Болезни Военный билет Призыв

Что такое решить уравнение определение. Когда корней несколько. Смотреть что такое "уравнения" в других словарях

Что такое уравнение?










Тем, кто делает первые шаги в алгебре, конечно, требуется максимально упорядоченная подача материала. Поэтому в нашей статье о том, что такое уравнение, мы не только дадим определение, но и приведём различные классификации уравнений с примерами.

Что такое уравнение: общие понятия

Итак, уравнение — это вид равенства с неизвестным, обозначаемым латинской буквой. При этом числовое значение данной буквы, позволяющее получить верное равенство, называется корнем уравнения.Более подробно об этом вы можете прочитать в нашей статье , мы же продолжим разговор о самих уравнениях. Аргументами уравнения (или переменными) называются неизвестные, а решением уравнения называется нахождение всех его корней либо отсутствия корней.

Виды уравнений

Уравнения подразделяются на две большие группы: алгебраические и трансцендентные.

  • Алгебраическим называется такое уравнение, в котором для нахождения корня уравнения используются только алгебраические действия - 4 арифметических, а также возведение в степень и извлечение натурального корня.
  • Трансцендентным называется уравнение, в котором для нахождения корня используются неалгебраические функции: например, тригонометрические, логарифмические и иные.

Среди алгебраических уравнений выделяют также:

  • целые — с обеими частями, состоящими из целых алгебраических выражений по отношению к неизвестным;
  • дробные — содержащие целые алгебраические выражения в числителе и знаменателе;
  • иррациональные — алгебраические выражения здесь находятся под знаком корня.

Заметим также, что дробные и иррациональные уравнения можно свести к решению целых уравнений.

Трансцендентные уравнения подразделяются на:

  • показательные — это такие уравнения, которые содержат переменную в показателе степени. Они решаются путём перехода к единому основанию или показателю степени, вынесением общего множителя за скобку, разложением на множители и некоторыми другими способами;
  • логарифмические — уравнения с логарифмами, то есть такие уравнения, где неизвестные находятся внутри самих логарифмов. Решать такие уравнения весьма непросто (в отличие от, допустим, большинства алгебраических), поскольку для этого требуется солидная математическая подготовка. Самое важное здесь — перейти от уравнения с логарифмами к уравнению без них, то есть упростить уравнение (такой способ удаления логарифмов называется потенцированием). Разумеется, потенцировать логарифмическое уравнение можно только в том случае, если они имеют тождественные числовые основания и не имеют коэффициентов;
  • тригонометрические — это уравнения с переменных под знаками тригонометрических функций. Их решение требует первоначального освоения тригонометрических функций;
  • смешанные — это дифференцированные уравнения с частями, принадлежащими к различным типам (например, с параболической и эллиптической частями или эллиптической и гиперболической и т.д.).

Что касается классификации по числу неизвестных, то здесь всё просто: различают уравнения с одним, двумя, тремя и так далее неизвестными. Существует также и ещё одна классификация, которая основывается на степени, которая имеется в левой части многочлена. Исходя из этого различают линейные, квадратные и кубические уравнения. Линейные уравнения также могут называться уравнениями 1-й степени, квадратные — 2-й, а кубические, соответственно, 3-й. Ну а теперь приведём примеры уравнений той или иной группы.

Примеры различных типов уравнений

Примеры алгебраических уравнений:

  • ax + b= 0
  • ax 3 + bx 2 + cx+ d= 0
  • ax 4 + bx 3 + cx 2 + bx + a= 0
    (a не равно 0)

Примеры трансцендентных уравнений:

  • cos x = x lg x = x−5 2 x = lgx+x 5 +40

Примеры целых уравнений:

  • (2+x)2 = (2+x)(55x-4) (x2-12x+10)4 = (3x+10)4 (4x2+3x-10)2=9x4

Пример дробных уравнений:

  • 15 x + — = 5x - 17 x

Пример иррациональных уравнений:

  • √2kf(x)=g(x)

Примеры линейных уравнений:

  • 2х+7=0 х - 3 = 2 - 4х 2х+3=5х+5 - 3х - 2

Примеры квадратных уравнений:

  • x 2 +5x−7= 0 3x 2 +5x−7= 0 11x 2 −7x+3 = 0

Примеры кубических уравнений:

  • x 3 -9x 2 -46x+120=0 x 3 - 4x 2 + x + 6 = 0

Примеры показательных уравнений:

  • 5 х+2 = 125 3 х ·2 х = 8 х+3 3 2х +4·3 х -5 = 0

Примеры логарифмических уравнений:

  • log 2 x= 3 log 3 x= -1

Примеры тригонометрических уравнений:

  • 3sin 2 x + 4sin x cosx + cos 2 x = 2 sin(5x+π/4) = ctg(2x-π/3) sinx + cos 2 x + tg 3 x = ctg 4 x

Примеры смешанных уравнений:

  • log х (log 9 (4⋅3 х −3))=1 |5x−8|+|2⋅5x+3|=13

Осталось добавить, что для решения уравнений различных типов применяются самые разные методы. Ну а чтобы решать практически любые уравнения, потребуются знания не только алгебры, но также и тригонометрии, причём нередко знания весьма глубокие.

Уравнение - это два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение - значит найти все значения неизвестных, при которых оно обращается в верное равенство, или установить, что таких значений нет.

В школьном курсе, как правило, рассматривают уравнения, в которых неизвестные принимают числовые значения. Числовое значение неизвестного, удовлетворяющее уравнению с одним неизвестным, называется корнем или решением этого уравнения. Набор чисел, удовлетворяющих уравнению с несколькими неизвестными, называется его решением.

В математике рассматривают также уравнения, в которых неизвестными являются целые числа (диофантовы уравнения), векторы (векторные уравнения), функции (дифференциальные, интегральные, функциональные уравнения) и объекты другой природы. Вместе с уравнением указывают его область определения (множество допустимых значений неизвестных); если это не сделано, то предполагается, что это естественная общая область определения выражений, стоящих в левой и правой частях уравнения.

Уравнение одно из важнейших понятий математики. В большинстве практических и научных задач, где какую-то величину нельзя непосредственно измерить или вычислить по готовой формуле, удается составить соотношение (или несколько соотношений), которым оно удовлетворяет. Так получают уравнение (или систему уравнений) для определения неизвестной величины.

Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры. Привычная нам буквенная запись уравнений окончательно сложилась в XVI в.; традиция обозначать неизвестные последними буквами латинского алфавита , , , …, а известные величины (параметры) - первыми , , , ... идет от французского ученого Р. Декарта.

Обычный путь алгебраического (чаще говорят, аналитического) решения уравнения состоит в том, что с помощью преобразований его сводят к более простым уравнениям. Если все решения одного уравнения являются решениями другого, то второе уравнение называется следствием первого. Если каждое из двух уравнений - следствие другого (т.е. множества их решений совпадают), то такие уравнения называются равносильными. Применяя к обеим частям уравнения одно и то же преобразование, мы приходим к следствию этого уравнения. Если же это преобразование обратимо, то получается уравнение, равносильное данному. (Например, умножая обе части уравнения на одно и то же число, мы получаем следствие данного уравнения. Если это число отлично от нуля, то выполненное преобразование обратимо, так что полученное уравнение равносильно исходному).

Решая уравнение с одним неизвестным, мы пытаемся прийти к простейшим уравнениям, для решения которых есть готовые формулы. Эго линейные уравнения, квадратные уравнении, уравнения вида , где - число, а - одна из основных элементарных функций: степенная , показательная , логарифмическая , тригонометрические , , .

Заметим, что запись общего решения уравнения требует введения функции , обратной к функции . Если , то ; если , то ; если и , то .

Как же сводятся уравнения к простейшим? Для конкретного типа уравнений (алгебраических, тригонометрических, иррациональных, показательных, логарифмических и т.п.) разработаны частные приемы решения. Из общих методов решения уравнений остановимся на трех, которые встречаются чаще всего.

Если левую часть уравнения удается разложить на множители: , то оно распадается на уравнения , , …, , объединение множеств их решений дает множество решений данного уравнения. Например, уравнение можно решить так:

,

.

Решая уравнения и , находим все корни данного уравнения: 1, 2 и -3. Этот метод принято называть методом разложения на множители.

Часто удается упростить уравнение, принимая в качестве новой неизвестной некоторую функцию от старой неизвестной. Например, уравнение можно свести к квадратному уравнению, положив .Тогда , и мы приходим к уравнению .

Иногда удается решить уравнение, анализируя функциональные свойства его левой и правой частей.

Например, так как левая часть уравнения возрастает, а правая - постоянна, то это уравнение не может иметь более одного корня. Единственный корень легко угадывается.

Решая уравнение , заметим, что при всех выполняются неравенства , , откуда , а так как , то данное уравнение не имеет корней.

До сих пор мы разбирали приемы решения уравнений, позволяющие найти корень уравнения как число или комбинацию известных функций от параметров. Однако далеко не все уравнения, возникающие на практике, можно решить подобным образом. Например, в начале XIX в. было доказано, что не существует общей формулы для решения алгебраических уравнений начиная с пятой степени. Да и в тех случаях, когда уравнение удается решить, формула для корней может быть чересчур громоздкой. Поэтому в математике разработаны различные методы приближенного решения уравнений. Простейший из них основан на том, что если функция непрерывна во всех точках отрезка и принимает на его концах значения разных знаков, то уравнение имеет на этом отрезке корень.

С помощью графика особенно удобно проводить исследование уравнений; например, по графику (рис. 2) мы сразу видим, что уравнение имеет три корня при , два - при и один - при .

Содержание статьи

УРАВНЕНИЯ. Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида (x – 1) 2 = (x – 1)(x – 1) выполняется при всех значениях переменной x . Для обозначения тождества часто вместо обычного знака равенства = пишут знак є, который читается «тождественно равно». Тождества используются в алгебре при записи разложения многочленов на множители (как в приведенном выше примере). Встречаются они и в тригонометрии в таких соотношениях, как sin 2 x + cos 2 x = 1, а в общем случае выражают формальное отношение между двумя на первый взгляд различными математическими выражениями.

Если уравнение, содержащее переменную x , выполняется только при определенных, а не при всех значениях x , как в случае тождества, то может оказаться полезным определить те значения x , при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17.

Уравнения служат мощным средством решения практических задач. Точный язык математики позволяет просто выразить факты и соотношения, которые, будучи изложенными обычным языком, могут показаться запутанными и сложными. Неизвестные величины, обозначаемые в задаче символами, например x , можно найти, сформулировав задачу на математическом языке в виде уравнений. Методы решения уравнений составляют в основном предмет того раздела математики, который называется теорией уравнений.

ТИПЫ УРАВНЕНИЙ

Алгебраические уравнения.

Уравнения вида f n = 0, где f n – многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида

f n = a 0 x i y j ... v k + a 1 x l y m ... v n + ј + a s x p y q ... v r ,

где x , y ,..., v – переменные, а i , j ,..., r – показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так:

f (x ) = a 0 x n + a 1 x n – 1 +... + a n – 1x + a n

или, в частном случае, 3x 4 – x 3 + 2x 2 + 4x – 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f (x ) = 0. Если a 0 № 0, то n называется степенью уравнения. Например, 2x + 3 = 0 – уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени – кубическими. Аналогичные названия имеют и уравнения более высоких степеней.

Трансцендентные уравнения.

Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

где lg – логарифм по основанию 10.

Дифференциальные уравнения.

Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.

Интегральные уравнения.

Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s ) = тK (s, t ) f (t ) dt , где f (s ) и K (s ,t ) заданы, а f (t ) требуется найти.

Диофантовы уравнения.

Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3x – 5y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5n , y = 4 + 3n .

РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.

Линейные уравнения.

Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом.

1. Если равные величины увеличить на одно и то же число, то результаты будут равны.

2. Если из равных величин вычесть одно и то же число, то результаты будут равны.

3. Если равные величины умножить на одно и то же число, то результаты будут равны.

4. Если равные величины разделить на одно и то же число, то результаты будут равны.

Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.

Квадратные уравнения.

Решения общего квадратного уравнения ax 2 + bx + c = 0 можно получить с помощью формулы

Таким образом, существуют два решения, которые в частном случае могут совпадать.

Другие алгебраические уравнения.

Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители.

Например, уравнение x 3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x 2 – x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю:

Таким образом, корни равны x = –1, т.е. всего 3 корня.

Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твердая уверенность в том, что решение существует: алгебраическое уравнение n -й степени имеет ровно n корней.

Системы линейных уравнений.

Два линейных уравнения с двумя неизвестными можно записать в виде

Учебник: Математика: Учеб. для 5 кл. общеобразоват. учреждений / Н.Я.Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд. – М.: Мнемозина, 1997 и последующие.

Цели урока:

  • обучение работе в группах, формирование навыков общения “учитель – ученик”, “ученик – ученик”;
  • формирование навыков математической речи, контроля и самоконтроля;
  • обучение работе с учебником;
  • проверка знаний теоретического и практического материала при решении уравнений с помощью компонентов.

Подготовка к уроку:

  • разбить учащихся класса на группы по 4-5 человек так, чтобы в каждой группе были обучающиеся разных уровней;
  • расстановка парт в классе таким образом, чтобы отдельно друг от друга могли работать пять групп по 4-5 человек в каждой;
  • подготовка дидактического материала:

а) карточки с вопросами к зачету (для каждого ученика):

б) лист самопроверки (один на группу):

в) оценочный лист (один на группу):

Фамилия, имя

оценка

ХОД УРОКА

I. Проверка домашней работы (фронтально).

– Что называется уравнением?
– Что значит решить уравнение?
– Что называется корнем уравнения?

Проговорить решение домашних уравнений (№ 395):

Уравнение Образец устного ответа
а) 395 + x = 864,
x = 864 – 395,
x = 469.

Ответ: 469

395 + x = 864.

Чтобы найти неизвестное слагаемое,
надо из суммы вычесть известное слагаемое.
Корень уравнения – 469.

в) 300 – y = 206,
y = 300 – 206,
y = 94.

Ответ: 94

300 – y = 206.

Чтобы найти неизвестное вычитаемое,
надо из уменьшаемого вычесть разность.
Корень уравнения – 94.

д) 166 = m – 34,
m = 166 + 34,
m = 200.

Ответ: 200

166 = m – 34.

Чтобы найти неизвестное уменьшаемое,
надо сложить вычитаемое и разность.
Корень уравнения – 200.

II. Работа в группах

Каждый ученик в группе решает уравнение индивидуально. На теоретические вопросы один ученик в группе отвечает учителю, второй – ученику, который уже ответил, третий – второму и т.д. Во время ответа заполняется “оценочный лист”. Если ученик отвечает правило без учебника, то напротив его фамилии в оценочном листе проставляется “+”, если отвечает с помощью учебника, то “”. При ответе ученика проверяющий, который нетвердо знает правило, пользуется листом самопроверки. Решение уравнений проверяет учитель, и общая оценка выставляется после того, как проверены все задания.

Критерии оценки:

  • оценка “5” выставляется в том случае, если ученик проговорил все правила без помощи учебника и решил все уравнения без ошибок;
  • оценка “4” выставляется в том случае, если ученик при устном ответе обратился к учебнику не более одного раза, допустил при решении уравнения не более одной ошибки;
  • оценка “3” ставится в том случае, если ученик отвечал правила по учебнику, при решении уравнения сомневался в применении правил на нахождение компонентов.

III. Итог урока: оценки каждому ученику.

IV. Домашнее задание: № 396.