Болезни Военный билет Призыв

Что такое робототехника для школьников? Колёсные и гусеничные роботы. Способность к самобучению

Очень скоро роботы станут тесной частью общественной жизни. Возможно, будут убирать улицы, возможно - строить дома. Ну а пока сфера робототехники представляет собой активно развивающуюся и подающую надежды. Мы внимательно следим за тем, как поживают наши механические друзья, и верим, что именно они протянут нам руку в мир действительно высоких технологий. Присоединяйтесь.

Детеныши жирафов и антилоп обладают удивительным умением приспосабливаться к ходьбе спустя несколько минут после рождения. Оно позволяет им сразу же приспосабливаться к враждебной окружающей среде, полной хищников и других опасностей. Эта особенность детенышей издавна вдохновляла биологов и инженеров на создание роботизированных конечностей, способных быстро подстраиваться под окружающую среду методом проб и ошибок. Кажется, техникам из Инженерной школы Витерби наконец-то удалось это сделать.

Палеонтологи всего мира пытаются узнать максимум о животном мире далекого прошлого. Они пытаются узнать, как выглядели животные, чем питались и как передвигались. Ученые из Швейцарии и Германии сделали большой шаг вперед в этом деле - они создали роботизированный скелет ящера, который жил более 300 миллионов лет назад. Для воссоздания реалистичных движений они использовали компьютерное моделирование и данные, собранные во время раскопок. Результат весьма интересен и показан на видео.

Фантасты 50-х представляли себе 2000 год с летающими машинами и роботами, живущими бок о бок с человеком.
Как мы видим, этого пока не случилось, тем не менее сфера робототехники постепенно развивались в течение десятилетий, иногда стремительно затем ее развитие приутихло, но в настоящее время вновь возобносила небывалый рост. Каждый месяц производятся тысячи различных промышленных роботов, разрабатываются гуманоиды и андроиды, ученые всего мира работают созданием искусственного интеллекта, и все это -только начало.

Робототехника - это не самостоятельная отрасль, прежде всего это синергия всех последних достижений технических, естественных наук и информационных технологий.

Когда мы говорим "робот", то люди далеки от техники его примерно так и представляют как в советских фантастических фильмах с железными руками и ногами. Конечно, мы вкладываем в это понятие гораздо более широкий смысл.

Выделяют следующие группы роботов:

1. Промышленные - когда говорят "роботизация" имеют ввиду прежде всего развитие этой сферы.

2. Военные - единственный вид, который получил развитие в России, к ним же можно отнести роботов ливидаторов различных аварий и природных катаклизмов.

3. Космические - к ним относятся и спутники, планетоходы и антропоморфные роботы, помогающие космонавтам.

4. Бытовые - уборщики, кухонные роботы, роботы - компаньоны.

5. Андроиды, гуманоиды - различные антропоморфные роботы, чьей целью является усовершенствование "человекообразности" роботов для различных социальных целей.

История робототехники

Автоматизация и роботизация производства в капиталистическом мире началась в 50-е годы XX века. Именно к тому времени можно отнести появление первых промышленных роботов. Они осуществляли сборку оборудования, и простейшие монотонные операции.
Первый такой робот был разработан изобретателем самоучкой Джоржем Деволом в 1954 году. Робот-манипулятор весил две тонны и управлялся программой записанной на магнитном барабане. Система получила название Unimate на новое устройство был оформлен патент и а в 1961 изобретатель основал компанию Unimation.

Первый робот был установлен на заводе Дженерал Моторс (на литейном участке) в 1961 году. Затем новинка была опробована заводами Chrysler и Ford,

Система Unimate применялась для работы с литыми металлическими деталями, которые манипулятор извлекал из форм отливки. Захватиное устройство управлялось гидроприводом.
Робот имел 5 степеней свободы и захватное устройство с двумя "пальцами". Точность работы была весьма высока до 1,25 мм. И был эффективнее человека - работал и быстрее и с меньшим количеством брака.

В 1967 промышленные манипуляторы приходят Европу. Они уже расширяют свой функционал, осваивают профессии сварщика, маляра. У робота появляется "техническое зрение" посредством видеокамер и датчиков, он учится определять габариты изделий и место их расположения.

В 1982 году IBM разрабатывает официальный язык для программирования робототехнических систем. В 1984 - компания Adept представила первый робот Scara с электроприводом .
Новая конструкция сделала роботы более простыми и надежными, сохранив высокую скорость.

В 90-е появился контроллер с интуитивным интерфейсом управления, которому мог управлять оператор, он мог изменять параметры и регулировать режим работы. С тех пор возможности управления роботами и их функиции только развивались, увеличивалась их сложность, скорость, число осей, стали использоваться различные материалы, шире становились возможности разработки и управления, было сделано несколько первых уверенных шагов в сторону искусственного интеллекта.

В то же время в СССР был фактически лидером в робототехнике. Началось все еще в 30-е годы. В 1936 году 16–летний советский школьник Вадим Мацкевич создал робота, который умел поднимать правую руку. Для этого он потратил 2 года работы в токарных мастерских новочеркасского Политеха. Ранее, в 12 лет создал маленький радиоуправляемый броневик, стрелявший фейерверками. На "робота" Мацкевича обратили внимание власти и в 1937 году он представлял его на Всемирной выставке 1937 года в Париже.

На рубеже 30 - 40-х гг. XX в. в СССР также появились автоматические линии для обработки деталей подшипников, а в конце 40-х гг. XX в. впервые в мировой практике было создано комплексное производство поршней для тракторных двигателей с автоматизацией всех процессов - от загрузки сырья до упаковки готовой продукции.

В 1966 в Воронеже был изобретен манипулятор для укладки металлических листов, в 1968 в Ленинграде году разработали подводный робот "Манта" с чувствительным захватным устройством - в дальнейшем он совершенствовался. В 1969 году в ЦНИТИ Миноборонпрома приступили к разработке промышленного робота «Универсал-50». В дальнейшем активно внедрялись автоматизированные системы на крупные производства.

В 1985 году уже использовалось 40 тыс промышленых роботов и в несколько раз превосходило количество, используемых в США. Автоматизированые линии вовсю работали на АвтоВазе в 80-е года и даже подвергались атакам работников-"хакеров".

Были крупные военные и космические разработки. Уникальным достижением по тем временам был беспилотный разведчик ДБР-1, который был принят на вооружение ВВС СССР еще в 1964 году. Такой аппарат мог выполнять разведывательные задачи над всей территорией Западной и Центральной Европы.

Одним из самых заметных достижений отечественной робототехники и науки стало создание в КБ им. Лавочкина «Лунохода-1». Именно советский аппарат стал первым в мире планетоходом, который успешно выполнил свою миссию на поверхности другого небесного тела.

В 1983 году на вооружение ВМФ СССР был принят уникальный противокорабельный комплекс П-700 «Гранит». Его особенностью стало то, что при залповом пуске ракеты могли самостоятельно выстраиваться в боевой порядок и во время полета обмениваться между собой информацией, самостоятельно распределяя цели. При этом одна из ракет комплекса могла играть роль лидера, занимая более высокий эшелон атаки.

Развивались и "роботы-гуманоиды": в 1962 году появился первый робот экскурсовод Рэкс - он проводил экскурсии для детей в Политехническом музее. Говорят, он все еще там "работает".

В Советском Союзе было выпущено более 100 тыс. единиц промышленной робототехники. Они заменили более одного миллиона рабочих, но в 90-е годы эти роботы исчезли.

В дальнейшем развитие робототехники идет ударными темпами, потому что развивается ключевые отрасли - физика, химия, электротехника и главное - электроника. На смену вакуумным лампам пришла силовая электроника, позже микросхемы, затем микроконтроллеры... Появляются новые материалы, новые способы автоматизации и методы программирования.

Но к России и СНГ это не уже не относится. Прежде всего развитие происходит в США, в Юго-Восточной Азии и Западной Европе.

На производствах внедряются управляемые роботизированные линии, роботы манипуляторы используются во всех отраслях промышленности, в сельском хозяйстве, медицине, в космосе и, конечно, в быту.

В некоторых отраслях до 50% работ выполняют промышленные роботы, например в автомобилестроении они могут сварить, покрасить, и переместить детали на другой участок сборки, где ими займутся другие роботы.

Существуют даже 100% автоматизированные фабрики. В Японии есть завод где роботы сами собирают роботов. И даже готовят еду для 2000 человек - офисного центра, обслуживающего этот завод.

В 90-е годы наблюдался некоторый спад. Внедрение роботов, использующих существующие в то время технологии, на производство не принесло ожидаемой прибыли и финансирование некоторых крупномасштабных проектов было приостановлено. По ряду причин - и экономических, и социальных - ожидаемого бума не произошло, они остались как нишевая продукция для автосборочных и ряда других производств.

Резкий скачок произошел только в середине нулевых и это развитие продолжается. Прежде всего из-за того, что в робототехнике заинтересовались военные...

Остановить уже развитие невозможно и все странам, желающим быть в авангарде мировой промышленности приходится это принимать и догонять.

Устройство робота и задачи робототехники

Выделяют шесть общих задач роботехники:

  1. Перемещение - передвижение в любой среде
  2. Ориентация - осознавать свое местоположение
  3. Манипуляция - свободно манипулировать предметами окружающей среды
  4. Взаимодействие - контактировать с себеподобными
  5. Коммуникация - свободно общаться с человеком
  6. Искусственный интеллект - робот должен самостоятельно решать как ему выполнить команду человека

Самое оптимальное перемещение робота на колесах и гусеничной платформе. Именно эти способы обеспечивают наибольшую устойчивость и проходимость.
У колесных платформ с проходимостью сложнее - колесо не может преодолеть препятствие выше, чем его радиус. Колесные схемы постоянно совершенствуются, используются мощные серводвигатели , разрабатывается независимые подвески, применяются покрышки с грунтозацепами.

Устойчивы четырехноние и инсектоморфные роботы (это значит в форме насекомых, несколько "ног", обычно 6) Такие устройства часто используются для военных целей.

Ходить на двух ногах робот учился очень долго. Из всех существующих с этим хорошо справляется только гуманоид ASIMO от Honda он умеет не только устойчиво ходить, но и подниматься по ступеням, компания его разрабатывала более 25 лет
Большинство же человекоподобных роботов пока передвигаются на платформе.

Кроме хождения по земле опреденные модели могут ползать, плавать и летать.

Ориентрируется в пространстве робот с помощью датчиков, сенсоров, видеокамер, имеет способность "видеть" в инфракрасном диапазоне, улаваливать ультразвуковые колебания и воспринимать тепловое излучение.
Управлять может и оператор, он может находиться в той же комнате или за несколько километров.

Все озвученные задачи робототехники в той или иной мере решаются. Робот становится совершеннее, он умеет сотрудничать с другими роботами, учится общаться человеком и лучше его понимать.

Интересная схема обучения космического робота-спутника, вероятно этот же принцип используется для настройки других робототехнических систем. "Эмоциональное обучение", как называют его разработчики. Суть его в том, что в нем закладывается "аппарат эмоций", который сообщает спутнику что для него "хорошо", а что "плохо". Хорошо - если он нацеливается на конкретный заданный обьект - это увеличивает оценку, плохо - если от него отклоняется - оценка будет уменьшена. Ну и так пока устройство не станет стабильным "хорошистом".
Например, это может пригодиться для космических телескопов. Обучение проводится с помощью оператора и занимает около 20 минут, результат отображается в базе знаний.

Конкретно это описанное устройство космонавт может выбросить в открытый космос: остальные действия спутник выполнит сам. В концепте разработана модель нервной системы, которая логически следует из тех условий, в которых работает нервная система всех живых организмов.
Робототехника будущего может самостоятельно собирать новые знания, анализировать их и применять на практике.

Робототехника завоевывает сегодня все большие отрасли промышленности и все плотнее внедряется в различные сферы человеческой жизни. И если раньше роботы могли выполнять роль человека, замещая его на заводах, где часто требуются однообразные действия при конвейерном производстве, например при производстве автомобилей, то теперь наступили времена, когда роботы способны оказаться и в каждом доме, чтобы помогать человеку решать насущные задачи, и способствовать экономии наших времени и сил.

Бытовые роботы, предназначенные для помощи человеку в его повседневной жизни, набирают все большую популярность, что вовсе не удивительно, ведь разнообразие роботов растет с каждым годом. Уже сегодня это и пылесосы, и газонокосилки, и мойщики окон, и чистильщики бассейнов, и даже снегоуборочные роботы.

Кстати, еще в 2007 году Билл Гейтс обратил внимание на значительный потенциал данного технологического направления, опубликовав статью «Робот в каждом доме», где он отразил перспективы, которые откроются обществу, благодаря внедрению бытовых роботов.

Предметом данной статьи будет краткий обзор набирающих популярность типов бытовых роботов. Мы рассмотрим несколько роботов, предназначенных для различных бытовых применений, посмотрим как они работают, что могут, как их нужно использовать, и насколько легко с ними обращаться.


Поскольку робот-пылесос является устройством автономным, то он обязательно оснащен не только аккумулятором, но и камерой, помогающей ему ориентироваться в помещении, чтобы два раза не убирать одно и то же место.

Робот просто предварительно выстраивает оптимальную карту уборки, опираясь на данные с камеры, затем приступает непосредственно к уборке, по окончании которой возвращается на место старта, связанное с зарядным устройством.

На борту пылесоса имеются все необходимые датчики (включая гироскоп), позволяющие прибору измерять расстояние до препятствия, оценивать высоту основания мебели над полом (сможет ли он под нее заехать), фиксировать столкновение, определять наличие на месте пылесборника и т.д. Интеллектуальная электроника позволяет роботу нормально ориентироваться среди мебели и стен в процессе работы.

Пылесборник компактен, и располагается недалеко от щеток. Для движения робот использует два колеса, при помощи которых он может поворачивать. Две направляющие щетки заметают мусор в направлении турбощетки, которая в свою очередь направляет мусор в пылесборник, где всасывающее устройство окончательно захватывает мусор. Питается все это оборудование от емкостью в несколько ампер-часов.

Благодаря наличию гироскопа, робот-пылесос всегда «знает» угол своего наклона, и поэтому вероятность того, что он застрянет исключается. Единственный недостаток таких роботов-пылесосов — малая сила всасывания. Они подойдут для уборки гладких напольных покрытий, таких как линолеум или ламинат, но с уборкой сильно загрязненного коврового покрытия справятся вряд ли.

В любом случае, робот-пылесос способен сильно облегчить нашу жизнь. Человеку уже не придется каждый раз, когда он увидит на полу пыль, бежать за веником, чтобы подмести. Достаточно запрограммировать робота на регулярную уборку, и он будет самостоятельно осуществлять профилактику по всей квартире, по дому или даже офису.


Есть два типа роботов для мойки окон. Первый тип — робот из двух частей, в одной из которых находится управляющая электроника, а в другой — чистящий механизм. Две части крепятся к оконному стеклу с разных сторон, и держатся на нем за счет постоянных магнитов.

Сначала робот задает себе карту для работы, предварительно доезжая до каждого из краев стекла, измеряя таким образом размер поверхности которая должна быть вымыта, затем начинает мыть ее, двигаясь зигзагом.

В качестве инструментов для мытья служат четыре подушечки из микрофибры, а перемещение достигается благодаря взаимодействию постоянных магнитов и управляющего модуля.

В центре между подушечками расположено отверстие, из которого подается моющее средство. Питается устройство от встроенного литиевого аккумулятора. Человеку достаточно запустить аппарат, и он сам все сделает, используя предварительно заправленное в специальный резервуар моющее средство.

Второй тип робота-мойщика окон — робот с креплением вакуумными присосками. Такой робот имеет только один и только рабочий модуль для одной стороны окна.

Робот по сути протирает стекло, перемещаясь влево и вправо по его поверхности, без использования вращающихся подушечек. Здесь используется сменная салфетка, которую необходимо предварительно смочить моющим средством вручную.

Робот питается от сети, хотя и выполняет работу автономно, стоит его включить и установить на стекло. Есть резервный аккумулятор на случай отключения электричества в доме. Пользователю остается установить робота на стекло и включить его.


Принцип работы данных роботов заключается в следующем. Первым делом прокладывают кабель-ограничитель, по которому течет постоянный ток, и который определяет собой границу рабочей зоны робота-газонокосилки. Такая автономная газонокосилка оснащена всеми необходимыми датчиками, включая датчики препятствий, как и у роботов-пылесосов, чтобы газонокосилка могла бы объехать дерево, бордюр или клумбу.

Кабель-ограничитель необходим для того, чтобы газонокосилка не упала в водоем или не стала бы пытаться косить камни садовой дорожки, тем самым нанося себе вред. Кабелем ограждают периметр, клумбы, каменные дорожки, водоемы.

В процессе работы газонокосилка хаотично движется по площади в пределах периметра, срезая ножами траву. Некоторые модели двигаются не хаотично, а по спирали или зигзагом, это зависит от производителя.

Параметры роботов-газонокосилок отличаются. В первую очередь — шириной захвата. Согласитесь, при ширине захвата в 56 см, по сравнению с 24 см, дело пойдет и будет завершено быстрее. Мощность также имеет значение.

Газонокосилка мощностью 500 ватт и с шириной захвата в 56 см гораздо быстрее пройдет ту же площадь, что 100 ваттная модель. Аккумулятор здесь, безусловно определяет площадь, которую сможет обслужить робот на одной подзарядке. Есть роботы-газонокосилки, рассчитанные на 4 сотки, а есть — на все 30 соток.

Имеется ли в комплекте база для подзарядки, чтобы газонокосилка могла самостоятельно подъехать, подзарядиться и продолжить работу? На это потребителю необходимо обратить внимание при выборе модели, иначе придется самостоятельно носить робота на подзарядку, что не всегда удобно.

Если есть зарядная базовая станция, то человек сможет запрограммировать газонокосилку на весь сезон и не беспокоиться о графике выполнения работ по стрижке газона.


Робот имеет шнур питания и пару колес для перемещения по дну и по стенкам бассейна. В зависимости от длины провода нормируется размер бассейна, с которым сможет справиться робот. Щетки робота вращаются независимо от колес, и легко удаляют слизь и грязь, направляя ее через фильтр.

Вода вместе с грязью всасывается в фильтрующий отсек робота, затем вода выбрасывается обратно в бассейн, а грязь оседает на фильтре. Фильтр потом нужно будет просто вытащить и промыть под водой.

Робот для чистки бассейна сначала очищает дно, затем движется по стенкам, присасываясь к ним. Так, 70% времени уходит на чистку дна, а 30% - на чистку стен бассейна. Типичный бассейн площадью дна 28 кв.м. средний робот очистит за 2-3 часа.

Несмотря на то, что вода проходит через фильтр робота, всасываясь его насосом, хозяину бассейна необходимо будет как всегда использовать систему очистки воды бассейна, робот не заменит ее собой, он только очистит поверхности, но не саму воду. Тем не менее, робот избавит своего хозяина не только от необходимости чистить бассейн вручную, но и от надобности наблюдать за процессом чистки.


Наконец, робот-снегоуборщик, - актуальнейшее для наших широт решение. Вместо того, чтобы размахивать лопатой там, где не может проехать габаритная снегоуборочная техника, поможет снегоуборочный робот. Управление роботом осуществляется со смартфона по wi-fi, и выглядит это как интерактивная игра.

Поднимать и опускать ковш, перемещаться на гусеницах назад и вперед, разворачиваться, - все это может делать робот, которым оператор управляет удаленно, даже находясь дома в тепле за компьютером.

Глазами робота является видеокамера, через которую пользователь может оценивать обстановку, чтобы затем направлять робота для выполнения снегоуборочных работ.

Емкий аккумулятор, заряженный от розетки, позволит осуществлять уборку снега в течение нескольких часов без необходимости таскать снег вручную, особенно если речь идет об уборке больших территорий, вблизи строений, куда снегоуборочная техника проехать просто не может.

Как видите, ассортимент бытовых роботов сегодня довольно широк, и каждый человек наверняка найдет среди доступных сегодня на рынке именно то, что облегчит быт именно ему. Кому-то нужно регулярно чистить летний приусадебный бассейн, а кто-то замучился зимой чистить снег.

Каждый имеющий в доме животных задумается о приобретении робота-пылесоса, некоторые из которых с животными отлично ладят. Живете в районе с сильно загрязненным воздухом и окна часто становятся пыльными — робот поможет вам вымыть окна. Что уж говорить о роботе-газонокосилке, который позволит своему хозяину заниматься другими более важными делами или просто отдыхать, пока газоном занимается робот.

Андрей Повный

Робототехника  - прикладная наука, занимающаяся разработкой автоматизированных технических систем.

Слово «робототехника» (в его английском варианте «robotics») было впервые использовано в печати Айзеком Азимовым в научно-фантастическом рассказе «Лжец», опубликованном в 1941 году.

Робот (чеш. robot, от robota - подневольный труд или rob - раб) - автоматическое устройство, созданное по принципу живого организма.

Действуя по заранее заложенной программе и получая информацию о внешнем мире от датчиков (аналогов органов чувств живых организмов), робот самостоятельно осуществляет производственные и иные операции, обычно выполняемые человеком (либо животными). При этом робот может как и иметь связь с оператором (получать от него команды), так и действовать автономно.

“Современные роботы, созданные на базе самых последних достижений науки и техники, применяются во всех сферах человеческой деятельности. Люди получили верного помощника, способного не только выполнять опасные для жизни человека работы, но и освободить человечество от однообразных рутинных операций.” И. М. Макаров, Ю. И. Топчеев. “Робототехника: История и перспективы”

Внешний вид и конструкция современных роботов могут быть весьма разнообразными. В настоящее время впромышленном производстве широко применяются различные роботы, внешний вид которых (по причинам технического и экономического характера) далёк от «человеческого».

История

Сведения о первом практическом применении прообразов современных роботов - механических людей с автоматическим управлением - относятся к эллинистической эпохе.

Тогда на маяке, сооружённом на острове Фарос, установили четыре позолоченные женские фигуры. Днём они горели в лучах солнца, а ночью ярко освещались, так что всегда были хорошо видны издалека. Эти статуи через определённые промежутки времени, поворачиваясь, отбивали склянки; в ночное же время они издавали трубные звуки, предупреждая мореплавателей о близости берега.

Прообразами роботов были также механические фигуры, созданные арабским учёным и изобретателем Аль-Джазари (1136-1206). Так, он создал лодку с четырьмя механическими музыкантами, которые играли на бубнах, арфе и флейте.

Чертежи Леонардо да Винчи

Чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Записи Леонардо, найденные в 1950-х, содержали детальные чертежи механического рыцаря, способного сидеть, раздвигать руки, двигать головой и открывать забрало. Дизайн, скорее всего, основан на анатомических исследованиях, записанных в Витрувианском человеке. Неизвестно, пытался ли Леонардо построить робота.

С начала XVIII века в прессе начали появляться сообщения о машинах с «признаками разума», однако в большинстве случаев выяснялось, что это мошенничество. Внутри механизмов прятались живые люди или дрессированные животные.

Французский механик и изобретатель Жак де Вокансон создал в 1738 году первое работающее человекоподобное устройство (андроид), которое играло на флейте. Он также изготовил механических уток, которые, как говорили, умели клевать корм и «испражняться».

Виды роботов

Промышленные роботы
Появление станков с числовым программным управлением привело к созданию программируемых манипуляторов для разнообразных операций по загрузке и разгрузке станков.

Появление в 70-х гг. микропроцессорных систем управления и замена специализированных устройств управления на программируемые контроллеры позволили снизить стоимость роботов в три раза, сделав рентабельным их массовое внедрение в промышленности. Этому способствовали объективные предпосылки развития промышленного производства.

Несмотря на их высокую стоимость, численность промышленных роботов в странах с развитым производством быстро растёт. Основная причина массовой роботизации такова:

«Роботы выполняют сложные производственные операции по 24 ч в сутки. Выпускаемая продукция при этом имеет высокое качество. Они… не болеют, не нуждаются в обеденном перерыве и отдыхе, не бастуют, не требуют повышения заработной платы и пенсии. Роботы не подвержены влиянию температуры окружающей среды либо воздействию газов или выбросов агрессивных веществ, опасных для жизни человека».

Медицинские роботы
В последние годы роботы получают всё большее применение в медицине; в частности, разрабатываются различные модели хирургических роботов.

Ещё в 1985 году робот Unimation Puma 200 был использован для позиционирования хирургической иглы при выполнении биопсии головного мозга, проводившейся под управлением компьютера.

В 1992 году разработанный в Имперском колледже Лондона робот ProBot впервые осуществил операцию на предстательной железе, положив начало практической роботизированной хирургии.

Робот Da Vinci

С 2000 года компания Intuitive Surgical серийно выпускает робот Da Vinci, предназначенный для лапароскопических операций и установленный в нескольких сотнях клиник по всему миру.

Бытовые роботы

Одним из первых примеров удачной массовой промышленной реализации бытовых роботов стала механическая собачка AIBO корпорации Sony.

Робот-пылесос iRobot

В сентябре 2005 в свободную продажу впервые поступили первые человекообразные роботы «Вакамару» производства фирмы Mitsubishi. Робот стоимостью $15 тыс. способен узнавать лица, понимать некоторые фразы, давать справки, выполнять некоторые секретарские функции, следить за помещением.

Всё большую популярность набирают роботы-уборщики (по своей сути - автоматические пылесосы), способные самостоятельно прибраться в квартире и вернуться на место для подзарядки без участия человека.

Боевые роботы

Боевым роботом называют автоматическое устройство, заменяющее человека в боевых ситуациях или при работе в условиях, несовместимых с возможностями человека, в военных целях: разведка, боевые действия, разминирование и т. п.

Беспилотник

Боевыми роботами являются не только автоматические устройства с антропоморфным действием, которые частично или полностью заменяют человека, но и действующие в воздушной и водной среде, не являющейся средой обитания человека (авиационные беспилотные с дистанционным управлением, подводные аппараты и надводные корабли).

В настоящее время большинство боевых роботов являются устройствами телеприсутствия, и лишь очень немногие модели имеют возможность выполнять некоторые задачи автономно, без вмешательства оператора.

В Технологическом институте Джорджии под руководством профессора Хенрика Кристенсена разработаны напоминающие муравьёв инсектоморфные роботы, способные обследовать здание на предмет наличия там врагов и мин-ловушек (доставляются к зданию «главным роботом» - мобильным роботом на гусеничном ходу).

Получили распространение в войсках и летающие роботы. На начало 2012 года военными во всём мире использовались около 10 тысяч наземных и 5 тысяч летающих роботов; 45 стран мира разрабатывало или закупало военных роботов.

Роботы-учёные

Первые роботы-учёные Адам и Ева были созданы в рамках проекта Robot Scientist университета Аберистуита и в 2009 году одним из них было совершено первое научное открыти.

К роботам-учёным безусловно можно отнести роботов, с помощью которых исследовались вентиляционные шахты Большой Пирамиды Хеопса. С их помощью были открыты т. н. «дверки Гантенбринка» и т. н. «ниши Хеопса». Исследования продолжаются.

Система передвижения

Для передвижения по открытой местности чаще всего используют колёсный или гусеничный движитель (примерами подобных роботов могут служить Warrior и PackBot).

Реже используются шагающие системы (примерами подобных роботов могут служить BigDog и Asimo).

Роботы BigDog

Для неровных поверхностей создаются гибридные конструкции, сочетающие колёсный или гусеничный ход со сложной кинематикой движения колёс. Такая конструкция была применена в луноходе.

Внутри помещений, на промышленных объектах роботы передвигаются вдоль монорельсов, по напольной колее и т. д. Для перемещения по наклонным или вертикальным плоскостям, по трубам используются системы, аналогичные «шагающим» конструкциям, но с вакуумными присосками.

Также известны роботы, использующие принципы движения живых организмов - змей, червей, рыб, птиц, насекомых и других типах роботов бионического происхождения.

Робот Tuna

Система распознавания образов

Системы распознавания уже способны определять простые трехмерные предметы, их ориентацию и композицию в пространстве, а также могут достраивать недостающие части, пользуясь информацией из своей базы данных (например, собирать конструктор Lego).

Двигатели

В настоящее время в качестве приводов обычно используются двигатели постоянного тока, шаговые электродвигатели и сервоприводы.

Существуют разработки двигателей, не использующих в своей конструкции моторов: например, технология сокращения материала под действием электрического тока (или поля), которая позволяет добиться более точного соответствия движения робота натуральным плавным движениям живых существ.

Математическая база

Робот Aibo

Помимо уже широко применяющихся нейросетевых технологий, существуют алгоритмы самообучения взаимодействию робота с окружающими предметами в реальном трёхмерном мире: робот-собака Aibo под управлением таких алгоритмов прошел те же стадии обучения, что и новорожденный младенец, самостоятельно научившись координировать движения своих конечностей и взаимодействовать с окружающими предметами (погремушками в детском манеже). Это дает ещё один пример математического понимания алгоритмов работы высшей нервной деятельности человека.

Навигация

Системы построения модели окружающего пространства по ультразвуку или сканированием лазерным лучом широко используются в гонках роботизированных автомобилей (которые уже успешно и самостоятельно проходят реальные городские трассы и дороги на пересечённой местности с учётом неожиданно возникающих препятствий).

Внешний вид

В Японии не прекращаются разработки роботов, имеющих внешний вид, на первый взгляд неотличимый от человеческого. Развивается техника имитации эмоций и мимики «лица» роботов.

В июне 2009 года ученые Токийского университета представили человекоподобного робота «KOBIAN», способного выражать свои эмоции - счастье, страх, удивление, грусть, гнев, отвращение - с помощью жестов и мимики.

Робот KOBIAN

Робот способен открывать и закрывать глаза, двигать губами и бровями, использовать руки и ноги.

Производители роботов

Существуют компании, специализирующиеся на производстве роботов (среди крупнейших - iRobot Corporation). Роботов также выпускают некоторые компании, работающие в сфере высоких технологий: ABB, Honda, Mitsubishi, Sony, World Demanded Electronic, Gostai, KUKA.

Проводятся выставки роботов, напр. самая крупная в мире International robot exhibition (iRex) (проводится в начале ноября раз в два года в Токио, Япония).

Робототехника - одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Кроме того, роботостроение может показаться занимательней прочего: сконструировать робота значит почти что создать новое существо, пусть и электронное, что, конечно же, привлекает. Впрочем, и в этой отрасли все может оказаться непросто, особенно на первых порах. Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Робототехника — одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Роботостроение — увлекательнейшая штука: сконструировать робота значит почти что создать новое существо, пусть и электронное.

С 60-х годов прошлого века автоматизированные и самоуправляющиеся устройства, делающие какую-либо работу за человека, стали использоваться для исследований и в производстве, затем в сфере услуг и с тех с каждым годом прочнее занимают свое место в жизни людей. Конечно, нельзя сказать, что в России все сплошь выполняется самостоятельными механизмами, однако определенный вектор в эту сторону точно намечается. Вот уже и Сбербанк планирует заменить три тысячи юристов умными машинами.

Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Чем отличается робототехника для детей от профессиональной?

Если коротко, то робототехника для детей направлена на изучение предмета, тогда как профессиональная - на решение конкретных задач. Если специалисты создают промышленные манипуляторы, выполняющие разные технологические задачи, или специализированные колесные платформы, то любители и дети, конечно же, занимаются вещами попроще.

Татьяна Волкова, сотрудник Центра интеллектуальной робототехники: «Как правило, с чего все начинают: разбираются с моторами и заставляют робота элементарно ехать вперед, потом - делать повороты. Когда робот выполняет команды движения, можно уже подключить датчик и сделать так, чтобы робот ехал на свет или, наоборот, «убегал» от него. А дальше идет любимая задача всех новичков: робот, который ездит по линии. Устраиваются даже различные гонки роботов».

Как понять, есть ли у ребенка склонность к робототехнике?

Для начала нужно купить конструктор и посмотреть, нравится ли ребенку собирать его. А дальше и в кружок можно отдать. Занятия помогут ему развить мелкую моторику, фантазию, пространственное восприятие, логику, концентрацию и терпеливость.

Чем быстрее получится определиться с направлением роботехники — конструирование, электроника, программирование — тем лучше. Все три области обширны и требуют отдельного изучения.

Александр Колотов, ведущий специалист STEM-программ в Университете Иннополис: «Если ребенку нравится собирать конструктор, то ему подойдёт конструирование. Если ему интересно изучать, как устроена вещь, то ему понравится заниматься электроникой. Если у ребенка тяга к математике, то его заинтересует программирование».

Когда начинать обучение робототехнике?

Начинать изучение и записываться в кружки лучше всего с детства, впрочем, не слишком рано — в 8-12 лет , говорят специалисты. Раньше ребенку сложнее уловить понятные абстракция, а позднее, в подростковом возрасте, у него могут появиться другие интересы, и он станет отвлекаться. Также ребенка необходимо мотивировать на изучение математики, чтобы ему было интересно и легко в будущем проектировать механизмы и схемы, составлять алгоритмы.

С 8-9 лет ребята уже могут понимать и запоминать, что такое резистор, светодиод, конденсатор, а позже и понятия из школьной физики осваивать с опережением школьной программы. Не важно, станут они специалистами в этой области или нет, полученные знания и навыки точно даром не пропадут.

В 14-15 лет нужно продолжать заниматься математикой, отодвинуть занятия в кружке по робототехнике на второй план и начать изучение программирования более серьезно - разбираться не только в сложных алгоритмах, но и в структурах хранения данных. Далее идут математический базис и знания в алгоритмизации, погружение в теорию механизмов и машин, проектирование электромеханической оснастки робототехнического устройства, реализацию алгоритмов автоматической навигации, алгоритмы компьютерного зрения и машинное обучение.

Александр Колотов: «Если в этот момент познакомить будущего специалиста с основами линейной алгебры, комплексным счислением, теорией вероятности и статистики, то к поступлению в вуз он уже будет хорошо представлять, зачем ему стоит обращать дополнительное внимание на эти предметы при получении высшего образования».

Какие конструкторы выбрать?

Для каждого возраста существуют свои образовательные программы, конструкторы и платформы, различающиеся степенью сложности. Можно найти как зарубежные, так и отечественные продукты. Есть дорогие наборы для робототехники (в районе 30 тыс. руб. и выше), есть и подешевле, совсем простые (в пределах 1-3 тыс. руб.).

Если ребенку 8-11 лет , можно купить конструкторы Lego или Fischertechnik (хотя, конечно, производители имеют предложения как для более младшего, так и для старшего возрастов). Конструктор Lego для робототехники обладает интересными деталями, яркими фигурками, он легок в сборке и снабжен подробной инструкцией. Серия конструкторов Fischertechnik для робототехники приближает к настоящему процессу разработки, здесь вам и провода, и штекеры, и визуальная среда программирования.

В 13-14 лет можно начать работать с ТРИК или модулями Arduino, которые, по словам Татьяны Волковой, является практически стандартом в области образовательной робототехники, а также Raspberry. ТРИК сложнее Lego, но легче Arduino и Raspberry Ri. Последние две уже требуют базовых навыков программирования.

Что еще потребуется изучить?

Программирование . Избежать его возможно только на первоначальном этапе, потом же без него никуда. Начать можно с Lego Mindstorms, Python, ROS (Robot Operating System).

Базовую механику. Начинать можно с поделок из бумаги, картона, бутылок, что важно и для мелкой моторики, и для общего развития. Самого простого робота можно сделать вообще из отдельных деталей (моторчики, провода, фотодатчик и одна несложная микросхема). Познакомиться с базовой механикой поможет «Мастерилка с папашей Шперхом».

Основы электроники. Для начала научиться собирать простые схемы. Для детей до восьми лет эксперты советуют конструктор «Знаток», дальше можно перейти к набору «Основы электроники. Начало».

Где заниматься робототехникой детям?

Если видите у ребенка интерес, можно отдать его в кружки и на курсы, хотя можно заниматься и самостоятельно. На курсах ребенок будет под руководством специалистов, сможет найти единомышленников, займется робототехникой на регулярной основе.

Также желательно сразу понять, чего хочется от занятий: участвовать в соревнованиях и бороться за призовые места, участвовать в проектной деятельности или просто заниматься для себя.

Алексей Колотов: «Для серьезных занятий, проектов, участия в соревнованиях нужно выбирать кружки, с небольшими группами по 6—8 человек и тренером, который приводит учеников к призовым местам на соревнованиях, который постоянно сам развивается и дает интересные задачи. Для занятий в виде хобби можно пойти в группы до 20 человек».

Как выбирать курсы для занятий робототехникой?

При записи на курсы обратите внимание на педагога , рекомендует коммерческий директор компании Promobot Олег Кивокурцев. «Бывают прецеденты, когда педагог просто отдает ребятам оборудование, а дальше занимайтесь кто чем хочет», — согласна с Олегом Татьяна Волкова. От таких занятий толку будет мало.

При выборе курсов также стоит обратить внимание и на имеющуюся материально-техническую базу . Есть ли там конструкторские наборы (не только Lego), имеется ли возможность писать программы, изучать механику и электронику, самому делать проекты. На каждую пару учащихся должен быть свой робототехнический комплект. Желательно с дополнительными деталями (колесами, шестернями, элементами каркаса), если хочется участвовать в соревнованиях. Если с одним набором работает сразу несколько команд то, скорее всего, никаких серьезных соревнования не предполагается.

Поинтересуйтесь, в каких соревнованиях участвует клуб робототехники . Помогают ли эти конкурсы закрепить полученные навыки и дают ли возможность для дальнейшего развития.

Соревнование Robocup 2014

Как изучать робототехнику самостоятельно?

Курсы требуют денег и времени. Если первого не хватает и регулярно ходить куда-либо не получится, можно заняться с ребенком самостоятельным изучением. Важно, чтобы родители обладали необходимой компетенцией в этой сфере: без помощи родителя, ребенку освоить робототехнику будет достаточно сложно, предостерегает Олег Кивокурцев.

Найдите материал для изучения. Их можно брать в Интернете, из заказываемых книг, на посещаемых конференциях, из журнала «Занимательная робототехника». Для самостоятельного изучения есть бесплатные онлайн-курсы, например, «Строим роботов и другие устройства на Arduino: от светофора до 3D-принтера».

Нужно ли изучать роботехнику взрослым?

Если Вы уже вышли из детского возраста, это не значит, что двери робототехники для Вас закрыты. Можно так же записаться на курсы или изучать ее самостоятельно.

Если человек решил заниматься этим как хобби, то путь его будет таким же, как у ребенка. Однако понятно, что дальше любительского уровня без профессионального образования (инженера-конструктора, программиста и электронщика) продвигаться вряд ли получится, хотя, конечно, устраиваться на стажировки в компании и упорно грызть гранит нового для вас направления никто не запрещает.

Олег Кивокурцев: «Взрослому будет проще освоить робототехнику, но важным фактором является время».

Для тех, у кого близкая специальность, но хочется переучиться, также есть разные курсы в помошь. Например, для специалистов по машинному обучению одойдет бесплатный онлайн-курс по вероятностной робототехнике «Искусственный интеллект в робототехнике». Также существуют образовательная программа Intel, просветительский проект «Лекториум», дистанционные курсы ИТМО. Не забудьте и про книги, например, есть много литературы для начинающих («Основы робототехники», «Введение в робототехнику», «Настольная книга робототехника»). Подберите то, что больше всего понятно и подходит вам.

Следует помнить, что серьезная работа отличается от любительского увлечения как минимум стоимостью затрат на оборудование и перечнем поставленных перед работником задач. Одно дело - своими руками собирать самого простого робота, совсем другое - заниматься, например, машинным зрением. Поэтому изучать основы конструирования, программирования и аппаратной инженерии все-таки лучше с ранних лет и впоследствии, если понравилось, поступать в профильный университет.

В какие вузы идти учиться?


Направления, связанные с робототехникой, можно найти в следующих вузах:

— Московский технологический университет (МИРЭА, МГУПИ, МИТХТ);

— Московский государственный технический университет им. Н. Э. Баумана;

— Московский государственный технологический университет «Станкин»;

— Национальный исследовательский университет «МЭИ» (Москва);

— Сколковский институт науки и технологий (Москва);

— Московский государственный университет путей сообщения Императора Николая II;

— Московский государственный университет пищевых производств;

— Московский государственный университет леса;

— Санкт-Петербургский государственный университет аэрокосмического приборостроения (СГУАП);

— Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (ИТМО);

— Магнитогорский государственный технический университет;

— Омский Государственный технический университет;

— Саратовский государственный технический университет;

— Университет Иннополис (Республика Татарстан);

— Южно-Российский федеральный университет (Новочеркасский ГТУ).

Самое главное

Знать азы робототехники в скором времени может оказаться полезно и обывателям, а возможность стать специалистом в этой сфере выглядит очень перспективно, так что хотя бы попробовать себя в «роботостроительстве» определенно стоит.