Болезни Военный билет Призыв

Цинк его свойства и применение. Применение химических свойств цинка. Показания к назначению

Цинк - самый молодой из тяжелых цветных металлов, и если в начале XIX в. его производство не превышало 900 т в год, то в настоящее время производство цинка только в зарубежных странах составляет около 6 млн. т в год.

Цинк занимает особое место среди металлов, применяемых в промышленности. Как конструкционный материал нелегированный цинк не нашел широкого применения, так как обладает недостаточно благоприятным комплексом механических, физических и технологических свойств. Однако дополнительное легирование цинка различными элементами существенно повышает вышеуказанные свойства и характеристики. Поэтому значительная часть цинка (до 20%) идет на приготовление цинковых сплавов, в которых основными легирующими компонентами являются алюминий и медь; широко используется цинк и для производства медных сплавов (латуни).

В зависимости от марки цинк используют для цинкования стали, получения цинковых сплавов, изготовления цинковых полуфабрикатов, а также для получения цинковых соединений.

Примерно 30% цинкового проката составляют цинковые листы общего назначения, которые подразделяются по толщине на четыре группы: 0,15-0,4 мм; 0,5-0,9 мм; 1,0-1,2 мм; 1,5 мм и более. Цинковые листы используют при изготовлении химических источников тока, оцинкованной посуды и др. Из цинковых листов изготавливают печатные формы к ротационным машинам в полиграфической промышленности. Цинковые аноды применяют для оцинкования деталей гальваническим способом. Большое количество цинковых листов расходуется в строительстве на кровельные покрытия, на изготовление труб, сточных желобов.

Наиболее широкое распространение цинк получил в качестве покрытия для предотвращения коррозии железа и сплавов на его основе (сталей). Для этой цели расходуется до 50 % получаемого промышленностью цинка. Цинкование - нанесение цинка или его сплавов на поверхность металлического изделия - применяется для защиты от коррозии стальных листов, проволоки, ленты, крепежных деталей, деталей машин и приборов, арматуры и трубопроводов.

Первоначально цинковое покрытие получали методом погружения детали в расплавленный цинк, так называемым горячим методом, который для крупногабаритных изделий, например трубопроводов, не потерял своего значения и в настоящее время. Для получения тонких цинковых покрытий чаще всего применяют электролитическое цинкование деталей. Оба рассмотренных метода выполнимы только в цеховых условиях. Для улучшения защитных свойств цинковых покрытий и продления срока их службы поверхность покрытий дополнительно пассивируют (фосфатируют, хроматируют), промасливают или окрашивают. На основании высоких защитных свойств цинковых покрытий были проделаны работы, направленные на создание способов их нанесения не в цеховых условиях, а на объекте без демонтажа изделий. Были созданы газотермические и другие способы напыления. Но хотя их применение позволило резко улучшить свойства покрытий, проблема упрощения нанесения покрытий оставалась не до конца разрешенной в условиях эксплуатации металлоконструкций и изделий. В связи с этим представляло интерес создание способов нанесения цинковых покрытий, по своей простоте и доступности не отличающихся от способов нанесения лакокрасочных материалов.

Были разработаны и получили достаточно широкое распространение цинкполимерные и цинксиликатные материалы, содержание цинка в которых составляет от 80 до 98 %. Такие цинксодержащие материалы наносят на защищаемые конструкции с помощью установок для распыления лакокрасочных материалов. Получаемые покрытия обладают более высокими изолирующими свойствами, чем металлические цинковые покрытия, повышают надежность защиты конструкций от коррозии и позволяют расширить области применения цинка и его сплавов для неконструкционных целей. Следует отметить, что цинкнаполненные покрытия могут служить для восстановления нарушенных участков металлических покрытий непосредственно на металлоконструкциях и изделиях без их демонтажа.

Цинковые покрытия получили широкое применение для различных металлоконструкций и изделий, эксплуатирующихся при коррозионном воздействии природных сред - атмосферы, морской, речной, озерной, пластовой, подтоварной воды, грунта, а также нейтральных и слабощелочных водных растворов. В зависимости от свойств коррозионной среды и состава металлических покрытий или осуществляется защита от коррозии путем изоляции поверхности, или проявляется протекторное действие покрытий при их нарушении. Цинкнаполненные покрытия позволили распространить применение цинка для крупногабаритных конструкций, например стационарных морских сооружений, танков и цистерн судов, плавучих и стационарных морских платформ, строительных сооружений, протяженных трубопроводов и коммуникаций и многих других металлоконструкций и изделий.

Одной из основных отраслей, потребляющих оцинкованный лист, является строительная индустрия: на нужды строительства расходуется до 65 % всего оцинкованного металла. Крупным потребителем оцинкованной стали является автомобильная промышленность. Преимущество применения оцинкованных листов в автомобильной и других отраслях промышленности в том, что создаются благоприятные условия для комплексной защиты стали от коррозии при наложении на металлическое покрытие слоя краски. Цинковое покрытие-идеальная основа под покраску, так как образующийся в местах пор основной карбонат цинка по объему мало отличается от цинка и поэтому не вызывает разрушения слоя краски.

На автомобильных заводах из оцинкованных полос и листов изготавливают днища, бензобаки, крышки багажников, надколесные кожухи, двери, глушители и др.

Потребление оцинкованных листов на душу населения составило в 1960 г.: в США 15,6 кг, в Японии 7,7 кг, в Англии 4,0 кг, по Франции 3,2 кг, в ФРГ 2,3 кг. К 1985 г. потребление продукции этого вида должно возрасти более чем в 3 раза.

Широкое применение находит цинк в виде разнообразных соединений. Некоторые соединения цинка служат красками, например окись цинка (цинковые белила), литопон (смесь сульфата бария и сульфида цинка). Краска, приготовленная из сульфида цинка, оказалась наилучшей для покрытия космических кораблей, так как она обладает наилучшими отражательными свойствами. Очень важным свойством обладает сульфид цинка, вспыхивающий под действием а-, в- и у-лучей, что позволяет использовать его для обнаружения всех типов радиации. Сульфид цинка, легированный медью и серебром, обладает люминесцентными свойствами и в смеси с сульфидом кадмия широко применяется для изготовления телевизионных трубок и экранов.

Сульфат и хлорид цинка применяют в медицине в качестве антисептических средств. Безводный хлорид цинка часто используют как дегидратирующее средство при проведении разнообразных реакций конденсации в органической химии; его широко используют в производстве органических красителей, ситцепечатании, для пропитки древесины. Двойную соль - аммонийцинкхлорид (NH 4) 2 ZnCl 2 -используют для паяльных целей. Окись цинка широко используют при производстве резины. Она улучшает качество резиновых шин и ряда других резиновых изделий.

В США в последние годы цинк находит широкое применение в качестве покрытия стартовых конструкций для запуска ракет. Огромное количество тепла, выделяющегося при сгорании топлива в ракете, частично поглощается при испарении цинкового покрытия, чем предохраняются от разрушения металлические части стартовых конструкций. Цинк употребляют в так называемых стабилизирующих устройствах, которые корректируют отклонения спутников при движении в космосе. Цинковые соединения широко используют в качестве источников энергии в космических кораблях (цинк-серебряные оксидные батареи).

В последнее время цинк получил заслуженное признание как основа протекторного материала, используемого в системах электрохимической защиты корпусных конструкций судов, нефтяных резервуаров, судовых систем, аппаратов и других металлоконструкций.

Основное назначение цинка - получение цинковых сплавов, цинковые сплавы в литейном производстве широко используются для изготовления отливок методом литья под давлением.

Цинковые сплавы плавят в пламенных и электрических тигельных печах и индукционных печах промышленной частоты с железным сердечником. Шихту готовят из свежих металлов, переплава отходов (до 60-70%) известного химического состава и лигатур (алюминий - медь, алюминий - магний и медь - алюминий).

Плавка цинковых сплавов производится в следующей последовательности: в разогретую до 400° С печь загружают переплав отходов, лигатуры, цинк и засыпают хорошо прокаленный древесный уголь. После расплавления тщательно перемешивают металл и при необходимости загружают оставшуюся часть цинка. Температура во время плавки не должна превышать 480° С. После полного расплавления металл вновь перемешивают и разливают в изложницы при температуре 400-460° С.

Наряду с известными областями и масштабами использования нелегированного цинка сплавы на основе цинка также находят широкое применение в различных отраслях народного хозяйства в качестве как конструкционного материала, так и неконструкционного.

В качестве конструкционного материала цинковые сплавы главным образом применяются: в приборостроении, в полиграфической промышленности, в авиационной промышленности, в автомобильной промышленности, в судостроении, для изготовления предметов домашнего обихода.

В качестве неконструкционного материала цинковые сплавы применяются: для литья анодов-протекторов, для изготовления припоев в производстве подшипников и гальванических элементов, как покрытия стальных листов.

Изделия, полученные различными способами литья и деформации, широко применяются в приборостроении, судостроении, авиационной, автомобильной и других отраслях промышленности. Успешное использование цинковых сплавов для конструкционных и неконструкционных целей обусловлено их физико-химическими, технологическими и эксплуатационными свойствами. Так, низкая температура плавления и высокие литейные свойства цинковых сплавов позволяют при литье под давлением и в кокиль получать отливки высокой прочности с поверхностью хорошего качества, практически не требующей дополнительной обработки. Благодаря указанным свойствам доля отливок из цинковых сплавов в общем объеме отливок, получаемых литьем под давлением, достаточно высока. Например, в автомобилестроении литейные цинковые сплавы применяют для отливок корпусов карбюраторов, насосов, рам спидометров, решеток радиаторов, различных декоративных деталей и т.п.

Цинковые сплавы также используют для отливки деталей стиральных машин, пылесосов, оборудования для кухни, конторских машин, корпусов электрических часов, печатных машин, кассовых аппаратов, смесителей для приготовления напитков и т.п. Для защиты от коррозии на поверхность цинковых отливок наносят защитные покрытия (краски, эмали, пластмассы). Хорошим защитным эффектом обладают электролитические покрытия медью, никелем и хромом. Полуфабрикаты из деформируемых цинковых сплавов достаточно легко подвергаются прессованию, прокатке и штамповке.

Цинковые полированные листы используют в полиграфической промышленности для изготовления печатных форм (клише) путем однократного травления.

В работе отмечается, что использование цинк-алюминиевых сплавов в производстве более выгодно экономически, чем алюминиевых сплавов и латуней. Указанные сплавы, имея высокую твердость, нашли широкое применение для изготовления деталей, работающих в условиях абразивного износа. В связи с тем что сплавы не дают искрения, их можно использовать в огнеопасных производствах (шкивы, звездочки в шахтных подъемниках и т.п.). Кроме того, сплавы можно применять на производствах, где имеются пары бензина, т.е. с повышенной пожароопасностью. Эти сплавы могут работать также в подшипниках, заменяя латунь и бронзу.

В работе приводятся данные об использовании цинковых сплавов для получения высокоточных деталей стабильного качества с тонким рельефом. При переходе на изготовление из цинкового литья вентильных деталей газовой горелки, которые ранее вытачивались из латуни, произошло понижение стоимости изделий в 6 раз. Здесь же отмечается, что применение цинковых отливок для изделий радиопромышленности взамен пластмассовых деталей обеспечивает лучшее качество резьбы, повышает прочность и жесткость изделий, а также дает возможность заземлять изделия в радиоаппаратуре.

Цинковые сплавы успешно заменяют сплавы из литейного и ковкого чугуна, бронзы и некоторых алюминиевых сплавов.

Особое место занимают цинковые протекторные сплавы. В настоящее время они являются незаменимыми для целого ряда сложных и дорогостоящих конструкций практически во все развитых странах. Благодаря своим отличительным свойствам, которых не имеют другие протекторные материалы (сплавы на основе магния, алюминия, марганца), цинковые протекторные сплавы применяются в качестве протекторов для защиты от коррозии в морской, подтоварной, пластовой и других природных средах внутренней поверхности взрыво-пожароопасных помещений - танкеров и цистерн нефтеналивных судов, топливно-балластных цистерн судов всех назначений, нефте-резервуаров, судовых трубопроводов и систем, магистральных подземных нефтяных и газовых трубопроводов, ограниченных объемов и полостей, различных герметичных объемов, где не допускается накопление водорода, и других конструкций.

При многообразии условий эксплуатации протекторов электрохимические характеристики цинковых сплавов определяются величиной анодной плотности тока (рис.41), причем в подавляющем большинстве случаев рабочие режимы составляют 1-4 А/м 2 (заштрихованные области на рис. 41), при которых сплавы имеют высокие и стабильные значения потенциала и токоотдачи.

Независимо от закономерностей изменения свойств цинковых сплавов (см. рис. 41) для практического их применения нужны конструкции протекторов с заданным сроком службы и необходимой зоной защитного действия. Этих данных достаточно для проектирования и осуществления протекторной защиты. Вопросы эти имеют самостоятельное значение и достаточно хорошо освещены в литературе. Поэтому представляют интерес только данные, необходимые для грамотного применения протекторов из цинковых сплавов.

Несмотря на имеющуюся тенденцию к снижению выпуска отливок из цинковых сплавов, в дальнейшем прогнозируется рост их выпуска вследствие преимуществ этих сплавов при получении особо тонкостенных отливок и возможности нанесения хороших гальванических покрытий.

Администрация Общая оценка статьи: Опубликовано: 2012.08.15

Краткие обозначения:
σ в - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ 0,05 - предел упругости, МПа
J к - предел прочности при кручении, максимальное касательное напряжение, МПа
σ 0,2 - предел текучести условный, МПа
σ изг - предел прочности при изгибе, МПа
δ 5 ,δ 4 ,δ 10 - относительное удлинение после разрыва, %
σ -1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σ сж0,05 и σ сж - предел текучести при сжатии, МПа
J -1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T), [Дж/(кг·град)]
HV
- твердость по Виккерсу p n и r - плотность кг/м 3
HRC э
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

Области применения цинка в процентном отношении:

  • Цинкование - 45-60 %
  • В медицине (оксид цинка как антисептик) - 10 %
  • Производство сплавов - 10 %
  • Производство резиновых шин - 10 %
  • Масляные краски - 10 %

Чистый металлический цинк используется для восстановления благородных металлов, добываемых подземным выщелачиванием (золото, серебро). Кроме того, цинк используется для извлечения серебра, золота (и других металлов) из чернового свинца в виде интерметаллидов цинка с серебром и золотом (так называемой «серебристой пены»), обрабатываемых затем обычными методами аффинажа.

Применение цинка в металлургии

Этот металл по-прежнему остается основой промышленности. По выплавке чугуна и стали и сейчас судят о мощи государства. А чугун и сталь подвержены коррозии, и, несмотря на значительные успехи, достигнутые человечеством в борьбе с «рыжим врагом», коррозия ежегодно губит десятки миллионов тонн металла.

Нанесение на поверхность стали и чугуна тонких пленок коррозионно-стойких металлов – важнейшее средство защиты от коррозии. А на первом месте среди всех металлопокрытий – и по важности, и по масштабам – стоят покрытия цинковые. На защиту стали идет 40% мирового производства цинка!

Оцинкованные ведра, оцинкованная жесть на крышах домов – вещи настолько привычные, настолько будничные, что мы, как правило, не задумываемся, а почему, собственно, они оцинкованные, а не хромированные или никелированные? Если же такой вопрос возникает, то «железная логика» мигом выдает однозначный ответ: потому что цинк дешевле хрома и никеля. Но дело не в одной дешевизне.

Цинковое покрытие часто оказывается более надежным, нежели остальные, потому что цинк не просто механически защищает железо от внешних воздействий, он его химически защищает.

Кобальт, никель, кадмий, олово и другие металлы, применяемые для защиты железа от коррозии, в ряду активности металлов стоят после железа. Это значит, что они химически более стойки, чем железо. Цинк же и хром, наоборот, активнее железа. Хром в ряду активности стоит почти рядом с железом (между ними только галлий), а цинк – перед хромом.

Процессы атмосферной коррозии имеют электрохимическую природу и объясняются с электрохимических позиций. Но в принципе механизм защиты железа цинком состоит в том, что цинк – металл более активный – прежде, чем железо, реагирует с агрессивными компонентами атмосферы. Получается, словно металлы соблюдают правило солдатской дружбы: сам погибай, а товарища выручай... Конечно, металлы не солдаты, тем не менее, цинк выручает железо, погибая.

Вот как это происходит.

В присутствии влаги между железом и цинком образуется микрогальванопара, в которой цинк – анод. Именно он и будет разрушаться при возникшем электрохимическом процессе, сохраняя в неприкосновенности основной металл. Даже если покрытие нарушено – появилась, допустим, царапина, – эти особенности цинковой защиты и ее надежность остаются неизменными. Ведь и в такой ситуации действует микрогальванопара, в которой цинк принесен в жертву, и, кроме того, обычно в процессе нанесения покрытия железо и цинк реагируют между собой. И чаще всего царапина оголяет не само железо, а интерметаллическое соединение железа с цинком, довольно устойчивое к действию влаги.

Существен и состав продукта, образующегося при «самопожертвований» элемента №30. Активный цинк реагирует с влагой воздуха и одновременно с содержащимся в нем углекислым газом. Образуется защитная пленка состава 2ZnCO 3 · Zn(OH) 2 , имеющая достаточную химическую стойкость, чтобы защитить от реакций и железо, и сам цинк. Но если цинк коррелирует в среде, лишенной углекислоты, скажем, в умягченной воде парового котла, то пленка нужного состава образоваться не может, и в этом случае цинковое покрытие разрушается намного быстрее.

Как же наносят цинк на железо? Способов несколько. Поскольку цинк образует сплавы с железом, быстро растворяя его даже при невысоких температурах, можно наносить распыленный цинк на подготовленную стальную поверхность из специального пистолета. Можно оцинковывать сталь (это самый старый способ), просто окуная ее в расплавленный цинк. Кстати, плавится он при сравнительно низкой температуре (419,5°C). Есть, конечно, электролитические способы цинкования. Есть, наконец, метод шерардизации (по имени изобретателя) применяемый для покрытия небольших деталей сложной конфигурации, когда особенно важно сохранить неизменными размеры.

В герметически закрытом барабане детали, пересыпанные цинковой пылью, выдерживают в течение нескольких часов при 350...375°C. В этих условиях атомы цинка достаточно быстро диффундируют в основной материал; образуется железоцинковый сплав, слой которого не «уложен» поверх детали, а «внедрен» в нее.

Приготовление латуни с помощью цинка

Приготовление латуни восстановлением особого камня – кадмея углем в присутствии меди описано у Гомера, Аристотеля, Плиния Старшего. В частности, Аристотель писал о добываемой в Индии меди, которая «отличается от золота только вкусом».

Действительно, в довольно многочисленной группе сплавов, носящих общее название латуней, есть один (Л-96, или томпак), по цвету почти неотличимый от золота. Между прочим, томпак содержит меньше цинка, чем большинство латуней: цифра за индексом Л означает процентное содержание меди. Значит, на долю цинка в этом сплаве приходится не больше 4%.

Можно предполагать, что металл из кадмеи и в древности добавляли в медь не только затем, чтобы осветлить ее. Меняя соотношение цинка и меди, можно получить многочисленные сплавы с различными свойствами. Не случайно латуни поделены на две большие группы – альфа и бета-латуни. В первых цинка не больше 33%.

С увеличением содержания цинка пластичность латуни растет, но только до определенного предела: латунь с 33 и более процентами цинка при деформировании в холодном состоянии растрескивается; 33%Zn – рубеж роста пластичности, за которым латунь становится хрупкой.

Впрочем, могло случиться, что за основу классификации латуней взяли бы другой «порог» – все классификации условны, ведь и прочность латуней растет по мере увеличения в них содержания цинка, но тоже до определенного предела. Здесь предел иной – 47...50% Zn. Прочность латуни, содержащей 45% Zn, в несколько раз больше, чем сплава, отлитого из равных количеств цинка и меди.

Широчайший диапазон свойств латуней объясняется прежде всего хорошей совместимостью меди и цинка: они образуют серию твердых растворов с различной кристаллической структурой. Так же разнообразно и применение сплавов этой группы. Из латуней делают конденсаторные трубки и патронные гильзы, радиаторы и различную арматуру, множество других полезных вещей – всего не перечислить.

И что здесь особенно важно. Введенный в разумных пределах цинк всегда улучшает механические свойства меди (ее прочность, пластичность, коррозионную стойкость). И всегда при этом он удешевляет сплав – ведь цинк намного дешевле меди. Легирование делает сплав более дешевым – такое встретишь не часто.

Цинк входит и в состав другого древнего сплава на медной основе. Речь идет о бронзе. Это раньше делили четко: медь плюс олово – бронза, медь плюс цинк – латунь. Теперь «грани стерлись». Сплав ОЦС-3-12-5 считается бронзой, но цинка в нем в четыре раза больше, чем олова. Бронза для отливки бюстов и статуй содержит (марка БХ-1) от 4 до 7% олова и от 5 до 8% цинка, т.е. называть ее латунью оснований больше – на 1%. А ее по-прежнему называют бронзой, да еще художественной...

До сих пор мы рассказывали только о защите цинком и о легировании цинком. Но есть и сплавы на основе элемента №30. Хорошие литейные свойства и низкие температуры плавления позволяют отливать из таких сплавов сложные тонкостенные детали. Даже резьбу под болты и гайки можно получать непосредственно при отливке, если имеешь дело со сплавами на основе цинка.

Растущий дефицит свинца и олова заставил металлургов искать рецептуры новых типографских и антифрикционных сплавов. Доступный, довольно мягкий и относительно легкоплавкий цинк, естественно, привлек внимание в первую очередь. Почти 30 лет поисковых и исследовательских работ предшествовали появлению антифрикционных сплавов на цинковой основе. При небольших нагрузках они заметно уступают и баббитам и бронзам, но в подшипниках большегрузных автомобилей и железнодорожных вагонов, угледробилок и землечерпалок они стали вытеснять традиционные сплавы. И дело здесь не только в относительной дешевизне сплавов на основе цинка. Эти материалы прекрасно выдерживают большие нагрузки при больших скоростях в условиях, когда баббиты начинают выкрашиваться...

Цинковые сплавы появились и в полиграфии. Так, наряду с сурьмяно-оловянно-свинцовым сплавом – гартом для отливки шрифтов используют и так называемый сплав №3, в котором содержится до 3% алюминия, 1,2...1,6% магния, остальное цинк.

Применение цинка в аккумуляторах

Поскольку цинк в ряду напряжений является самым электроположительным металлом, устойчивым в водных растворах (магний все-таки медленно, но реагирует с водой), на основе цинка создано большое число разнообразных химических источников тока. Это серебряно-цинковые аккумуляторы, «сухие» элементы Лекланше, ртутно-цинковые и воздушно-цинковые элементы.

Например: марганцево-цинковый элемент, серебряно-цинковый аккумулятор (ЭДС 1,85 В, 150 Вт·ч/кг, 650 Вт·ч/дм³, малое сопротивление и колоссальные разрядные токи), ртутно-цинковый элемент (ЭДС 1,35 В, 135 Вт·ч/кг, 550-650 Вт·ч/дм³), диоксисульфатно-ртутный элемент, йодатно-цинковый элемент, медно-окисный гальванический элемент (ЭДС 0,7-1,6 Вольт, 84-127 Вт·ч/кг, 410-570 Вт·ч/дм³), хром-цинковый элемент, цинк-хлоросеребряный элемент, никель-цинковый аккумулятор (ЭДС 1,82 Вольт, 95-118 Вт·ч/кг, 230-295 Вт·ч/дм³), свинцово-цинковый элемент, цинк-хлорный аккумулятор, цинк-бромный аккумулятор и др). Очень важна роль цинка в цинк-воздушных аккумуляторах, в последние годы интенсивно разрабатываются на основе системы цинк-воздух - аккумуляторы для компьютеров (ноутбуки) и в этой области достигнут значительный успех (большие, чем у литиевых батарей, ёмкость и ресурс, меньшая в 3 раза стоимость), так же эта система очень перспективна для пуска двигателей (свинцовый аккумулятор - 55 Вт·ч/кг, цинк-воздух - 220-300 Вт·ч/кг) и для электромобилей (пробег до 900 км). Входит в состав многих твёрдых припоев для снижения их температуры плавления. Цинк - важный компонент латуни. Окись цинка широко используется в медицине как антисептическое и противовоспалительное средство. Также окись цинка используется для производства краски - цинковых белил .

Хлорид цинка - важный флюс для пайки металлов и компонент при производстве фибры.

Теллурид, селенид, фосфид, сульфид цинка - широко применяемые полупроводники.

Селенид цинка используется для изготовления оптических стёкол с очень низким коэффициентом поглощения в среднем инфракрасном диапазоне, например, в углекислотных лазерах.

В пиротехнике цинковую пыль применяют, чтобы получить голубое пламя. Цинковая пыль используется в производстве редких и благородных металлов. В частности, таким цинком вытесняют золото и серебро из цианистых растворов. Как ни парадоксально, но и при получении самого цинка (и кадмия) гидрометаллургическим способом применяется цинковая пыль – для очистки раствора сульфата цинка от меди и кадмия. Но это еще не все. Вы никогда не задумывались, почему металлические мосты, пролеты заводских цехов и другие крупногабаритные изделия из металла чаще всего окрашивают в серый цвет?

Главная составная часть применяемой во всех этих случаях краски – все та же цинковая пыль. Смешанная с окисью цинка и льняным маслом, она превращается в краску, которая отлично предохраняет от коррозии. Эта краска к тому же дешева, эластична, хорошо прилипает к поверхности металла и не отслаивается при температурных перепадах.

Цинк или Zincum является 30 элементом периодической системы химических элементов Менделеева и обозначается символом Zn . В основном он используется при создании деформированных полуфабрикатов и в составе разного рода смесей. В чистом виде выглядит как хрупкий металл голубовато-серебристого цвета, быстро окисляется и покрывается защитной пленкой (оксидом), из-за которой заметно тускнеет.

Добывают его в Казахстане, Австралии, Иране и Боливии. Из-за сложностей в определении металла его часто называют «обманкой» .

Историческая справка

Само название «цинк» впервые было упомянуто в книге « Liber Mineralium » Парацельса. По некоторым данным оно означало «зубец». Сплав цинка с медью или латунь известен давно. Его применяли в Древней Греции, Индии и Древнем Египте, позднее материал стал известен в Китае.

В чистом виде металл удалось получить лишь в первой половине XVIII века в 1738 году в Великобритании при помощи дистилляционного способа. Его открывателем стал Уильям Чемпион. Промышленное производство началось через 5 лет, а в 1746 году в Германии химик Андреас Сигизмунд Маргграф разработал и в деталях описал собственный способ получения цинка . Он предлагал использовать метод прокаливания смеси окиси металл с углем в огнеупорных ретортах из глины без доступа воздуха. Последующая конденсация паров должна была проходить в холодильнике. Из-за подробного описания и кропотливых разработок Маргграфа часто называют первооткрывателем вещества.

В начале XIX века был найден способ выделения металла путем прокатки при 100 C о -150 C о. В начале следующего века научились добывать цинк электролитическим способом. В России первый металл получили только в 1905 году.

Физические свойства

  • Атомный номер: 30.
  • Атомная масса: 65,37.
  • Атомный объем: 9,15
  • Плотность: 7,133 г/см 3 .
  • Температура, необходимая для плавления: 419,5 C о.
  • Температура кипения: 906 C о.
  • Поверхностная энергия: 105 мДж/м 2 .
  • Удельная электропроводность: 16,2*10 -6 См/м.
  • Молярная теплоемкость: 25,4 Дж/(К*моль).
  • Молярный объем: 9,2 см 3 /моль.

Цинк обладает слабыми механическими свойствами, при нормальной температуре легко ломается и крошится, но при температуре 100 C о -150 C о становится довольно тягучим и легко поддается деформации: куется, раскатывается в листы. Простая вода для металла безопасна, а кислоты и щелочи легко разъедают. Из-за этого цинк в чистом виде для изготовления деталей не применяют, только сплавы.

Химические свойства

Внешняя электронная конфигурация одного атома цинка можно записать как 3 d 10 4 s 2 . Металл активен и является энергичным восстановителем. При температуре в 100 C о на открытом воздухе покрывается пленкой, состоящей из основных карбонатов, и сильно тускнеет. При воздействии углекислого газа и повышенной влажности элемент начинает разрушаться. В кислородной или обычной среде при сильном нагревании цинк сгорает, образуя голубоватое пламя и белый дым, который состоит из оксида цинка. Огнеопасно воздействуют на цинк сухие элементы фтора, брома и хлора, но только при участии паров воды.

При соединении металла и сильных минеральных кислот первый растворяется, особенно если смеси нагреть, в результате образуются соответствующие соли . Щелочи, расплавы и растворы окисляют вещество, в результате образуются цинкиты, растворимые в воде, и выделяется водород. Интенсивность воздействия кислот и щелочей зависит от наличия в цинке примесей. Чем более «чист» металл, тем слабее он взаимодействует из-за перенапряжения водорода.

Как самостоятельный элемент цинк в природе не встречается. Его можно добыть из 66 минералов, среди которых сфалерит, каламин, франклинит, цинкит, виллемит, смитсонит. Первый является наиболее распространенным источником металла, его часто называют «цинковой обманкой». Он состоит из сульфида цинка и примесей, которые придают минералу разнообразные цвета. Это осложняет его поиск и правильное определение.

Найти цинк можно в кислых и изверженных породах - во последних его немного больше. Часто металл в виде сульфида вместе со свинцом встречается в термальных водах , мигрирует в поверхностных и подземных источниках.

Температура, необходимая для плавления цинка, должна быть меньше 419 C о, но и не больше 480 C о. В противном случае вырастет угар металла и повысится износ стенок ванны, которую стандартно производят из железа. В расплавленном состоянии допускается не более 0,05% примеси железа, иначе температура, нужная при плавлении, начнет повышаться. Если процент содержания железа будет превышать 0,2%, цинк нельзя будет подвергать прокатке.

Цинк получают из полиметаллических руд, в которых может содержаться до 4% элемента . Если руды были обогащены селективной флотацией, из них можно получить до 60% цинковых концентратов, остальное будет занято концентратами других металлов. Цинковые концентраты обжигают в печах в кипящем слое, после чего сульфид цинка переходит в оксид, и выделяется сернистый газ. Последний идет в расход: из него получают серную кислоту.

Чтобы перевести оксид цинка в сам металл, используют два способа.

  1. Дистилляционный или пирометаллургический. Концентрат обжигают, затем подвергают спеканию, чтобы придать газопроницаемости и зернистости и восстанавливают при помощи кокса или угля при воздействии температуры в 1200-1300 C о. Во время реакции образуются пары металла, который конденсируют и разливают в изложницы. Чистота цинка достигает 98,7%, после можно повысить ее до 99,995% при помощи ректификации, но последний способ достаточно дорогой и сложный.
  2. Электролитический или гидрометаллургический. Обожженные концентраты обрабатывают серной кислотой, раствор очищают от примесей при помощи цинковой пыли и подвергают электролизу в выложенных изнутри свинцом или винипластом ваннах. Цинк оседает на алюминиевых катодах, откуда его собирают и плавят в индукционных печах. Чистота металла, полученного этим способом, достигает 99,95%.

Для усиления прочности и увеличения температуры плавления металл смешивают с медью, алюминием, оловом, магнием и свинцом.

Самым известным и востребованным сплавом является латунь. Это смесь меди с добавлением цинка, иногда встречаются и олово, никель, марганец, железо, свинец. Плотность латуни достигает 8700 кг/м 3 . Температура, нужная для плавления, держится на отметке 880 C о - 950 C о: чем больше в ней содержание цинка, тем она ниже. Сплав отлично сопротивляется неблагоприятной внешней среде, хоть и чернеет на воздухе, если не покрыта лаком, прекрасно полируется и сваривается контактной сваркой.

Существует два вида латуни:

  1. Альфа-латунь: более пластична, хорошо гнется в любом состоянии, но сильнее изнашивается.
  2. Альфа+бета-латунь: деформируется только при нагревании, при этом более износостойка. Часто сплавляют с магнием, алюминием, свинцом и железом. Это позволяет увеличить прочность, но уменьшает пластичность.

Сплав Zamak или Zamac состоит из цинка, алюминия, меди и магния . Само название образовано из первых букв латинских названий: Zink - Aluminium - Magnesium - Kupfer / Cuprum (Цинк-Алюминий-Магний-Медь). В СССР сплав был известен как ЦАМ: Цинк-Алюминий-Медь. Активно применяется в литье под давлением, плавление начинается при низкой температуре (381 C о - 387 C о) и имеет низкий коэффициент трения (0,07). Обладает повышенной прочностью, что позволяет получать изделия сложной формы, которые не боятся сломаться: дверные ручки, клюшки для гольфа, затворы огнестрельного оружия, строительную фурнитуру, застежки разных видов и рыболовные снасти.

Небольшой процент цинка (не более 0,01%) содержится в гартовых сплавах, применяемых в полиграфии для отливки типографских шрифтов и линеек, печатных форм и машинного набора. Это устаревшие смеси, на место которых пришел чистый цинк с небольшим добавлением примесей.

Невысокая температура, которая требуется для плавления цинка, часто компенсируется за счет сплавов с другими металлами, но бывает и наоборот. Если температура, необходимая для плавления «чистого» металла, составляет 419,5 C о , то сплав с оловом снижается до 199 C о, а с оловом и свинцом - до 150 C о. И хотя такие сплавы можно паять и варить, чаще всего смеси с цинком применяют только для заделки имеющихся дефектов из-за их слабой прочности. Например, сплав олова, свинца и цинка рекомендуется применять только на никелированных изделиях.

Чаще всего цинковые сплавы применяют для создания карбюраторов, рам спидометров, радиаторных решеток, гидравлических тормозов, насосов и декоративных элементов, деталей для стиральных машин, миксеров и кухонного оборудования, часовых корпусов, пишущих машинок, кассовых аппаратов и бытовой техники. Эти детали нельзя применять в промышленном производстве: при повышении температуры до 100 C о прочность изделия снижается на треть, а твердость - почти на 40%. При понижении температуры до 0 C о цинк становится слишком хрупким, что может привести к поломке.

Применение

Цинк является одним из наиболее востребованных металлов в мире: он находится на третьем месте по объему добычи среди цветных металлов, уступая только меди и алюминию. Этому способствует и его невысокая цена. Чаще всего его применяют для защиты от коррозии и в качестве части сплава, например, латуни.

В живых организмах

В теле человека содержится около 2 граммов цинка , около 400 ферментов содержат его. К последним относятся ферменты, катализирующие гидролиз белков, сложных эфиров и лептидов, полимеризацию РНК и ДНК, образование альдегидов. Чистый элемент содержится в мышцах, поджелудочной железе и печени. В день мужчинам требуется 11 мг цинка, женщинам - 8 мг.

В организме цинк выполняет следующие функции:

При недостатке элемента в организме наблюдается быстрая утомляемость, раздражительность , потеря памяти, снижение зрения и веса без объективной причины, приступы аллергии, депрессивное состояние. Происходит понижение уровня инсулина и накопление в теле некоторых элементов: железа, свинца, меди, кадмия.

В продуктах питания

Элемент имеется в мясе, сыре, кунжуте, устрицах, шоколаде, бобовых, овсянке, подсолнечных и тыквенных семечках, часто присутствует в минеральной воде. Наибольший процент цинка содержится в следующих продуктах (из расчета на 100 грамм):

  1. Устрицы (до 40 мг), анчоусы (1,72 мг), осьминог (1,68 мг), карп (1,48 мг), икра (до 1 мг), сельдь (около 1 мг).
  2. Тыквенные семечки (10 мг), кунжут (7 мг), подсолнечные семечки (5,3 мг), арахис (4 мг), грецкие орехи (3 мг), миндаль (3 мг).
  3. Говядина (до 8,4 мг), баранина (до 6 мг), говяжья печень (4 мг), свинина (до 3,5 мг), курица (до 3,5 мг).
  4. Какао-порошок без сахара и подсластителей (6,81 мг), чистый горький шоколад (2,3 мг), шоколадные конфеты (до 2 мг в зависимости от количества и вида шоколада).
  5. Чечевица (4,78 мг), овес (3,97 мг), пшеница (3,46 мг), соевые бобы (3 мг), рожь (2,65 мг), хлеб (до 1,5 мг), зеленый горошек (1,24 мг), горох (1,2 мг), ростки бамбука (1,1 мг), рис (1 мг), злаковое печенье (до 1 мг).
  6. Твердый сыр (до 4 мг).

Опасность для человека

Отравление цинком обычно происходит при длительном вдыхании его паров . Первыми признаками являются сильная жажда, потеря аппетита, сладковатый привкус во рту. Нередко появляется усталость, сонливость, сухой кашель, чувство разбитости, давящая боль в грудной клетке. Длительное воздействие может привести к бесплодию, малокровию, задержке в развитие. В быту опасность представляет оцинкованная посуда, в которой длительно хранится пища.

Цинк - элемент периодической системы 2 подгруппы 4 периода с атомным номером 30 и атомным весом 65,39.

Хрупкий переходный метал цинк.

  • Прямое влияние на химические свойства цинка оказывает его отношение к блоку d-элементов. Данная группа образует химические связи только внешними электронами d-орбитали. Поэтому элемент имеет характерную степень окисления +2 и схожесть со свойствами магния.
  • Гексагональная решетка цинка была описана еще в Швейцарии в XVI веке и упоминалась как «кристалловидные иглы». Металл переходного типа в своих разновидностях имеет множество изотопов. Самый стабильный из радиоактивных — 65 zn с периодом полураспада в 245 суток.
  • Металлический цинк в обычных условиях - это хрупкое вещество. Его плотность составляет 7,13 г/см³. На свету присущий всем металлам блеск отливает голубовато-серым цветом. Температура плавления начинается от 46 °C, а температура кипения - от 906 °C. Проявляя амфотерные свойства, элемент уступает по активности только щелочноземельным металлам. Окислительно-восстановительный потенциал равен 0,76 B.

    Цинк является коррозиестойким металлом. В интервале водородного показателя кислотности pH 9–11 наблюдается максимальная устойчивость. В атмосферных условиях коррозия не протекает из-за появления на поверхности защитной пленки - оксида цинка. Коррозия будет проходить с применением водородной или кислородной деполяризации.

Роль в металлургии

Гидро- и пирометаллургический процессы - наиболее распространенные способы производства металлического цинка из руды. В своих свойствах ничем не уступает хрому в качестве антикоррозионного покрытия. Половина всего производимого цинка затрачивается именно для нанесения защитного слоя для железа и стали.

Антикоррозийное применение цинка.

За счет низкой температуры плавления цинка и его сплавов с другими металлами появляется проблема чувствительности к перегреву. Поэтому чрезмерный перегрев в производстве вызывает нарушение процесса с последующим окислением сплава. Наиболее распространенными считаются сплавы с медью (латунь), а также со свинцом. Их повсеместно используют в технике, щелочных аккумуляторах, гальванических элементах и сплавах с другими благородными металлами.

Характеристика свойств элемента меняется под влиянием примесей. К примеру: тройная эвтектика сплава свинца и цинка с примесью олова плавится гораздо легче самого цинка и разрушается под горячим давлением. Добавление в состав цинка всего 0,2% железа в несколько раз повышает его хрупкость. Труднорастворимые в элементе висмут и мышьяк вообще отрицательно сказываются на технологических характеристиках получаемого вещества.

В промышленности восстанавливающие свойства элемента имеют важную функцию. Он принимает участие в осаждении золота из растворов, в производстве гидросульфита, добыче из руды меди и кадмия.

Реакции с элементами


Взаимодействие с кислотами

Хорошая реакция цинка с большинством кислот обусловлена его положением по отношению к водороду в электрохимическом ряду активности металлов. Так образуется множество важных цинковых солей. Эти соли преимущественно бесцветные, представляют гигроскопичные кристаллы, растворы которых вследствие гидролиза имеют кислотную среду. В случае с солями других металлов он будет также вытеснять их из раствора, если они стоят в ряду напряжения правее от элемента.

При взаимодействии с кислотами образуются соли цинка.

В растворе элемента с серной кислотой при температуре ниже 38 °C образуется цинковый купорос, научное название которого сульфат ZnSO4. Его используют в производстве вискозы, некоторых отраслях металлургии, в медицине как обеззараживающее средство. Хлорид ZnCl2 получают из раствора соляной кислоты с цинком. Его используют в производстве батареек, антисептической пропитке дерева и бумажной фибры.

Производные соединения

  1. Цинк и его амфотерные свойства передаются гидроксидам цинка Zn (OH)2. Этим веществам присуще химическое поведение кислот и оснований одновременно. Получить гидроксид в виде белого осадка можно действием щелочи на сульфат. В естественном состоянии гидроксид - это кристалловидное вещество, разлагающееся при температуре свыше 130 °C. Применяется для синтеза солей цинка.
  2. Эффектным можно назвать старый способ добычи оксида ZnO, именуемый ранее как «французский процесс». В присутствии сильно нагретого воздуха вокруг пластины элемента начнут выделяться пары цинка, которые затем воспламеняются голубоватым светом, образуя оксид. На крупном производстве его добывают из природного минерала цинкита. Кроме того, для производства оксида широко применяют термическое разложение более сложных соединений, как, например, гидроксида.
  3. Бесцветный белый порошок оксида, не растворяющийся в воде, выражает свою химическую двойственность. При сплавлении оксида цинка со щелочами получают цинкаты. При сплавлении с оксидами - силикаты. Собственная теплопроводность позволяет ему быть полупроводником, ширина запрещенной зоны которого равна 3,36 эВ. Оксид имеет широкий спектр применения в химической промышленности, став наполнителем многих пластмасс. В электронике без него не обходится ни одна лучевая трубка телевизора. Он также входит в состав большинства дерматологических мазей.

Чистый металлический цинк используется для восстановления благородных металлов, добываемых подземным выщелачиванием (золото, серебро). Кроме того, цинк используется для извлечения серебра, золота (и других металлов) из чернового свинца в виде интерметаллидов цинка с серебром и золотом (так называемой «серебристой пены»), обрабатываемых затем обычными методами аффинажа. Рентгенофлуоресцентный анализ в этом производстве очень важен, поскольку он относится к нерзрушающим видам анализа.

Применяется для защиты стали от коррозии (оцинковка поверхностей, не подверженных механическим воздействиям, или металлизация -- для мостов, емкостей, металлоконструкций). РФА анализ позволяет не только определить элементный состав, но и толщину напыления цинка на поверхности деталей.

Цинк используется в качестве материала для отрицательного электрода в химических источниках тока, то есть в батарейках и аккумуляторах, например: марганцево-цинковый элемент, серебряно-цинковый аккумулятор (ЭДС 1,85 В, 150 Вт·ч/кг, 650 Вт·ч/дм?, малое сопротивление и колоссальные разрядные токи), ртутно-цинковый элемент (ЭДС 1,35 В, 135 Вт·ч/кг, 550--650 Вт·ч/дм?), диоксисульфатно-ртутный элемент, йодатно-цинковый элемент, медно-окисный гальванический элемент (ЭДС 0,7--1,6 Вольт, 84--127 Вт·ч/кг, 410--570 Вт·ч/дм?), хром-цинковый элемент, цинк-хлоросеребряный элемент, никель-цинковый аккумулятор (ЭДС 1,82 Вольт, 95--118 Вт·ч/кг, 230--295 Вт·ч/дм?), свинцово-цинковый элемент, цинк-хлорный аккумулятор, цинк-бромный аккумулятор и др.

Очень важна роль цинка в цинк-воздушных аккумуляторах, которые отличаются весьма высокой удельной энергоёмкостью. Они перспективны для пуска двигателей (свинцовый аккумулятор -- 55 Вт·ч/кг, цинк-воздух -- 220--300 Вт·ч/кг) и для электромобилей (пробег до 900 км).

Цинк вводится в состав многих твёрдых припоев для снижения их температуры плавления.

Окись цинка широко используется в медицине как антисептическое и противовоспалительное средство. Также окись цинка используется для производства краски -- цинковых белил.

Цинк -- важный компонент латуни. Сплавы цинка с алюминием и магнием (ЦАМ, ZAMAK) благодаря сравнительно высоким механическим и очень высоким литейным качествам очень широко используются в машиностроении для точного литья. В частности, в оружейном деле из сплава ZAMAK (-3, -5) иногда отливают затворы пистолетов, особенно рассчитанных на использование слабых или травматических патронов. Также из цинковых сплавов отливают всевозможную техническую фурнитуру, вроде автомобильных ручек, корпусы карбюраторов, масштабные модели и всевозможные миниатюры, а также любые другие изделия, требующие точного литья при приемлемой прочности.

Хлорид цинка -- важный флюс для пайки металлов и компонент при производстве фибры. цинкование металлический промышленный концентрат

Сульфид цинка используется для синтеза люминофоров временного действия и разного рода люминесцентов на базе смеси ZnS и CdS. Люминофоры на базе сульфидов цинка и кадмия, также применяются в электронной промышленности для изготовления светящихся гибких панелей и экранов в качестве электролюминофоров и составов с коротким временем высвечивания.

Теллурид, селенид, фосфид, сульфид цинка -- широко применяемые полупроводники.

Селенид цинка используется для изготовления оптических стёкол с очень низким коэффициентом поглощения в среднем инфракрасном диапазоне, например, в углекислотных лазерах.

На разные применения цинка приходится:

цинкование -- 45-60 %

медицина (оксид цинка как антисептик) -- 10 %

производство сплавов -- 10 %

производство резиновых шин -- 10 %

масляные краски -- 10 %

Рисунок 1. Динамика добычи цинка и прироста его разведанных запасов в 2003-2012 гг., тыс.т.


Рисунок 2. Динамика движения запасов цинка в 2003-2012 гг., млн. т.

Выплавка и очистка. Выплавка и очистка выполняются двумя главными способами - термическим и электролитическим. В любом случае первой стадией процесса является обжиг измельченной и обогащенной сульфидной руды в печах с кипящим слоем, в результате которого образуется оксид цинка и выделяется сернистый газ 2ZnS + 3O2 -> 2ZnO + 2SO2 С помощью электролитического и термического методов получают примерно половину всего производимого цинка.

Термический метод. По термическому методу концентрат оксида цинка, остающийся после обжига руды, часто смешивают с порошкообразным углем в цилиндрических ретортах, изготовленных из огнеупорной глины, которые вводят в печь в горизонтальном положении. Для восстановления цинка углем из оксида требуется температура от 1200 до 1300° С, а поскольку температура кипения металлического цинка составляет 907° С, он испаряется сразу же после восстановления ZnO + C -> Zn + CO. Этот метод, усовершенствованный позднее, применяли с первых лет коммерческого производства цинка; он известен под названием "процесс в горизонтальных ретортах". Альтернативный термический процесс был разработан так, чтобы обеспечить непрерывную подачу материала сверху в вертикальную реторту, изготовленную из карборунда; продукт реакции отводится со дна реторты. Этот процесс, названный процессом в вертикальной реторте, был разработан фирмой "Нью-Джерси цинк компани" в конце 1920-х годов. Посредством фракционной дистилляции цинка, произведенного таким способом, получают металл чистотой 99,99%. Процесс в вертикальной реторте высокоэффективен и обеспечивает большую производительность, чем процесс в горизонтальной реторте. В некоторых печах сернистый газ улавливается для производства побочного продукта - серной кислоты; из печей другого типа, расположенных главным образом в малонаселенных безлесных областях, он выбрасывается в атмосферу.

Электролитический метод. Электролитический метод выплавки и очистки цинка запущен в производство в штате Монтана и Канаде в период Первой мировой войны. В этом процессе обожженный цинковый концентрат обрабатывают серной кислотой, чтобы перевести окись цинка в сульфатный раствор. Присутствующие в концентрате примеси тоже растворяются и должны быть удалены из раствора до его электролиза. Цинк, получаемый электролитическим методом, имеет высокую степень чистоты.