Болезни Военный билет Призыв

Что такое искровой разряд. Разряды

Электрическая искра имеет вид тонкой, прихотливо изогнутой и ярко светящейся полоски, которая обычно сильно разветвлена (рис. 174). Этот светящийся канал искры никогда, однако, не бывает хоть сколько-нибудь похож на те остроугольные зигзаги, посредством которых принято условно изображать молнию.

Рис. 174. Характерный вид искры.

Полоска искры с огромной быстротой пронизывает разрядный промежуток, гаснет и вновь возникает. Фотографирование искры посредством камеры с быстро движущимся объективом (камеры Бейса) или с быстро движущейся пленкой показывает, что по одному и тому же каналу искры, который иногда деформируется, пробегает несколько разрядов. Для исследования отдельных стадий развития искры применяют фотозатворы, управляемые высокочастотным током и основанные на применении явления Керра (§ 95). Одно из первых исследований строения искры было выполнено проф. Рожанским в 1911 г. Рожанский производил фотографирование искры, отклоняя искру действием магнитного поля.

Пробой газа, завершающийся искровым разрядом, происходит при определенной напряженности поля, которая должна быть тем больше, чем больше плотность газа и чем меньше его начальная ионизация.

Ниже приведены числовые данные, характеризующие величину искрового промежутка в комнатном воздухе. Напряженность электрического поля близ электродов сильно зависит от кривизны

поверхности электрода, поэтому минимальные напряжения, при которых для данного расстояния между электродами начинается лавинный разряд, неодинаковы для электродов различной формы; между остриями искровой разряд начинается при более низком напряжении, чем между шарами или плрскими электродами.

Величина искрового промежутка в комнатном воздухе

(см. скан)

В комнатном воздухе обычно содержится лишь очень незначительное число ионов, примерно несколько тысяч в кубическом сантиметре (при нормальном электрическом состоянии атмосферы у поверхности земли - в среднем около 700 пар ионов в 1 см

Рис. 175. Схема развития отрицательного стримера

Когда к электродам приложено достаточно высокое напряжение, то начинается рост электронных лавин, но благодаря малому начальному числу ионов требуется время, чтобы начавшийся процесс завершился образованием искры. Если соединить электроды с источником тока высокого напряжения на чрезвычайно короткое время, то развитие электронных лабин не успеет завершиться искровым разрядом. Измерение времени, в течение которого в газе благодаря развитию лавин образуются каналы повышенной электропроводности, показало, что в данном случае большую роль играет фотонная ионизация.

На рис. 175 представлена схема, поясняющая, почему рост электропроводящего канала, или, как говорят, распространение

стримера, происходит быстрее, чем продвижение электронной лавины. На этом рисунке лавины условно показаны в виде заштрихованных конусов, а волнистыми линиями изображены пути фотонов. Нужно представить себе, что внутри каждого конуса, изображающего развивающуюся лавину, газ ионизируется ударами электронов; новоотщепленные электроны, разгоняемые полем, ионизируют встречаемые ими частицы газа, и таким образом лавинно нарастает число электронов, движущихся к аноду, и число положительных ионов, дрейфующих к катоду. Левые концы волнистых линий показывают атомы, которые были «возбуждены» ударом электрона и вслед за тем испустили фотон. Двигаясь со скоростью фотоны обгоняют лавину и в каком-то месте, которое изображено концом волнистой линии, ионизируют частицу газа. Отщепленный здесь электрон, устремляясь к аноду, порождает новую лавину далеко впереди первой лавины. Таким образом, пока первая лавина вырастает, скажем, на величину малой стрелки показанной на рис. 175, намечающийся канал повышенной электропроводности газа, т. е. стример, распространяется на величину большой стрелки показанной на том же рисунке. В следующей стадии отдельные лавины в отрицательном стримере, нагоняя друг друга, сливаются, образуя целостный канал ионизированного газа (на рисунке первая лавина уже нагнала вторую, а четвертая нагнала пятую).

Физико-математические условия, при соблюдении которых может происходить развитие стримеров, были теоретически изучены Миком и Лебом 1940 г.). Как уже было пояснено выше, отрицательный стример представляет собой, в сущности, ускоренное действием фотоионизации продвижение электронных лавин и их слияние в общий электропроводящий канал.

Совершенно иное строение и существенно иные свойства имеет положительный стример. Общей чертой его с отрицательным стримером является только фотоионизация, которая в обоих случаях играет главенствующую роль.

Положительный стример представляет собой канал газоразрядной плазмы, стремительно вырастающий от анода к катоду. На рис. 176 схематически пояснено, как происходит развитие такого канала. Возникновению положительного стримера предшествует пробег электронных лавин по газоразрядному промежутку. Они оставляют на своем пути большое число новообразованных положительных ионов, концентрация которых особенно велика там, где лавины получили свое наибольшее развитие, т. е. около анода (рис. 176, наверху слева). Если концентрация положительных ионов здесь достигает определенной величины (близкой к ионам в ), то, во-первых, обнаруживается интенсивная фотоионизация, во-вторых, электроны, освобождаемые частицами газа, поглотившими фотоны, притягиваются положительным пространственным зарядом в головную часть положительного стримера, и, в-третьих, вследствие фотоионизации концентрация положительных ионов на пути стримера к катоду возрастает. На рис. 176 пути фотонов показаны волнистыми линиями; фотоны выбрасываются в разные стороны из области положительного пространственного заряда (короткие стрелки указывают направление движения отщепленных электронов); видно, что многие электроны вовлекаются в область наибольисей концентрации положительных ионов в головную часть положительного стримера. Насыщение электронами пространства, заполненного положительными зарядами, превращает эту область в газоразрядную плазму.

(кликните для просмотра скана)

Так формируется в газе канал, обладающий высокой электропроводностью. Формирование этого канала с газоразрядной плазмой и является развитием положительного стримера (рис. 176). Если на пути прорастания этого канала в направлении к катоду в головной части стримера имеется достаточная концентрация положительных ионов, то стример продвигается с громадной скоростью. В противном случае он обрывается.

Поясненные выше схемы развития стримеров дают только приблизительное представление о подготовительной стадии искрового разряда. Действительная картина развития стримера более сложна, так как образующиеся пространственные заряды резко искажают электрическое поле, вызвавшее возникновение стримера.

В длинных газоразрядных промежутках неравномерности поля и недостаточная фотоионизация по направлению кратчайшего расстояния от головной части стримера к электроду приводят к искривлениям канала и возникновению многочисленных ответвлений.

Развитие положительных стримеров начинается у положительного электрода в местах наибольшей напряженности поля: около острых выступов, острых кромок и других неровностей поверхности анода. Поэтому при разряде между острием и диском часто наблюдаются искры, соединяющие положительное острие с центром отрицательного диска, и искры, соединяющие кромки положительно заряженного диска с отрицательным острием (рис. 177); в первом случае пробой происходит при меньшем напряжении.

Рис. 177. Характерный вид искрового разряда между острием и диском при большом разрядном промежутке.

Рис. 178. Фотография искры на движущейся пленке.

Деформации поля зарядами, образующимися в стримере, и сочетание сложных процессов, происходящих в стримере, приводят к тому, что искровой разряд часто развивается толчками. При этом

новый стример пробегает путь, проложенный предыдущим угасшим стримером. На рис. 178 представлена фотография единичного искрового разряда на. быстро движущейся фотопленке. Здесь видно толчкообразное развитие искры и видно, что отрицательный и положительный стримеры растут навстречу друг другу. Когда головки стримеров встречаются, образуется проводящий канал, по которому и происходит разряд.

Аналогичная, но еще более сложная картина обнаруживается при развитии молнии. Начальной стадией является развитие пилотирующего стримера молнии, свечение которого почти неуловимо. Обычно пилотирующий стример распространяется от отрицательно заряженного облака. По еще узкому каналу повышенной ионизации, образованному пилотирующим стримером молнии, устремляются со скоростью порядка тысяч километров в секунду мощные электронные лавины, создающие довольно яркое свечение. Электропроводность канала при этом чрезвычайно возрастает и сечение канала расширяется. Эту стадию называют развитием лидера молнии. При малой начальной ионизации воздуха развитие лидера происходит скачкообразно - с остановками на десятки миллисекунд через каждые его распространения (такие лидеры называют «ступенчатыми» в отличие от так называемых «стрельчатых», которые распространяются с непрерывной стремительностью).

Рис. 179. Фотография молнии на движущейся пленке. Здесь паузы между первыми ударами последняя пауза в чечетыре раза длиннее.

При приближении лидера к земле в земле индуцируются заряды противоположного знака, и от высоких зданий, молниеотводов, деревьев вырастает встречный лидер. В момент его слияния с лидером, опускающимся от облака, т. е. когда разрядный промежуток между облаком и землей оказывается замкнутым электропроводящим каналом, по этому каналу пробегает главный разряд молнии со скоростью порядка десятков тысяч километров в секунду. Если канал имел разветвления (а так обычно и бывает), то главный разряд распространяется по всем ответвлениям Диаметр основного канала

молнии обычно имеет величину 10-20 см и наиболее яркое свечение в нижней части. В канале создается повышенное давление, которое после удара молнии вызывает разрыв канала, что и порождает явление грома. Заряд, переносимый молнией, обычно составляет несколько кулонов и часто несколько десятков кулонов. Мгновенное значение величины тока молнии часто составляет десятки, а иногда и сотни тысяч амперов.

Молниевой разряд уносит заряды обычно только из некоторой части облака. К этому месту устремляются заряды из других частей облака. Поэтому чаще всего вслед за первым ударом молнии через сотые доли секунды по тому же, но иногда несколько деформированному или иначе разветвленному каналу происходят повторные удары молнии (два, три и больше); каждому из них предшествует лидер, восстанавливающий электропроводность канала.

Рис. 180. Схема грозового (кучевс-дождевого) облака.

Рис. 179 воспроизводит картину пяти ударов молнии по одному каналу, снятых на движущуюся пленку. В некоторых случаях сильный ветер так смещает канал молнии, что даже при фотографировании обычным аппаратом можно различить отдельные удары разрядов.

На рис. 180 показана схема наиболее часто встречающегося распределения зарядов в грозовом облаке. На переднем крае облака и по нижней части его обычно распределены отрицательные заряды. Здесь же имеется область положительных зарядов; положительно заряжена также вся верхняя часть облака. Направление ветра, (на рисунке оно указано стрелками), уносящего облако, обычно противоположно наземному ветру. Вначале сильный дождь уносит из облака положительный заряд, позже идет умеренный отрицательно заряженный дождь.

В отсутствие грозы электрическое поле в атмосфере направлено сверху вниз, так как земля заряжена отрицательно, а положительный заряд рассеян в атмосфере.

Когда отсутствуют возмущающие влияния, создаваемые, в частности, грозовыми облаками, напряженность электрического поля в атмосфере уменьшается с высотой. У земли напряженность электрического поля имеет порядок На высоте она равна а на высоте примерно Напряженность поля на высоте 20 км в 100 раз меньше, чем у земли.

Это быстрое уменьшение напряженности электрического поля с высотой показывает, что в сравнении с однородным полем электрическое поле в атмосфере весьма усложнено зарядами, распределенными в атмосферном воздухе.

При грозах напряженность поля в атмосфере может в 100 и 1000 раз превышать нормальную.

Под грозовым облаком направление поля чаще всего меняется на обратное, от земли к отрицательно заряженному нижнему краю облака, а напряженность поля вблизи земли перед молниевым разрядом может достигать 200-300 тысяч вольт на метр. Разность потенциалов между облаком и землей перед ударом молнии часто составляет сотни миллионов, а иногда и миллиарды вольт. Большинство ударов молний происходит от отрицательно заряженных облаков. Молнии нередко имеют в длину несколько километров. Часто молниевые разряды происходят между отдельными тучами. Наблюдались грозы, при которых насчитывалось 4-7 тысяч ударов молний за час. На земном шаре в среднем за сутки происходит около 44 тысяч гроз (единовременно в среднем около 1800 гроз) и ежеминутно происходит несколько тысяч ударов молний.

Рис. 181. Фотография шаровой молнии

В редких случаях наблюдаются молниевые разряды совершенно иного типа. На рис. 181 воспроизведена одна из фотографий шаровой молнии. По описанию наблюдателей шаровые молнии обычно имеют вид светящихся шаров диаметром около 10-20 см, а иногда и нескольких метров. Шаровые молнии передвигаются плавно, с небольшой скоростью и в некоторых случаях скачкообразно. Отмечены случаи, когда шаровые молнии, касаясь земли или каких-либо предметов, взрывались и причиняли сильные разрушения.

Многочисленные попытки лабораторного воспроизведения такого типа разряда не дали удовлетворительных результатов, несмотря на то, что некоторым исследователям (Плантэ в Гезехусу в 1900 г., Кэвуду и др.)

удавалось получать разряды шарового типа. На рис. 182 пояснен опыт Плантэ. Если, применяя высоковольтный источник постоянного напряжения, анод погрузить в электролит и подносить к поверхности электролита катод, то зажигается дуговой разряд. Но когда в электролит погружен катод и к поверхности электролита подносится анод, дуга не может образоваться, так как исключается возможность накала и термоэлектронной эмиссии из датода. Плантэ обнаружил, что в этом случае при соблюдении определенных условий между анодом и поверхностью электролита образуется светящийся и быстро вращающийся шарик, который через некоторое время проскальзывает по поверхности электролита к катоду.

Рис. 182. Схема опыта Плантэ.

Рис. 183. Фотография четочной молнии.

Одна из многочисленных гипотез, предложенных для объяснения шаровой молнии (гипотеза Мейснера), трактует этот тип разряда как завихрение газоразрядной плазмы, происходящее в изгибе линейной молнии. По другой гипотезе (Матиаса) предполагается, что в шаровой молнии химически аккумулируется энергия разряда, причем образуются неустойчивые, способные разлагаться со взрывом высшие соединения азота с кислородом.

Иногда молния оказывается состоящей из нескольких десятков небольших светящихся шаров (диаметром меньше 10 см), удаленных один от другого на расстояние менее метра. Этот вид разряда называют неточной молнией (рис. 183). Приемлемой, достаточно обоснованной теории шаровых и четочных молний еще не имеется.

Если при использовании высокого постоянного напряжения между электродами поставлена пластина из твердого диэлектрика (стекла, эбонита и т. п.) и пластина эта имеет такую толщину, что искра ее не пробивает, а ширину не слишком большую, то наблюдается скользящий искровой разряд, который проходит по поверхности пластины и огибает ее. Для исследования этого разряда его создают на фотографической пластинке и потом проявляют ее (рис. 184). Получаемые таким путем изображения разряда называют фигурами Лихтенберга. Их радиус пропорционален напряжению разрядного импульса. Этим пользуются (применяя особые приборы для фотографирования скользящего разряда - клидонографы) при массовом, статистическом исследовании молний»

В СССР ведется систематическое изучение молний и методов грозозащиты. Ведущая роль в этой области принадлежит высоковольтной лаборатории Энергетического института Академии наук СССР.

Когда напряжение недостаточно велико для пробоя газоразрядного промежутка, на электродах наблюдается особый тип разряда-корона.

Рис. 184. Скользящий разрядит положительного электрода.

Коронный разряд на высоковольтных сетях вызывает утечки электроэнергии.

Исследование короны показало, что на положительном электроде коронный разряд при относительно невысоких напряжениях состоит из ряда электронно-лавинных импульсов, длящихся каждый десятитысячные доли секунды. При более высоком напряжении прерывистость явлений менее сказывается и основную роль играют стримеры, обрывающиеся там, где напряженность поля слишком мала для их распространения. Строение и характер свечения коронного разряда на отрицательном электроде в некоторой мере сходны с околокатодной зоной тлеющего разряда.

Если постепенно увеличивать напряжение между двумя электродами, находящимися в атмосферном воздухе и имеющими такую форму, что электрическое поле между ними не слишком сильно отличается от однородного (например, два плоских электрода с закругленными краями или два достаточно больших шара), то при некотором напряжении возникает электрическая искра. Она имеет вид ярко светящегося канала, соединяющего оба электрода, который обычно бывает сложным образом изогнут и разветвлен (см. приложение 1.2).

Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторого определенного значения Е к (критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния. Для воздуха при нормальных условиях Е к 3*10 6 В/м. Чем больше расстояние между электродами, тем большее напряжение между ними необходимо для наступления искрового пробоя газа. Это напряжение называется напряжением пробоя.

Возникновение пробоя объясняется следующим образом: в газе всегда есть некоторое число ионов и электронов, возникающих от случайных причин. Однако, число их настолько мало, что газ практически не проводит электричества. При достаточно большой напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя соударениями, может сделаться достаточной, чтобы ионизировать нейтральную молекулу при соударении. В результате образуется новый отрицательный электрон и положительно заряженный остаток - ион.

Свободный электрон 1 при соударении с нейтральной молекулой расщепляет ее на электрон 2 и свободный положительный ион. Электроны 1 и 2 при дальнейшем соударении с нейтральными молекулами снова расщепляет их на электроны 3 и 4 и свободные положительные ионы, и т.д (рис. 3.2.1).

Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома - работой ионизации. Работа ионизации зависит от строения атома и поэтому различна для разных газов.

Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивает число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, процесс усиливает сам себя, и ионизация в газе быстро достигает очень большой величины. Явление аналогично снежной лавине, поэтому этот процесс был назван ионной лавиной.

Образование ионной лавины и есть процесс искрового пробоя, а то минимальное напряжение, при котором возникает ионная лавина, есть напряжение пробоя.

Таким образом, при искровом пробое причина ионизации газа заключается в разрушении атомов и молекул при соударениях с ионами (ударная ионизация). Величина Е к увеличивается с увеличением давления. Отношение критической напряженности поля к давлению газа р для данного газа остается приблизительно постоянным в широкой области изменения давлений:

Этот закон позволяет определить Ек при разных давлениях, если известно его значение при каком-либо одном давлении.

Напряжение пробоя понижается при воздействии на газ внешнего ионизатора. Если приложить к газовому промежутку напряжение, несколько меньшее пробойного, и внести в пространство между электродами зажженную газовую горелку, то возникает искра. Такое же действие оказывает и освещение отрицательного электрода ультрафиолетовым светом, а также другие ионизаторы.

Для объяснения искрового разряда вначале казалось естественным предположить, что основными процессами в искре являются ионизация электронными ударами в объеме и ионизация положительными ионами (в объеме или на катоде). Однако впоследствии выяснилось, что эти процессы не могут объяснить многие особенности образования искры. Остановимся для примера на скорости развития искрового заряда. Если бы в искре существенную роль играла ионизация положительными ионами, то время развития искры было бы по крайней мере того же порядка, что и время перемещения положительных ионов от анода до катода. Это время легко оценить - оно оказывается порядка 10 -4 - 10 -5 с. Между тем, опыт показывает, что время ее развития на несколько порядков меньше.

Объяснение большой скорости развития искры, так же как и других особенностей этой формы разряда, дано так называемой стримерной теорией искры, в настоящее время обоснованной прямыми экспериментальными данными. Согласно этой теории, возникновению ярко светящегося канала искры предшествует появление слабо светящихся скоплений ионизированных частиц (стримеров). Пронизывая газоразрядный промежуток, стримеры образуют проводящие мостики, по которым в последующие стадии разряда и устремляются мощные потоки электронов. Причиной возникновения стримеров является не только образование электронных лавин посредством ударной ионизации, но еще и ионизация газа излучением, возникающим в самом разряде (фотоионизация).

Схема развития стримера изображена на рис. 3.2.2.


В виде конусов на этом рисунке показаны электронные лавины, зарождающиеся в точках вершин конусов и распространяющиеся от катода к аноду. Существенным в этой схеме является то обстоятельство, что, помимо первоначальной электронной лавины, зародившейся непосредственно у катода, происходит образование новых лавин в точках, расположенных далеко впереди от головы первоначальной лавины. Эти новые лавины возникают вследствие появления электронов в объеме газа в результате фотоионизации излучением, исходящим из лавин, возникших ранее (на рисунке это излучение показано схематически в виде волнистых линий). В процессе своего развития отдельные лавины нагоняют друг друга и сливаются вместе, в результате чего возникает хорошо проводящий канал стримера. Из приведенной схемы ясно, что вследствие возникновения многих лавин общий путь CD, проходимый стримером, намного больше расстояния АВ, проходимого одной первоначальной лавиной (различие в длинах АВ и CD в действительности намного больше, чем показано на рис. 3.2.2).

Из-за выделения при рассмотренных процессах большого количества энергии газ в искровом промежутке нагревается до 10000 С, что приводит к его свечению. Быстрый нагрев газа ведёт к повышению давления, достигающему 10 7 10 8 Па, и возникновению ударных волн, объясняющих звуковые эффекты при искровом разряде - характерное потрескивание в слабых разрядах и мощные раскаты грома в случае молнии, являющейся примером мощного искрового разряда между грозовым облаком и и Землёй или между двумя грозовыми облаками.

Искровой разряд используется для воспламенения горючей смеси в двигателях внутреннего сгорания. При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией. Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла. Его используют в спектральном анализе для регистрации заряженных частиц (искровые счетчики).

Искровой промежуток применяется в качестве предохранителя от перенапряжения (искровые разрядники) в электрических линиях передач (например, в телефонных линиях). Если вблизи линии проходит сильный кратковременный ток, то в проводах этой линии индуцируются напряжении и токи, которые могут разрушить электрическую установку, и опасны для жизни людей.

Во избежание этого используются специальные предохранители, состоящие из двух изогнутых электродов, один из которых присоединен к линии, а другой заземлен. Если потенциал линии относительно земли сильно возрастает, то между электродами возникает искровой разряд, который вместе с нагретым им воздухом поднимается вверх, удлиняется и обрывается.

Наконец, электрическая искра применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара, закрепленных на стойках 1 и 2. Вторая стойка с шаром может приближаться или удаляться от первой при помощи винта. Шары присоединяют к источнику тока, напряжение которого требуется измерить, и сближают их до появления искры. Измеряя расстояние при помощи шкалы на подставке, можно дать грубую оценку напряжению по длине искры (пример: при диаметре шара 5 см и расстоянии 0,5 см напряжение пробоя равно 17,5 кВ, а при расстоянии 5 см - 100 кВ). Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

Представление об искровом разряде Этот разряд характеризуется прерывистой формой. Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молний. Внешне искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга. Эти полоски называют искровыми каналами. Каналы, развивающиеся от положительного электрода, имеют четкие нитевидные очертания, а развивающиеся от отрицательных - диффузные края и более мелкое ветвление.


Т.к. искровой разряд возникает при больших давлениях газа, то потенциал зажигания очень высок. Но после того как разрядный промежуток становиться "искровым" каналом, сопротивление промежутка становится очень малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное сопротивление. Если мощность источника не очень велика, то после такого импульса тока разряд прекращается. Напряжение между электродами начинает расти до прежнего значения, и пробой газа повторяется с образованием нового искрового канала. Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторой определенной величины Ек (критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния. Например, для воздуха при нормальных условиях Ек3*106 В/м. Величина Ек увеличивается с увеличением давления. Отношение критической напряженности поле к давлению газа р для данного газа остается приблизительным в широкой области изменения давления: Ек/рconst.


Время нарастания напряжения тем больше, чем больше емкость С между электродами. Поэтому включение конденсатора параллельно разрядному промежутку увеличивает время между двумя последующими искрами, а сами искры становятся более мощными. Через канал искры проходит большой электрический заряд, и поэтому увеличивается амплитуда и длительность импульса тока. При большой емкости С канал искры ярко светится и имеет вид широких полос. То же самое происходит при увеличении мощности источника тока. Тогда говорят о конденсированном искровом разряде, или о конденсированной искре. Максимальная сила тока в импульсе, при искровом разряде, меняется в широких пределах, в зависимости от параметров цепи разряда и условий в разрядном промежутке, достигая нескольких сотен килоампер. При дальнейшем увеличении мощности источника, искровой разряд переходит в дуговой разряд. В результате прохождения импульса тока через канал искры в канале выделяется большое количество энергии (порядка 0,1 - 1 Дж на каждый сантиметр длины канала). С выделением энергии связано скачкообразное увеличение давления в окружающем газе - образование цилиндрической ударной волны, температура на фронте которой ~104 К.


Происходит быстрое расширение канала искры, со скоростью порядка тепловой скорости атомов газа. По мере продвижения ударной волны температура на ее фронте начинает падать, а сам фронт отходит от границы канала. Возникновение ударных волн объясняются звуковые эффекты, сопровождающие искровой разряд: характерное потрескивание в слабых разрядах и мощные раскаты в случае молний. В момент существования канала, особенно при высоких давлениях, наблюдается более яркое свечение искрового разряда. Яркость свечения неоднородна по сечению канала и имеет максимум в его центре.


Механизм искрового разряда В настоящее время общепринятой считается так называемая стримерная теория искрового разряда, подтвержденная прямыми опытами. Качественно она объясняет основные особенности искрового разряда, хотя в количественном отношении и не может считаться завершенной. Если вблизи катода зародилась электронная лавина, то на ее пути проходит ионизация и возбуждение молекул и атомов газа. Существенно, что световые кванты, испускаемые возбужденными атомами и молекулами, распространяясь к аноду со скорость света, сами производят ионизацию газа, и дают начало первым электронным лавинам.


Свободные электроны получают в таком поле огромные ускорения. Эти ускорения направлены вниз, поскольку нижняя часть тучи заряжена отрицательно, а поверхность земли положительно. На пути от первого столкновения до другого, электроны приобретают значительную кинетическую энергию. Поэтому, сталкиваясь с атомами или молекулами, они ионизируют их. В результате рождаются новые (вторичные) электроны, которые, в свою очередь, ускоряются в поле тучи и затем в столкновениях ионизуют новые атомы и молекулы. Возникают целые лавины быстрых электронов, образующие у самого "дна" тучи, плазменные "нити" - стример. Сливаясь друг с другом, стримеры дают начало плазменному каналу, по которому в последствии пройдет импульс основного тока. Этот развивающийся от "дна" тучи к поверхности земли плазменный канал наполнен свободными электронами и ионами, и поэтому может хорошо проводить электрический ток. Его называют лидером или точнее ступенчатым лидером. Дело в том, что канал формируется не плавно, а скачками - "ступенями".


Почему в движении лидера наступают паузы и притом относительно регулярные - точно неизвестно. Существует несколько теорий ступенчатых лидеров. В 1938 году Шонланд выдвинул два возможных объяснения задержки, которая вызывает ступенчатый характер лидера. Согласно одному из них, должно происходить движение электронов вниз по каналу ведущего стримера (пилота). Однако часть электронов захватывается атомами и положительно заряженными ионами, так что требуется некоторое время для поступления новых продвигающихся электронов, прежде чем возникнет градиент потенциала, достаточный для того, чтобы ток продолжался.


Согласно другой точке зрения, время требуется для того, чтобы положительно заряженные ионы скопились под головкой канала лидера и, таким образом, создали на ней достаточный градиент потенциала. В 1944 году Брюс предложил иное объяснение, в основе которого лежит перерастание тлеющего разряда в дуговой. Он рассмотрел "коронный разряд", аналогичный разряду острия, существующий вокруг канала лидера не только на головке канала, но и по всей его длине. Он дал объяснение тому, что условия для существования дугового разряда будут устанавливаться на некоторое время после того, как канал разовьется на определенное расстояние и, следовательно, возникнут ступени. Это явление еще до конца не изучено и конкретной теории пока нет.


Так что есть молнии Молния и гром первоначально воспринимались людьми как выражение воли богов и, в частности, как проявление божьего гнева. Вместе с тем пытливый человеческий ум с давних времен пытался постичь природу молний и грома, понять их естественные причины. В древние века над этим размышлял Аристотель. Над природой молний задумывался Лукреций. Весьма наивно представляются его попытки объяснить гром как следствие того, что "тучи сшибаются там под натиском ветров".


Молния - природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил американский государственный деятель и ученый Б.Франклин. В 1752 году он провел опыт с бумажным змеем, к шнуру которого был прикреплён металлический ключ, и получил от ключа искры во время грозы. С тех пор молния интенсивно изучалось как интересное явление природы, а также из-за серьезных повреждений линий электропередачи, домов и других строений, вызываемых прямым ударом молнии или наведенным ею напряжением.


Виды молний Большинство молний возникает между тучей и земной поверхностью, однако, есть молнии, возникающие между тучами. Все эти молнии принято называть линейными. Длина отдельной линейной молнии может измеряться километрами. Еще одним видом молний является ленточная молния. При этом следующая картина, как если бы возникли несколько почти одинаковых линейных молний, сдвинутых относительно друг друга. Было замечено, что в некоторых случаях вспышка молний распадается на отдельные святящиеся участки длиной в несколько десятков метров. Это явление получило название четочной молнии. Согласно Малану такой вид молний объясняется на основе затяжного разряда, после свечения которого казалось бы более ярким в том месте, где канал изгибается в направлении наблюдателя, наблюдающего его концом к себе.


Физика линейной молнии Линейная молния представля6т собой несколько импульсов, быстро следующих друг за другом. Каждый импульс - это пробой воздушного промежутка между тучей и землей, происходящий в виде искрового разряда. В начале рассмотрим первый импульс. В его развитии есть две стадии: сначала образуется канал разряда между тучей и землей, а затем по образовавшемуся каналу быстро проходит импульс основного тока.




Шаровая молния 1. Дата, время, метеоусловия появления ШМ. – Дата и время - любые. Вместе с тем, пик наблюдений приходится на июль месяц (45,4% наблюдений). По другим месяцам статистика выглядит так: май - 6,4%, июнь - 17,5%, август - 20%, сентябрь - 4,0%, с октября по апрель (суммарно) - 6,7%. – Метеоусловия любые, чаще всего ШМ наблюдают в связи с разрядами линейных молний при грозах, ураганах, штормах, смерчах, снежных или песчаных буранах, землетрясениях.


2. Длительность наблюдения обычно не более 1 минуты. 3. Цвет. В большинстве случаев наблюдатели отмечают белый (23% наблюдений), желтый (23%), красный (18%), оранжевый (14%) цвет шаровой молнии. Иногда отмечается зеленый, голубой, синий, фиолетовый цвета или смесь цветов. 4. Иногда ШМ неподвижны, плавно движутся по сложной траектории, а иногда двигаются достаточно быстро. Могут парить в воздухе, размещаться на строениях или катиться вдоль проводов или краёв предметов. 5. Могут исчезнуть бесшумно или со взрывом, повреждая иногда окружающие вещи. После исчезновения ШМ часто остается резко пахнущая дымка. 6. Форма ШМ может быть чётко очерченной или расплывчатой. 7. Иногда ШМ избегают хороших проводников, а иногда притягиваются к ним.


8. При наблюдении ШМ бывают как спокойными, так и искрящимися или издающими сильный треск и шипение, тихие жужжащие, свистящие, шипящие звуки. 9. Иногда ШМ сами разделяются на более мелкие ШМ. Встречаются даже конструкции из двух ШМ, соединённых цепью светящихся бусин. 10. Диаметр ШМ, чаще всего, - 10 ÷ 25 см, реже более 1м. 11. Форма чаще всего сферическая или овальная формы, редко сигарообразная. Очертания четкие или расплывчатые. 11. Форма чаще всего сферическая или овальная формы, редко сигарообразная. Очертания четкие или расплывчатые. 12. Яркость выше яркости фона.

Основные условия на входе в систему

Расход (Нм3/ч) 140,544

Расход (кг/ч) 192,000

H2O в газе (% объема) 2.3

CO2 в газе (% объема) 12.4

O2 в газе (% объема) 3.7

Температура (°C) 270

Время работы (часов в год) 8,760

Проектное рабочее давление Положительное

Пылевая нагрузка на входе в систему PM (мг/Нм3) 512

Гарантированный уровень содержания пыли на выходе PM (мг/Нм3) 10

Эффективность удаления пыли системой PM (%) 98.05

Прочее

Источник загрязнения кат крекинг

Ожидаемое потребление энергии (кВт) 136

Потребление полной нагрузки (кВт) 279

Общая потеря давления (мм в ст)

Объем поставки

Электрофильтр (электростатический осадитель):

Мы предлагаем Вам один модульный электрофильтр модели 39R-1330-3712P, включающий в себя все пластины, разрядные электроды, секции крыши, изоляционные отсеки, дверцы доступа, все внутренние компоненты и источники питания для создания полного модуля контроля загрязнения воздуха.

Электростатический осадитель будет иметь следующие конструктивные особенности:

Падение давления (мм в ст) 12,7

Проектная температура конструкции (гр С) 371

Проектное давление конструкции (мм в ст) +/- 890

Объем бункера (м3) 152

Кл- во бункеров 3

Размеры горловины 457 x 864

Кол-во газовых проходов 39

Выходное напряжение трансформатора (кВ) 55

Выходной ток трансформатора (ма) 1100

Кол-во трансформаторов 3


Осадительные пластины нового более тяжелого конструкторского стиля из сплошных стальных листов толщиной не менее 18 мм. Листы имеют более жесткий рельеф жесткости в форме коробки усиленной ребрами жесткости, которые формируют плавное течение газа на поверхности пластины, чтобы свести к минимуму повторный его захват. Как верхние, так и нижние направляющие, ребра жесткости и крепления будут обеспечивать выравнивание пластин, компенсируя тепловое расширение. Пластины будут рассчитаны на максимальную температуру до 371 ° С

Конструкцией предусмотрены электромагнитные подъемники встряхиватели с гравитационным воздействием. Системы встряхивания будут организованы для автоматической работы и будут направлены на минимизацию рециркуляции частиц. Рабочие параметры встряхивателя будут иметь регулируемые характеристики частоты и интенсивности.

В конструкции установлены жёсткие электроды, которые будут изготовлены из бесшовной трубки толщиной стенки 1,7 мм с равномерно распределенными коронирующими штырями, приваренными к трубе. Электроды стабилизированы по уровню для работы их во всех диапазонах температур работы осадителя.

Каждая рама разрядного электрода будет вибрировать индивидуально, и система будет сконструирована таким образом, чтобы можно было варьировать как длительность, так и частоту вибрации.

Осадитель оборудован ступенчатыми трансформаторами/ выпрямителями. Каждый комплект установлен наружи, оснащен масляной изоляцией, выпрямителем охлаждаются воздухом. Трансформатор и выпрямители находятся в едином резервуаре.

Трансформатор будет снабжен заземляющим переключателем и блокировкой клавиш. Каждый комплект будет рассчитан на температуру макс + 45 градусов C (при максимальной температуре окружающей среды +50 градусов C).

Изоляторы высокого напряжения цилиндрические, под сжимающей нагрузкой.

Изоляторы фарфоровые, глазурованные внутри и снаружи и имеют выводы заземления. Изоляторы расположены вне зоны обработки газа и очищаются продувочным воздухом.

Осадитель оснащен предохранительными замками с последовательным расположением клавиш для предотвращения доступа к любому высоковольтному оборудованию без блокировки источника питания и заземления высоковольтного оборудования. Следующее оборудование будет блокировано: все дверцы доступа для быстрого открытия осадителя, трансформатора / выпрямителя и высоковольтные выключатели.

Объемом поставки предусмотрены сварные стойкие к атмосферным воздействиям индивидуальные изоляционные отсеки для изоляторов. Изоляционные отсеки будут доступны обслуживанию дверями с предохранительными блокировками для предотвращения доступа ко всем областям высокого напряжения, за исключением случаев, когда осадитель обесточивается и заземляется.

Корпус электростатического осадителя будет изготовлен из стали ASTM A-36 толщиной 4,8 мм с внешними конструктивными элементами жесткости ASTM A-36, которые усиливают конструкцию противостоять внутреннему давлению, ветру, прочих нагрузок. Корпус уплотнен сваркой с образованием полностью газонепроницаемой структуры.

Осадитель оснащен бункерами с поперечным лотком. Каждый бункер изготовлен из стали ASTM A-36 толщиной 3,8 мм, котрый усилен ребрами жесткости из ASTM A-36. Каждый бункер спроектирован так, чтобы выдержать его вес, когда он заполнен частицами. Плотность частицы составляет 1041 кг/м3 для структурного просеивания и 320 кг/м3 для размера емкости бункера. Кроме того, бункеры будут иметь достаточную емкость для хранения частиц, собранных в течение минимального периода в 12 часов работы. Сторона будет наклонена, чтобы обеспечить минимальный угол стенки бункера, равный 60 градусам от горизонтали. Конечный угол будет регулироваться таким образом, чтобы обеспечить минимальный угол наклона бункера 55 градусов.

Опоры осадителя: Электрофильтр будет включать в себя все стальные конструкции с самосмазывающимися скользящими пластинами между осадителем и опорной конструкцией. Конструкция будет спроектирована таким образом, чтобы обеспечить зазор 2438 мм – 0 мм между разгрузкой бункера и землей.

Патрубки: Осадитель оснащен фланцевыми впускными и выпускными патрубками. Патрубки изготовлены из стали ASTM A-36 с внешними ребрами жесткости.

Входной патрубок: входной патрубок горизонтальный входной пирамидный тип с нижним углом патрубка 45 градусов от горизонтали. Впускное сопло включает в себя три распределительных устройства для обеспечения равномерного потока через осадитель. Организация внешнего доступа в патрубок не требуется.

Выходной патрубок: выходной патрубок представляет собой горизонтальный пирамидный тип с нижним углом патрубка 60 ° от горизонтали. Выпускной патрубок включает в себя устройство распределения потока, обеспечивающее равномерный поток через электрофильтр. Доступ не требуется.

Термоизоляция и внешнее покрытие: производитель обеспечит заводскую термоизоляцию электростатического осадителя (включая корпус, бункер, впускные и выпускные патрубки). Изоляция будет состоять из 76 мм толщины 128 кг/м3 плотности минеральной ваты на всех поверхностях, кроме крыши электростатического осадителя. Крыша осадителя будет изолирована 152 мм из 128 кг/м3 плотности минеральной ваты плюс 51 мм стекловолоконной изоляцией над ребрами жесткости, а затем закрыта 6,4 мм толщиной кожухом «клетчатая пластина.

Изоляция на впускном, выпускном патрубке и сторонах электрофильтра будет покрыта неокрашенным алюминиевым листом толщиной 0,8 мм тип 3003, 1 х 4 коробчатым ребристым алюминиевым листом или окрашенной гофрированной сталью. Листы будут установлены вертикально и будут перекрывать одной секцией все швы. Термоизоляция бункеров будет покрыта неокрашенным алюминиевым листом толщиной 0,8 мм тип 3003, 1 х 4 коробчатым ребристым алюминиевым листом или окрашенной гофрированной сталью. Все кровельные стыки также будут покрыты плоскими материалами.

Материал покрытия будут крепиться с помощью TEK № 4.5 12-24 x 1¼ "Климатические крепежные винты с неопреновыми шайбами. Все соединения между листами и листами будут выполнены с помощью штифтов ¼ - 14 x 7/8" с неопреновыми шайбами. Все кровельные швы будут герметизированы прозрачным силиконовым герметиком.

Покраска: Завод производитель окрасит структурные опоры, люки доступа, изоляционные отсеки, поручни и внешнюю поверхность крыши одним слоем красной грунтовки и одним слоем промышленной краски с эмалевым покрытием. Все горячие металлические поверхности, которые будут открыты после завершения термоизоляции, будут окрашены высокотемпературной черной краской. Все лестницы, платформы (включая опоры) и перила будут окрашены желтой эмалью для безопасности.

ЭЛЕКТРИЧЕСКОЕ УПРАВЛЕНИЕ: Следующее электрическое оборудование управления будет предоставлено в проекте.

Класс защиты Оборудования на крыше: Установлен 4 класс защиты в соответствии с EEMAC для оборудования на крыше осадителя, а именно щита управления встряхивателя пластин осаждения и щита управления вибратора электродов.

Панель управления продувочной воздуходувкой: панель управления продувочной воздуходувкой класса защиты 4 по EEMAC, установленная на крыше, будет оснащена встроенным стартером и управлением пуском/ остановки.

Контроллер T/R: Каждый трансформатор/ выпрямитель высокого напряжения будет оборудован щитом микропроцессорного управления в щите класса защиты 12 по EEMAC, и щит должен быть установлен в операторной заказчика. Все компоненты щита будут доступны обслуживанию через откидную переднюю дверцу. Управление напряжением будет полностью автоматическим с дополнительным ручным управлением. Как ручные, так и автоматические системы обеспечат полный контроль. Подавление дуги будет обеспечиваться устройством ограничения тока, чтобы уменьшить напряжение, когда искровое состояние существует в осадителе. Контроллеры рассчитаны на максимальную температуру окружающей среды 40° С. Все корпуса щитов изготовлены из стали 2,8 мм и окрашены серой эмалью ASA 61. Мы предоставим Вам удаленный контроллер графического напряжения (GVC) для каждого трансформатора / выпрямителя. Каждый контроллер GVC будет установлен на передней панели свободно стоящего блока управления высоким напряжением. Графический контроллер обеспечивает гистограмму и цифровые считывания первичных и вторичных напряжений и токов, а также мощность кВт, искрообразование, угол проводимости SCR (Кремниевого-управляемого выпрямителя) и состояние T/ R. Этот контроллер должен быть установлен в безопасной зоне операторной заказчика. Будут предусмотрены аварийные сигналы на блоке управления GVC для перегрузки по току переменного тока, перегрева T/ R, высокой температуры SCR, дисбаланса SCR, потери памяти, минимального напряжения постоянного тока и перенапряжения постоянного тока. Главное меню предоставляется для выбора функций работы и устранения неполадок. Дисплей графического контроллера составляет 16 строк по 40 символов. Устройство может производить кривые напряжения / тока, 24-часовые трендовые графики и 30-минутные трендовые графики. Оператор может удаленно устанавливать все параметры осадителя, такие как откат, скорость подъема, ограничение тока и т. д. В строке справки доступен текст для внесения всех настроек. Каждый контроллер также будет иметь три индикатора рядом с каждым GVC. Эти индикаторы предназначены для индикации включения управления, включения HV и сигнала тревоги.

Токоограничивающий реактор: для каждого трансформатора / выпрямителя будет установлен реактор ограничения по току, класса защиты 3R по EEMAC, которые будут размещены вблизи трансформатора / выпрямителя.

Электрооборудование установленное на заводе: Мы смонтируем на заводе производителе трансформаторы/ выпрямители и установим высоковольтные шинные каналы и шинные лотки. Мы предоставим кабелепровод и проложим кабель с панели управления / распределительной панели на крыше (PCDP) для встряхивателей, вибраторов и воздуходувок. Мы смонтируем все высоковольтные изоляторы, виброизоляторы и питающие изоляторы. Мы предоставим и установим клеммные коробки для всех соединений на крыше (ответственность заказчика по исходным условиям присоединения).


Проводная обвязка

Мы используем следующие типы проводки для указанных ниже соединений (оставляем за собой право заменить провод XLPE указанный ниже):

Кабель кабельных каналов

Этот кабель используется между панелями и соединительными коробками на крыше, а также между этими распределительными коробками и терминалами встряхивателей, воздуходувок и вибраторов. Каналы будут иметь номинальную 40% -ную загрузку в соответствии с N.E.C.

THHN / MTW / THWN-2 / T90 медный проводник

Стандарты Underwriters Laboratories UL-83, UL-1063, UL-758

AWM Спецификация 1316, 1317, 1318, 1319, 1320, 1321

ASTM класс скручивания B3, B8, B787

Федеральная специификация A-A-59544

Canadian Association стандарт C22.2 No. 75

NEMA WC70/ICEA S-95-658

Institute of Electrical and Electronics Engineers ARRA 2009; Section 1605

Проводник: Многожильные медные проводники без покрытия по ASTM-B3, ASTM-B787 и ASTM-B8

Изоляция: Цветной поливинилхлорид (ПВХ), теплостойкий и влагостойкий, огнезащитный компаунд по UL-1063 и UL-83

Оболочка: Жесткое покрытие из полиамида, нейлона по UL-1063 и UL-83. Скользкая, нейлоновая наружная оболочка для легкого вытягивания. VW-1 расчитана 14 AWG - 8 AWG. Все размеры бензин и маслостойкие.

Применения: Типовой строительный провод THHN / THWN-2 предназначен для применений общего назначения, как определено Национальным электрическим кодексом (NEC). Тип THHN / THWN-2 разрешен для новой конструкции или переустановки для приложений на 600 вольт. Применения, требующие типа THHN или THWN-2: проводник подходит для использования во влажных или сухих местах при температуре не выше 90 ° C или не превышать 75 ° C в масле или хладагентах. Применения, требующие типа MTW: проводник подходит для использования в сухих местах при температуре 90 ° C или не должен превышать 60 ° C во влажных местах или при воздействии на масла или охлаждающие жидкости. Применения, требующие типа AWM: проводник подходит для использования при температурах, не превышающих 105 ° C в сухих местах.


Виброизолирующий провод

Этот провод используется между коробками соединения каналов и встряхивателями, воздуходувками и вибраторами.

SOOW / SJOOW 90ºC Черный ROHS

Инженерная спецификация/ Стандарты:

UL Стандарт 62

NEC Статья 501.140 класс I Div. 2

NEC Статья 400

CSA C22.2 No. 49

CSA FT2 испытание пламенем

EPA 40 CFR, Часть 26, подпункт C, тяжелые металлы по Табл1, TCLP метод

Проводник: 18 AWG - 10 AWG Класс K скрученная голая медь по ASTM B-174

Изоляция: EPDM

Оболочка: CPE

Легенда: SOOW E54864 (UL) 600V -40C TO 90C -- CSA LL39753 SOOW 600V -40C TO 90C FT2 Водозащита P-07-KA070018-1-MSHA

Области применения: Изготовлены с использованием передовых синтетических резиновых смесей для работы при температуре от -40 ° C до 90 ° C с отличной устойчивостью к пламени, деформации, озону, маслам, кислотам и химикатам. SOOW имеет износостойкую и маслостойкую изоляцию и кожух. SOOW является гибким при низких температурах и исключительной гибкостью в нормальных условиях для электродвигателей, портативных ламп, зарядных устройств для аккумулятора, портативных осветительных приборов и переносного оборудования. Приложение «Национальный электрический кодекс» по статье 400.

Провод для подключения панелей

Этот провод используется для подключения различных компонентов внутри панелей (переключатели, источники света, plc, блоки, предохранители, клеммы и т. Д.).

MIL-W-16878/2 Тип C провод (M16878/2 провод) / Mil-DTL-16878/2

Инженерная спецификация/ Стандарты:

UL VW-1 испытание пламенем

RoHS Hook-up Wire RoHS соответствие

MIL-W-16878/2 Тип C провод (M16878/2 провод)

Описание:

Проводник: Луженая медь, твердая и многожильная

Изоляция: Поливинилхлорид (ПВХ), цветной

Применение: соединительный провод в соответствии с UL VW-1 испытание пламенем и используется в широком диапазоне отраслей, требующих высокотемпературного провода, который также может выдерживать суровые условия. Из-за его размера, негорючих материалов и стойкости к химическим веществам, типичные применения для провода MIL-Spec включают в себя сложные применения для военной или аэрокосмической промышленности. Провод может также использоваться для внутренней проводки электронного оборудования. Провод имеет температурный диапазон от -55 ° C до + 105 ° C (M16878 / 2 типа C) и 1000 вольт. Все типы кабелей MIL Spec имеют превосходный температурный диапазон и номинальное напряжение. M16878E подключается к проводным приложениям: военная техника, провод питания, проводка электроприборов и медицинская электроника. M16878EE может применяться для электронного использования в защищенных приложениях, где встречаются высокие температуры и является высоконадежным OEM-продуктом. M16878ET используется в аэрокосмических, промышленных, военных и многих других коммерческих рынках.

Целевые показатели и гарантии

ОПРЕДЕЛЕНИЕ: Предлагаемое нами здесь оборудование при проектных условиях и входной пылевой нагрузке 512 мг/ Нм3 гарантирует содержание пыли на выходе осадителя не более 10 мг/ Нм3 что составляет 98,05 % масс входной нагрузки. Если входная удельная нагрузка превысит расчетную, эффективность 98,05% так же гарантируется; если удельная нагрузка равна или меньше расчетной, гарантируется остаточное содержание пыли 10 мг/ нм3.

НЕПРОЗРАЧНОСТЬ: Завод гарантирует среднюю непрозрачность дымового газа менее 10% в течение одного часа при работе при расчетных условиях. Прозрачность должна определяться сертифицированным устройством считывания дыма или сертифицированным монитором непрозрачности.

Квалификация тестирования частиц: Метод отбора проб твердых частиц будет осуществляться по методу № 5 Агентства по охране окружающей среды, как указано в Федеральном реестре. Частицы определяются как твердые вещества в условиях эксплуатации осадителя, которые могут быть собраны. Конденсаты сюда не включены.