 2.8).

Рис. 2.8.

Пусть имеется некоторый объект Л, который необходимо исследовать. Мы конструируем или находим подходящую модель В для объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отображает (воспроизводит, имитирует) какие-либо существенные черты объекта-оригинала. Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от исследования других сторон. Для одного объекта может быть построено несколько «специализированных» моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение «модельных» экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные об ее «поведении». Конечным результатом этого этапа является множество (совокупность) знаний о модели.

На третьем этапе осуществляется перенос знаний с модели на оригинал - формирование множества знаний об объекте. Одновременно мы переходим с «языка» модели на «язык» оригинала. Этот процесс проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта - оригинала, которые нашли отражения или были изменены при построении модели.

Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им. В итоге мы снова возвращаемся к проблематике реального объекта.

Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования «погружен» в общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.

Основные этапы процесса моделирования уже рассматривались выше. В различных отраслях знаний, в том числе и в экономике, они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономикоматематического моделирования (рис. 2.9).

Первый этап - сбор сведений об объекте исследования. Необходимо аккумулировать имеющиеся знания об экономическом объекте (процессе). Установить основные свойства, признаки и зависимости по различным источникам информации, в том числе по натурным. Выявить внутренние и внешние связи, необходимые для функционирования ресурсы, используемые технические и технологические схемы. Чем полнее будет собранная информация, тем проще будет определяться с имеющимися проблемами или возможными путями развития.

Рис. 2.9.

Второй этап - определение цели моделирования и постановка задачи. Для правильной постановки задачи важен качественный анализ собранной на первом этапе информации об экономическом объекте (процессе). Это поможет наиболее точно определиться с неизвестными характеристиками объекта, которые необходимо найти, а самое главное - с критерием, позволяющим установить, достигнута или нет конечная цель моделирования.

Поставить задачу и определиться с целью недостаточно, необходимо установить важные для достижения цели влияющие факторы, возможные предпосылки и допущения. Все факторы разделяются на существенные и несущественные, характеризующиеся количественными и качественными показателями. Установка количественных характеристик очень важна с точки зрения дальнейшего применения математического аппарата. Для качественных характеристик необходимо будет подобрать методику их числовых преобразований и алгоритм их включения в модель.

Третий этап - построение экономико-математической модели. Выполняется формализация экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала уточняется конкретный перечень переменных и параметров, форма связей. Затем строится непосредственно сама модель. Таким образом, построение модели подразделяется, в свою очередь, на несколько стадий.

На этом этапе важно не только правильно подобрать метод решения проблемы, но и разделить влияющие факторы на существенные и несущественные. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно не только учитывать реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

Одна из важных особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой задачей, не нужно стремиться «изобретать» модель; вначале необходимо попытаться применить для решения этой задачи уже известные модели.

В процессе построения модели осуществляется взаимосопо- ставление трех систем научных знаний - экономических, естественных и математических. Необходимо стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация экономической проблемы приводит к неизвестной ранее математической структуре 1 . Потребности эко-

Советов Б.Я., Яковлев С.Л. Моделирование систем: учебник для вузов. 3-е изд., перераб. и доп. М.: Высшая школа, 2001.

номической науки и практики в середине XX в. способствовали развитию математического программирования, теории игр, функционального анализа, вычислительной математики. Вполне вероятно, что в будущем развитие экономической науки станет важным стимулом для создания новых разделов математики

Четвертый этап - анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели (теорема существования). Если удастся доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как: единственно ли решение, какие переменные (неизвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменения и т.д.

Аналитическое исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

Знание общих свойств модели имеет столь важное значение, что часто ради доказательства подобных свойств исследователи сознательно идут на идеализацию первоначальной модели. И все же модели сложных производственных объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда аналитическими методами не удается выяснить общих свойств модели, а упрощения модели приводят к недопустимым результатам, переходят к численным методам исследования.

Пятый этап - сбор исходной информации. Данный этап не менее важен, чем остальные. От точности и полноты собранной исходной информации, необходимой для модели, зависит успешность ее дальнейшей реализации. Необходимо определить источники и методы сбора информации. Основные требования, которые предъявляются к информации, - определенность, достоверность, точность, соответствие размерности, достаточность. Для моделирования процессов в сельскохозяйственном производстве источниками информации служат годовые отчеты, технологические карты, данные первичного учета, нормативные справочники, региональные сводки, заключенные договоры и т.д. Характер информации зависит от целей задачи. Если цель связана с перспективой развития, то применяется нормативная или эталонная информация. Если решаются задачи текущего, оперативного планирования, то нормативная, отчетная и первичная. В качестве исходной информации могут использоваться данные, также полученные на основе построенных ранее зависимостей, например, статистических.

Шестой этап - численное решение модели. Математическая модель наполняется собранными на предыдущем этапе числовыми характеристиками. Такую модель принято называть развернутой числовой моделью. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены прежде всего большой размерностью задач, необходимостью обработки значительных массивов информации.

Численные методы - раздел математики, изучающий методы, связанные с вычислениями и поиском численных решений математических задач, в том числе с помощью ЭВМ.

Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных ЭВМ удается проводить многочисленные «модельные» эксперименты, изучая «поведение» модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

Знаете ли вы?

Первое известное применение численных методов - вавилонская табличка с расчетом приближенного значения V2 (1800 г. до н.э.). Это иррациональное число, не представимое в виде дроби. Другой пример - число та, которое к тому же трансцендентное. На практике часто не нужны точные выражения. Нужны числа. Платон: «Числа правят миром».

Седьмой этап - интерпретация численных результатов. Проверяется адекватность модели по существенным свойствам объекта. Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Полученные результаты согласовываются не только с целью решения, но и с точки зрения их целесообразности и практического применения. Естественно, что в зависимости от конкретных условий и характера задачи этапы моделирования могут меняться: расширяться или сокращаться. В любом случае этот процесс будет носить циклический характер.

Таким образом, математические модели, основанные на экономическом анализе, обогащают его полученными количественными оценками явлений. В процессе работы над моделью удается, сохранив качественную сторону явления, несколько уточнить логическую структуру связей, описывающих исследуемый экономический процесс. Моделирование экономических явлений - теоретическая основа применения математики в экономике.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

  • Основные достоинства имитационного моделирования.
  • Основные недостатки имитационного моделирования.
  • Наука, как специфический род занятий человека, его содержание и цель
  • 13. Технические науки и техническая политика. Задачи и содержание технических наук.
  • 15. Мышление и понятие; виды понятий - перечислить и дать характеристики.
  • 16. Суждение и умозаключение. Две категорий умозаключений.
  • 17. Основные этапы научного исследования.
  • 19. Научная теория: определение, структура.
  • 20. Системный анализ, основные этапы системного анализа
  • Этапы системного анализа.
  • 21. Цель научного исследования, объект и предмет исследования
  • 22.Фундаментальные и прикладные исследования
  • 24. Цели и задачи теоретических исследований. Состав теоретических исследований
  • 27. Математическая формулировка задачи исследования и математическая модель, выбор вида математической модели, виды ее контроля.
  • Вопрос 28. Дайте определение научного эксперимента. Виды экспериментов, классификация экспериментов
  • 30. По характеру получения экспериментальных данных, методика планирования эксперимента подразделяется на пассивный и активный эксперименты.
  • 31. Основные концепции математического эксперимента, обеспечивающие реализацию задач исследования. Структурная схема эксперимента.
  • Этапы технологического цикла вычислительного эксперимента
  • 33. Метрологическое обеспечение экспериментальных исследований, суть измерений. Метрология – как наука об измерениях.
  • 35. Эталоны и средства измерений, метрологическая служба.
  • 36. Методы измерений: прямые, косвенные, абсолютные и относительные.
  • 37. Совокупные и совместные методы измерения, непосредственные и сравнительные оценки результатов измерений.
  • 38. Средства измерения, меры, измерительные приборы, установки и системы.
  • 39. Технические характеристики средств измерения: погрешность, точность, стабильность, чувствительность, диапазон измерений.
  • 40. Классы точности измерительных приборов. Проверка приборов на точность, организация проверки.
  • 41. Технология машиностроения, как направление науки, ее цель и задачи
  • 44. Имитационные модели информационных систем (определение). Пять особенностей применения метода исследования информационных систем
  • 45. Основные достоинства и недостатки метода имитационного моделирования
  • 46. Основные составляющие имитационной модели: компоненты, параметры, переменные, функциональные зависимости, ограничения, целевые функции.
  • 47. В чем заключается суть машинного эксперимента с имитационной моделью.
  • Вопрос 48. Функциональные действия (фд) при реализации имитационной модели. Упрощенные действия (фд). Что порождает ошибки имитации процесса функционирования реальной системы
  • Определение понятий: класс объектов, работа (активность), события, процесс, фаза процесса. Описание их взаимосвязи в имитационной модели и при её реализации.
  • Общие черты (этапы) машинного эксперимента при решении сложных прикладных задач. Графическая схема этапов машинного эксперимента
  • 53. Испытание имитационной модели: задание исходной информации, верификация модели, проверка адекватности и калибровка модели.
  • 55. Информационные продукты. Библиографические базы данных (первичная и вторичная информация)
  • 56. Что такое научный документ. Первичный и вторичный документ.
  • 57. Опубликованные документы и непубликуемые. Виды и значения опубликованных документов: монографии, книги, брошюры, периодические издания.
  • 59. Первичные непубликуемые документы (научно-технические отчеты, диссертации, депонированные рукописи и др.)
  • 60. Вторичные опубликованные документы и издания: справочные, обзорные и др.
  • 7. Математическое моделирование.

    Теория математического моделирования обеспечивает выявление закономерностей протекания различных явлений окружающего мира или работы систем и устройств путем их математического описания и моделирования без проведения натурных испытаний. При этом используются положения и законы математики, описывающие моделируемые явления, системы или устройства на некотором уровне их идеализации.

    Целью математического моделирования является анализ реальных процессов (в природе или технике) математическими методами. В свою очередь, это требует формализации ММ процесса, подлежащего исследованию. Модель может представлять собой математическое выражение, содержащее переменные, поведение которых аналогично поведению реальной системы. Модель может включать элементы случайности, учитывающие вероятности возможных действий двух или большего числа «игроков», как, например, в теории игр; либо она может представлять реальные переменные параметры взаимосвязанных частей действующей системы.

    Математическое моделирование для исследования характеристик систем можно разделить на аналитическое, имитационное и комбинированное. В свою очередь, ММ делятся на имитационные и аналитические.

    Основные этапы математического моделирования

    1) Построение модели. Выбор типа математической модели. На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

    2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

    3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

    4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

    5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

    Вопрос 8. Метрологическое обеспечение экспериментальных исследований

    Под метрологическим обеспечением (МО) понимается установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений. Важнейшие значения в метрологии отводятся эталонам и образцовым средствам измерений (СИ), которые являются неотъемлимой частью экспериментальных исследований . К СИ относят меры, измерительные приборы, установки и системы. СИ должны соответствовать цели и задачам НИР, обеспечивать требуемое качество экспериментальных работ; иметь высокую экономическую эффективность; обеспечивать эргономические требования и требования техники безопасности.

    Метрологическое обеспечение и особенно обеспечение единства измерений, однообразия средств измерения является важнейшим фактором успешного проведения научных исследований .

    При разработке МО необходимо использовать системный подход, суть которого состоит в рассмотрении указанного обеспечения как совокупности взаимосвязанных процессов, объединенных одной целью – достижением требуемого качества измерений .

    Таким образом, требования к метрологическому обеспечению научных исследований и экспериментов должны предусматривать:

      установление метрологических требований, правил и норм в методиках проведения экспериментальных исследований;

      обеспечение экспериментальных исследований необходимыми методами и средствами измерений, контроля, испытаний, средствами и методами поверки (калибровки) СИ .

      Общая характеристика математических методов в научных исследованиях

    Решение практических задач математическими методами осуществляется путем реализации этапов следующего алгоритма: разработка математической модели; выбор метода проведения исследования математической модели; анализ полученного математического результата.

    Математическая модель − система формул, функций, уравнений, средствами которых описывается то или иное явление, процесс, объект в целом. При разработке модели нужно учитывать все реально существующие связи факторов и параметров, хотя при этом нельзя забывать о возможности последующего решения математической модели. Следует прибегать к каким-либо упрощениям, допущениям, аппроксимациям.

    Установление общих характеристик объекта позволяют выбрать математический аппарат, на базе которого и строится математическая модель. Для описания объектов с большим количеством параметров возможно разделение объекта на подсистемы.

    Не стоит забывать, что особенное место на этапе выбора вида математической модели занимает описание входных сигналов в выходные характеристики объекта.

    Если характер изменения исследуемого показателя не известен, то ставится поисковый эксперимент и предпочтение отдается той математической формуле, которая дает наилучшее совпадение с данными поискового эксперимента. Результаты поискового эксперимента и априорный информационный массив позволяют установить схему взаимодействия объекта с внешней средой по соотношению входных и выходных величин.

    Процесс выбора математической модели объекта заканчивается ее предварительным контролем. При этом осуществляются следующие виды контроля: размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели.

    10. Оптимизация в исследовании (О) - (от лат. optimus-наилучший) - понимают целенаправленную деятельность, заключающуюся в получении наилучших результатов при соответствующих условиях. Постановка задачи О. предполагает наличие ее объекта, набора независимых параметров (переменных), описывающих данную задачу, а также условий (часто наз. ограничениями), характеризующие приемлемые значения независимых переменных, которые и образуют модель рассматриваемой системы.Еще одной обязательным условием описания оптимизационной задачи служит мера "качества", носящая название критерия оптимизации и зависящая от переменных О. Решение оптимизационной задачи - поиск определенного набора значений переменных, которому отвечает оптимизационное значение критерия О.

    Описанные и построенные модели реального объекта – важнейший этап оптимизационного исследования, так как он определяет практическую ценность получаемого решения и возможность его реализации.

    Процесс оптимизации с использованием модели можно рассматривать как метод отыскания оптимального решения для реального объекта без непосредственного экспериментирования с самим объектом. «Прямой» путь, ведущий к оптимальному решению, заменяется «обходным», включающим построение и оптимизацию модели, а также преобразование полученных результатов в практически реализуемую форму. При формировании такой модели следует учитывать характеристики объекта, которые должны быть отражены в модели, а менее существенные особенности в модель можно не включать. Необходимо сформулировать логически обоснованные допущения, выбрать форму представления модели, уровень ее детализации и метод реализации на ЭВМ. Все это относятся к этапу построения модели. Модели можно упорядочить по степени адекватности описания поведения реального объекта. Таким образом, качество модели нельзя оценивать ни по структуре, ни по форме. Единственным критерием такой оценки может служить лишь достоверность полученных на модели примеров поведения реального объекта.