Болезни Военный билет Призыв

Что происходит с зарядами при электризации. Что такое электризация тел и как она происходит. Тема: Электромагнитные явления

ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ К ЭКЗАМЕНУ ПО ДИСЦИПЛИНЕ
_____________________ФИЗИКА_________________________
Электризация тел. Способы электризации тел. Закон Кулона. Диэлектрическая проницаемость среды.
Наэлектризовать тело-это зарядить.
Способы:
Трение (касание)-тела заряжаются одноименно.
Влияние- заряжаются разноименно
Облучение: ультрафиолет, рентген и т.д
Сила взаимодействия двух точечных зарядов прямо пропорционально произведению величин этих зарядов, обратно пропорционально квадрату расстояния между ними, зависит от среды, направлена вдоль прямой, соединяющей эти заряды
ε=F_0/F_ср
Во сколько раз сила взаимодействия двух точечных зарядов в вакууме больше, чем их взаимодействие в среде.
ε=ε_ср/ε_0
Электрическое поле как особый вид материи. Графическое изображение электрического поля. Напряженность электрического поля. Однородное поле.
Электрическое поле-особый вид материи, посредством которого взаимодействуют статические заряды.
Свойства:
Создано зарядом
Действуют на заряд
Связано с зарядом
Обнаруживать единичным положительным пробным зарядом
Оно безгранично
Распространяется в любой среде
Изображается силовыми линиями

E=F/q
Напряженность электрического поля в данной точке численно равна F, действующей на единичный положительный пробный заряд помещенный в данную точку электрического поля.
СИ:
[E]=Н/КЛ
Однородное электрическое поле-это поле, в каждой точке которого напряженность одинаковая.

Работа электрического поля при перемещении заряда. Потенциальная энергия заряда. Потенциал. Разность потенциалов и напряжение. Связь между напряженностью поля и напряжением.
φ=А_(1→∞)/q
Потенциал электрического поля в точке численно равен А, которую совершает электрическое поле над единичным положительным пробным зарядом при перемещении из одной точки в бесконечность.
φ=Е_р/q
СИ:
[φ]=Дж/Кл=В
Напряжение-разность потенциалов двух точечных зарядов электрического поля.
U=A_(1→2)/q
Потенциал электрического поля в точке численно равен А, которую совершает электрическое поле над единичным положительным пробным зарядом при перемещении из данной точки в другую.

A=E*q*l
A=U*q
U*q=E*q*l
U=E*l

Проводник в электрическом поле. Эквипотенциальная поверхность. Диэлектрик в электрическом поле. Поляризация диэлектрика. Электростатистическая защита.

У наэлектризованного проводника заряды находятся на поверхности. Наэлектризованный проводник уничтожает Е_внеш (ϵ_(эл.п) внутри проводника равна нулю).
Эквипотенциальная поверхность-поверхность равного потенциала.
Поляризация диэлектрика- поворот диполя в электрическом поле.

Электростатическая защита - помещение приборов, чувствительных к электрическому полю, внутрь замкнутой проводящей оболочки для экранирования от внешнего электрического поля.
Электроемкость проводника. Конденсаторы. Виды и соединение конденсаторов. Энергия электрического поля заряженного конденсатора.
Электроемкость проводника- способность проводника накапливать заряды на своей поверхности.
С= q/φ
Электроемкость проводника численно равна q, который надо поместить на проводник, чтобы φ=1В.
В СИ:
[C]=Кл/В=Ф
Вне системные единицы:
1 пФ=1*〖10〗^(-12)Ф
1нФ=1*〖10〗^(-9)Ф
1мкФ=1*〖10〗^(-6)Ф
Конденсатор-система двух проводников, разделенная диэлектриком
Виды конденсаторов:
Воздушный
Бумажный
Электролитические
Слюидный
Керамические

Следуют друг за другом. Наличие узловых точек.

W_эл=(q*U)/2
W_эл=(C*V^2)/2
Электрический ток и условие его существования. Сила и плотность тока. Единицы их измерения. Зависимость силы тока с электронной точки зрения. Закон Ома для участка цепи.
Электрический ток-направленное (упорядоченное) движение заряженных частиц.

Условия существования:
-наличие в среде свободных электрических зарядов
-создание в среде электрического поля.

Сила тока-это величина, показывающая какой заряд прошел через поперечное сечение проводника за 1 секунду.
I=q/t
Си: [I]=Кл/сек=А
Вне системные единицы:
1мкА=1*〖10〗^(-6)А
1мА=1*〖10〗^(-3) А
1кА=1*〖10〗^3 А
Плотность тока показывает кол-во зарядов на единицу площади поперечного сечения проводника.
j=I/S
СИ: [j]=A/м^2
Вне системные единицы:

1A/〖мм〗^2 =1*〖10〗^(6 А/м^2)

1А/〖см〗^2 =1*〖10〗^4 А/м^2

1А/〖дц〗^2 =1*〖10〗^2 А/м^2

Установим от чего зависит с электронной точки зрения сила тока в проводнике

I=n_0*S*e*v
n_0-род проводника
S-тонкий или толстый
e-вид проводника (тв, жид, газ).

Закон Ома:
I=U/R
Сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка, обратно пропорциональна сопротивлению этого участка цепи.
Си:
[R]=В/А=Ом
Вне системные единицы:
1 кОм=1*〖10〗^3Ом
1 мОм=1*〖10〗^6Ом
Замкнутая электрическая цепь. Внешний и внутренний участки цепи. Электродвижущая сила источника электрической энергии. Закон Ома для полной цепи с одним Э.Д.С.
Замкнутая электрическая цепь-потребитель+источник
Внешний участок цепи-это потребитель эл.энергии
Внутренный участок цепи- это источник эл.энергии

ε=A_ст/q
ЭДС источника численно равна А, которую совершают сторонние силы при перемещении единичного заряда внутри источника.
Закон Ома для замкнутой цепи
I=ε/(R+r)
Сила тока во всей цепи прямо пропорциональна ЭДС источника и обратно пропорциональна сумме внешней и внутренней участке цепи.

Сопротивление проводника. Зависимость сопротивления от рода, размера проводника и температуры. Сверхпроводимость. Удельное сопротивление проводника и единицы измерения.

1/(n_0+e+u)=p-удельное сопротивление проводника
R=ρ*l/S
[p]=Ом*м
Сверхпроводимость-это явление резкого падения сопротивления до нуля вблизи абсолютного нуля

Последовательное и параллельное соединение потребителей и источников электрической энергии.

Соединение потребителей

Последовательное Параллельное

I_общ=I_1=I_2=I_3 I_общ=I_1+I_2
U_общ=U_1+U_2+U_3 U_общ=U_1+U_2
R_общ=R_1+R_2+R_3 1/R_общ =1/R_1 +1/R_2
R_общ=(R_1*R_2)/(R_1+R_2)
Признак: друг за другом Признак: наличие узловых точек

Соединение источников

Последовательное параллельное

ε_б=ε_1+ε_2+ε_3=ε_1*nε_б=ε_1=ε_2=ε_3
r_б=r_1+r_2+r_3=r_1*n 1/r_б =1/r_1 +1/r_2 +1/r_3
I_б=(ε_1*n)/(R+r_1*n) I_б=ε_1/(R+r_1/m)

Работа и мощность электрического тока. Единицы их измерения. Тепловое действие тока. Закон Джоуля – Ленца. Короткое замыкание.
A_(эл.ток)=U*I*t=P*t
А_(эл.ток)зависит от силы тока, времени и не зависит от того,в какой вид энергии она превращается
Ед. измерения:
[A]=В*А*сек=Дж=Вт*сек
Вне системные единицы:
1 Вт.ч=3,6*〖10〗^3Дж
1 кВт.ч=3,6*〖10〗^6Дж
1 мВт.ч=3,6*〖10〗^9Дж
Мощность-это физическая величина, показывающая единицу работу,совершенную за единицу времени.
P=U*I

СИ:
[P]=Вт
Вне системные единицы:
1кВт=1*〖10〗^3Вт
1 мВт=1*〖10〗^6Вт
Закон Джоуля Ленца
Q=I^2*R*t
Количество теплоты, выделившееся в проводниках, прямо пропорционально квадрату силы тока, сопротивлению и времени прохождения тока по проводнику.

I_кз=ε/r

Термоэлектронная эмиссия. Работа выхода. Контактная разность потенциалов. Термопара и ее применение. Термоэлектродвижущая сила.
Явление выхода заряда из проводника под действием высокой температуры называется эмиссией.
А_вых=e*∆φ
e=1,6*〖10〗^(-19)
Ед. измерения: [А_вых]=Кл*В=Дж
Внесистемные единицы: 1эВ=e*1В=1,6*〖10〗^(-19)Дж
∆φ-контактная разность потенциалов возникает:
При разной работе выхода
При разном количестве e
Термопара-прибор, состоящий из двух однородных металлов, концы которых спаяны.
Применение:
1.Источник эл.энергии
2.Генератор «Ромашка»
3.Термометр

1.Если t_a=t_0, то ∆φ_1=∆φ_2, I=0
2. t_a>t_б, то ∆φ_1>∆φ_2, I≠0
Термо-ЭДС возникает в термопаре при нагревании одного из спаев.

Электролитическая диссоциация. Электролиз и его применение. Законы Фарадея. Применение электролиза.
Электролитическая диссоциация- это раствор солей, кислот и щелочей.
Электролиз-процесс выделения вещества на катоде при проходенииэл.тока через электролит.
Применение:
Для получения рафинированных металлов
Гальваностегия- это покрытие одного металла другим
Гальванопластика- это получение различных оттисков барельефов.
Законы Фарадея:
m=k*I*t
Масса, выделившегося вещества на катоде прямо пропорционально кол-ву электричества, прошедшего за единицу времени через электролит.
M/N_A *q_1=k
k-электрохимический эквивалент.
Физ.смысл:
k=m/q
Электрохимический эквивалент численно равен m вещ-ва, которое выделилось на катоде после прохождения q_ед^+ через электролит.
СИ: [k]=Кг/Кл
k=1/F*x; k=e*N_A-число Фарадея
k~x

Число Фарадеяпоказывает какой заряд несет одновалетный ион, содержащийся в 1 моле вещества.
F=9.7*〖10〗^4 Кг/моль
Электрический ток в газах при атмосферном давлении. Типы разрядов. Понятие о плазме. Электрический ток в разреженных газах. Понятие о катодных лучах. Электрический ток в вакууме. Двух-, трехэлектродная лампа. Электронно – лучевая трубка.
Газ при P_атм=диэлектрик
Типы разрядов:

Типы разрядов:
Несамостоятельный самостоятельный
Уч. 0,1; 1,2 уч. 2,3
Наличие ионизатора (тихий) наличие высокого U

Звук, свет

Плазма-вещество в таком состоянии, когда оно в целом электрически нейтрально, но содержит равные кол-ва свободных положительных и отрицательных зарядов.
Бывает холодной (до 〖1000〗^° С-огонь) и горячей (свыше 1 〖млн〗^° С-Солнце)

Сравнительная характеристика проводников, полупроводников и диэлектриков. Собственная и примесная проводимости полупроводников.
Электронно – дырочный переход. Полупроводниковый диод. Прямое и обратное включение P – Н - перехода.
Магнитное поле. Магнитная индукция. Взаимодействие параллельных токов. Магнитная проницаемость среды. Магнитные поля прямого и кругового токов и соленоида. Сила Ампера. Правило левой руки.
Магнитный поток. Напряженность магнитного поля. Действие магнитного поля на движущийся заряд. Сила Лоренца. Понятие о ПЛАЗМЕ, перспективы ее применения.
Парамагнитные, диамагнитные, ферромагнитные вещества. Кривая первоначального намагничивания ферромагнетика. Точка Кюри.
Электромагнитная индукция. Закон электромагнитной индукции. Потокосцепление.Возникновение э.д.с индукции при движении проводника в магнитном поле.
Направление индукционного тока. Правило Ленца. Вихревые токи, их использование и меры борьбы с ними.
Явления самоиндукции. Индуктивность проводника. Условия, от которых зависит индуктивность проводника. Единица измерения индуктивности.
Условия возникновения колебаний. Параметры колебательного движения. Собственные и вынужденные колебания. Гармоническое колебание, его уравнение и график.
Распространение колебаний в упругой среде. Поперечные и продольные волны. Длина волны. Механический резонанс.
Природа света. Волновая и квантовая теории света. Скорость распространения света в вакууме, в различных средах. Определение скорости света методом Майкельсона. Принцип Гюйгенса.
ЗАДАЧИ ДЛЯ ПОВТОРЕНИЯ
§ 9 №№ 14,18,20,21,24.
§10 №№ 15,20,30,41,43,48.
§ 11 №№ 8,24,27,35,38.
§ 12 №№ 10,31,35,52,67,75,82,101,112,129,131,136.
§ 13 №№ 11,24,28,37,62,64.
§ 14 №№ 13,15,17,31,41,42.
§ 17 №№ 18,32,33,34.

Физика! Какая емкость слова!
Физика для нас не просто звук!
Физика – опора и основа
Всех без исключения наук!

  • объяснить учащимся механизм электризации тел,
  • развивать исследовательские и творческие навыки,
  • создать условия для повышения интереса к изучаемому материалу,
  • помочь учащимся осмыслить практическую значимость, полезность приобретаемых знаний и умений.

Оборудование:

  • электрофорная машина,
  • электрометр,
  • султанчики,
  • эбонитовые и стеклянные палочки,
  • шелковые и шерстяные ткани,
  • электроскоп,
  • соединительные провода, дистиллированная вода, парафиновые шарики,
  • алюминиевые и бумажные цилиндрики, шелковые нити (крашеные и некрашеные).

На доске: Проводники, изоляторы, смоляной и стеклянный заряды.

  • Электроотрицательный атом.
  • Электроположительный атом.
  • Электризация: - соприкосновение
    • - влияние
    • - фотоэффект (под действием света).
  • Отталкивание, притяжение.
  • Заряды в наэлектризованных изоляторах и проводниках.
  • ХОД УРОКА

    1. Вступительное слово учителя

    В повседневной жизни человек наблюдает огромное количество явлений и, возможно, гораздо большее количество явлений остаются незамеченными.

    Существование этих явлений “толкает” человека на их поиски, открытия и объяснения этих явлений. Такое явление как падение тел на землю у человека не вызывает уже никакого удивления. Но, следует заметить, что земля и данное тело взаимодействуют, не касаясь друг друга. Они взаимодействуют между собой самым известным действием – гравитационным притяжением (гравитационными полями). Мы привыкли, что тела действуют друг на друга, в основном, непосредственно. Есть еще и такие явления, известные еще древним грекам, которые каждый раз вызывают интерес у детей и взрослых. Это электрические явления.

    Примеры электрических взаимодействий весьма разнообразны и не так хорошо знакомы нам с детского возраста как, например, притяжение Земли. Этот интерес объясняется и тем, что здесь мы имеем большие возможности создания, изменения экспериментальных условий, обходясь несложным оборудованием.

    Проследим за ходом выявления и изучения некоторых явлений.

    2. Историческая справка (докладывает ученик)

    Греческий философ Фалес Милетский, живший в 624–547 гг. до н.э., открыл, что янтарь, потертый о мех, приобретает свойство притягивать мелкие предметы – пушинки, соломинки и т.д. Позже такое явление было названо электризацией.

    В 1680 году немецкий ученый Ото фон Герике построил первую электрическую машину и открыл существование электрических сил отталкивания и притяжения.

    Первым ученым, аргументировано отстаивавшим точку зрения о существовании двух видов зарядов, был француз Шарль Дюфе (1698–1739). Электричество, которое появляется при натирании смолы, Дюфе назвал смоляным, а электричество, которое появляется при натирании стекла – стеклянным. В современной терминологии “смоляное” электричество соответствует отрицательным зарядам, а “стекольное” положительным. Самым убедительным оппонентом теории существования двух видов зарядов был знаменитый американец Бенджамин Франклин (1706 - 1790). Он впервые ввел понятие о положительных и отрицательных зарядах. Наличие этих зарядов у тел он объяснил избытком или недостатком в телах некоей общей электрической материи. Это особая материя, впоследствии названная “флюидом Франклина”, по его мнению, обладала положительным зарядом. Таким образом, при электризации тело либо приобретает, либо теряет положительные заряды. Нетрудно догадаться, что Франклин перепутал положительные заряды с отрицательными и тела обмениваются электронами (которые несут отрицательный заряд). Во многом благодаря этому факту впоследствии ошибочно за направление тока в металлах было принято направление движения положительного заряда.

    Англичанин Роберт Симмер (1707 - 1763), обратил внимание на необычное поведение своих шерстяных и шелковых чулков. Он носил две пары чулок: черные шерстяные для тепла и белые шелковые для красоты. Снимая с ноги сразу оба чулка и выдергивая один из другого, он наблюдал, как оба чулка раздуваются, принимая форму ноги и притягиваясь друг к другу. Однако чулки одинакового цвета отталкивались, а разных цветов притягивались. Основываясь на своих наблюдениях, Симмер стал рьяным сторонником теории двух зарядов, за что был прозван “раздутым философом”.

    Выражаясь современным языком, его шелковые чулки имели отрицательные, а шерстяные – положительные заряды.

    3. Явление электризации тел

    Учитель: Какое тело называется заряженным?

    Ученик: Если тело может притягивать или отталкивать другие тела, то оно обладает электрическим зарядом. О таком теле говорят, что оно заряжено. Заряд – свойство тел, – способность к электромагнитному взаимодействию.

    (Демонстрация действия заряженного тела).

    Учитель: Что называется электроскопом?

    Ученик: Прибор, который позволяет обнаружить наличие у тела заряда и оценить его, называется электроскопом.

    Учитель: Как устроен и работает электроскоп?

    Ученик: Основной частью электроскопа является проводящий изолированный стержень, на котором закрепляется стрелка, способная свободно вращаться. При появлении заряда стрелка и стержень заряжаются зарядами одного знака и поэтому они, отталкиваясь, создают угол отклонения, значение которого пропорционально полученному заряду.

    (Демонстрация работы прибора).

    Учитель: Электризация тел может происходить в различных случаях, т.е. существуют различные способы электризации тел:

    • трением,
    • ударом,
    • соприкосновением,
    • влиянием,
    • под действием световой энергии.

    Рассмотрим некоторые из них.

    Ученик: Если потереть эбонитовую палочку о шерсть, то эбонит получит отрицательный заряд, а шерсть – положительный заряд. Наличие этих зарядов обнаруживается с помощью электроскопа. Для этого надо коснуться стержня электроскопа эбонитовой палочкой или шерстяной тряпкой. При этом часть заряда испытуемого тела переходит к стержню. Кстати, в этом случае происходит кратковременный электрический ток. Рассмотрим взаимодействие двух бумажных подвешенных на нити гильз, заряженных один - от эбонитовой палочки, другой – от шерстяной тряпочки. Заметим, что они притягиваются друг к другу. Значит, тела с разноименными зарядами притягиваются. Не каждое вещество может передать электрические заряды. Вещества, через которые могут передаваться заряды, называют проводниками, а вещества, через которые заряды не передаются, называют непроводниками – диэлектриками (изоляторами). Это можно выяснить также с помощью электроскопа, соединяя его с заряженным телом, веществами различного рода.

    Белая шелковая нить не проводит заряд, а крашенная шелковая нить проводит. (Рис. А)

    Белая шелковая нить Крашеная шелковая нить

    Разделение зарядов и возникновение двойного электрического слоя в местах их соприкосновения, всяких двух различных тел, изоляторов или проводников, твердых тел, жидкостей или газов. Описывая электризацию трением, мы всегда брали для опыта только хорошие изоляторы – янтарь, стекло, шелк, эбонит. Почему? Потому что в изоляторах заряд остается на том месте, где он возник и не может через всю поверхность тела перейти на другие соприкасающиеся с ним тела. Опыт не удается, если оба трущиеся тела будут металлами с изолированными ручками, так как мы не можем отделить их друг от друга сразу по всей поверхности.

    Вследствие неизбежной шероховатости поверхности тел, в момент отрыва всегда остаются какие-то последние точки соприкосновения – “мостики”, через которые в последний момент сбегают все избыточные электроны и оба металла оказываются не заряженными.

    Учитель: Теперь рассмотрим электризацию соприкосновением.

    Ученик: Если мы погрузим шарик из парафина в дистиллированную воду и потом вынем из воды то и парафин, и вода окажутся заряженными. (Рис.B)

    Электризация воды и парафина произошла без всякого трения. Почему? Оказывается, что при электризации трением мы лишь увеличиваем площадь соприкосновения и уменьшаем расстояние между атомами трущихся тел. В случае вода – парафин всякие шероховатости не мешают сближению их атомов.

    Значит, трение не является обязательным условием для электризации тел. Существует другая причина, по которой происходит электризация в этих случаях.

    Ученик: На электризации тела через влияние основана работа электрофорной машины. Наэлектризованное тело может взаимодействовать с любым электрически нейтральным проводником. При сближении этих тел, за счет электрического поля заряженного тела во втором теле происходит перераспределение зарядов. Ближе к заряженному телу располагаются заряды по знаку противоположные заряженному телу. Дальше от заряженного тела в проводнике (гильза или цилиндр) располагаются одноименные с заряженным телом заряды.

    Так как расстояние до положительных и отрицательных зарядов в цилиндре от шара разное, то преобладают силы притяжения и цилиндр отклоняется в сторону наэлектризованного тела. Если же дальней стороны тела от заряженного шара коснуться рукой, то тело прыгнет к заряженному шару. Это происходит из-за того, что при этом электроны перескакивают к руке, уменьшая тем самым силы отталкивания. Рис. D.

    Учитель: Как долго сохранится такое положение? (Рис.D)

    Ученик: Через несколько секунд произойдет деление зарядов и цилиндр оторвется от шара. Характер их в дальнейшем будет зависеть от значения суммы их зарядов. Если их сумма равна нулю, то их силы взаимодействия равны нулю. Если Fp < 0, то они оттолкнутся друг от друга, но на меньший угол .

    Учитель: Рассмотрим электризацию тел под действием световой энергии (фотоэффект).

    Ученик: Направим на цинковый диск (пластину) прикрепленную к электрометру сильный световой луч. Под действием световой энергии из пластины вылетает некоторое количество электронов. Сама пластина оказывается заряженным положительно. О величине этого заряда можно судить по углу отклонения стрелки электрометра. (Рис. Е)

    Учитель: Мы убедились в том, что при уменьшении расстояния между атомами явление электризации происходит эффективнее. Почему?

    Ученик: Потому что при этом увеличиваются кулоновские силы притяжения между ядром атома и электроном соседнего атома.

    Перескакивает тот электрон, который слабо связан со своим ядром.

    Учитель: Рассмотрим как располагаются химические элементы в периодической системе химических элементов.

    Ученик: Существуют около 500 форм Периодической системы химических элементов. Из них в одной, 18-клеточной, элементы размещены согласно строению электронных оболочек их атомов и приведена в справочнике по общей и неорганической химии Н.Ф.Стась.

    С периодическим законом согласуются свойства и характеристики атомов, в том числе электроотрицательность и валентность элементов.

    Радиусы атомов и ионов в периодах уменьшаются, т.к. электронная оболочка атома или иона каждого последующего элементов в периоде по сравнению с предыдущим уплотняется из-за увеличения заряда ядра и увеличения притяжения электронов к ядру.

    Радиусы в группах увеличиваются, т.к. атом (ион) каждого элемента отличается от вышестоящего появлением нового электронного слоя. При превращении атома в катион (положительный ион) атомные радиусы резко уменьшаются, а при превращении атома в анион (отрицательный ион) атомные радиусы почти не изменяются.

    Энергия, затрачиваемая на отрыв электрона от атома и превращение в положительный ион называется ионизацией. Напряжение, при котором происходит ионизация, называют ионизационным потенциалом.

    Ионизационный потенциал – физическая характеристика, является показателем металлических свойств элемента: чем он меньше, тем легче отрывается электрон от атома и тем сильнее выражены металлические (восстановительные) свойства элемента.

    Таблица 1. Потенциалы ионизации атомов (эВ/атом) элементов второго периода

    Элемент J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    Литий 5,39 75,6 122,4 --- --- --- --- ---
    Бериллий 9,32 18,2 158,3 217,7 --- --- --- ---
    Бор 8,30 25,1 37,9 259,3 340,1 --- --- ---
    Углерод 11,26 24,4 47,9 64,5 392,0 489,8 --- ---
    Азот 14,53 29,6 47,5 77,4 97,9 551,9 666,8 ---
    Кислород 13,60 35,1 54,9 77,4 113,9 138,1 739,1 871,1
    Фтор 17,40 35,0 62,7 87,2 114,2 157,1 185,1 953,6
    Неон 21,60 41,1 63,0 97,0 126,3 157,9

    Учитель: Существует такое понятие, как электроотрицательность, которое играет определяющую роль при электризации тел. От него зависит знак заряда, получаемый элементом при электризации. Электроотрицательность – что это такое?

    Ученик: Электроотрицательностью называется свойство химического элемента притягивать к своему атому электроны от атомов других элементов, с которыми элемент образует химическую связь в соединениях.

    Электроотрицательность элементов определяли многие ученые: Полинг, Олред и Рохов. Они пришли к выводу, что электроотрицательность элементов в периодах увеличивается, а в группах уменьшается подобно ионизационным потенциалам. Чем меньше значение ионизационного потенциала, тем больше вероятность потери электрона и превращения в положительный ион или положительно заряженного тела, если тело однородное.

    Таблица 2. Относительная электроотрицательность (ЭО) элементов первого, второго и третьего периодов.

    Элемент ЭО Элемент ЭО Элемент ЭО
    По Полингу По Олреду-Рохову По Полингу По Олреду-Рохову По Полингу По Олреду-Рохову
    H 2,1 2,20 Li 1,0 0,97 Na 0,9 1,01
    Be 1,5 1,17 Mg 1,2 1,23
    B 2,0 2,07 Al 1,5 1,47
    C 2,5 2,50 Si 1,8 1,74
    N 3,0 3,07 P 2,1 2,06
    O 3,5 3,50 S 2,5 2,44
    F 4,0 4,10 Cl 3,0 2,83

    Учитель: Из всего этого можно сделать следующий вывод: если взаимодействуют два однородных элемента из одинакового периода, то заранее можно сказать, который из них окажется заряженным положительно, а который отрицательно.

    Вещество, атом которого имеет большую валентность (больше номер группы) по отношению к атому другого вещества, окажется заряженным отрицательно, а второе вещество положительно.

    Если взаимодействуют однородные вещества с одной группы, то вещество с меньшим номером периода или ряда окажется заряженным отрицательно, а второе взаимодействующее тело – положительно.

    Учитель: На этом уроке мы попытались раскрыть механизм электризации тел. Мы выяснили, по какой причине тело после электризации получает заряд того или иного знака, т.е. ответили на главный вопрос – почему? (как, например, раздел механики “Динамика” отвечает на вопрос: почему?)

    Теперь перечислим положительные и отрицательные значения электризации тел.

    Ученик: Статическое электричество может иметь негативное влияние:

    Притяжение волос к расческе;

    Отталкивание волос друг от друга, подобно заряженному султанчику;

    Прилипание к одежде различных мелких предметов;

    На ткацких фабриках прилипание нитей к бобинам, что ведет к частым обрывам.

    Накопленные заряды могут вызвать электрические разряды, которые могут иметь различные последствия:

    Молния (приводит к пожарам);

    Разряд в бензовозе приведет к взрыву;

    При заправке горючей смесью любой разряд может привести к взрыву.

    Чтобы снять статическое электричество, заземляют все устройства и оборудование и даже бензовоз. Используют специальное вещество антистатик.

    Ученик: Статическое электричество может принести пользу:

    При окраске мелких деталей краскораспылителем, краску и тело заряжают противоположными зарядами, что приводит к большой экономии краски;

    В лечебных целях используют статический душ;

    Для очистки воздуха от пыли, сажи, кислотных и щелочных паров используются электростатические фильтры;

    Для копчения рыбы в специальных электромерах (рыба заряжается положительно, а электроды отрицательно, копчение в электрическом поле происходит в десятки раз быстрее).

    Подведение итогов занятия .

    Учитель: Давайте вспомним цель нашего занятия и сделаем краткие выводы.

    • Что на уроке было новым?
    • Что было интересным?
    • Что на уроке было важным?

    Выводы учащихся:

    1. Явления, в которых тела приобретают свойства притягивать другие тела, называют электризацией.
    2. Электризация может происходить соприкосновением, через влияние, при облучении светом.
    3. Вещества бывают: электроотрицательные и электроположительные.
    4. Зная принадлежность веществ, можно предугадать какие заряды получат взаимодействующие тела.
    5. Трение лишь увеличивает площадь соприкосновения.
    6. Вещества бывают проводниками и непроводниками электричества.
    7. Изоляторы накапливают заряды там, где они образовались (в местах соприкосновения).
    8. В проводниках заряды распределяются равномерно по всему объему.

    Обсуждение и выставление оценок участникам урока.

    Литература.

    1. Г.С.Ландсберг. Элементарный учебник физики. Т.2. – М., 1973.
    2. Н.Ф.Стась. Справочник по общей и неорганической химии.
    3. И.Г.Кириллова. Книга для чтения по физике. М., 1986.

    Билет 7. Электризация тел. Опыты, иллюстрирующие явление электризации. Два рода электрических зарядов. Взаимодействие зарядов. Электрическое поле. Объяснение электрических явлений. Проводники и непроводники электричества.

    Наэлектризованное тело приобретает свойство притягивать к себе мелкие предметы. Например, если потереть стеклянную палочку о лист бумаги, а затем поднести ее к мелко нарезанным листочкам бумаги, то они начнут притягиваться.

    О теле, которое обладает таким свойством, говорят, что оно наэлектризовано или что ему сообщен электрический заряд .

    Электризация - это явление приобретения телом заряда.

    Заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, разноименные притягиваются.

    Представление о положительном и отрицательном зарядах было введено в 1747 году Франклином. Эбонитовая палочка от электризации о шерсть и мех заряжается отрицательно. Заряд, который образуется на стеклянной палочке, потертой о шелк, Франклин назвал положительным

    Заряд - физическая величина, мера свойств заряженных тел взаимодействовать друг с другом ..
    q - заряд
    [q]=Кл

    Виды электризации:

    1) электризация трением: участвуют разнородные тела. Тела приобретают одинаковые по модулю, но разные по знаку заряды.

    2) электризация соприкосновением: при соприкосновении заряженного и незаряженного тела часть заряда переходит на незаряженное тело, т. е. оба тела приобретают одинаковый по знаку заряд.

    3) электризация через влияние: при электризации через влияние можно получить при помощи положительного заряда на теле отрицательный, и наоборот.

    Прибор для измерения величины заряда - электрометр. Прибор для определения наличия заряда - электроскоп.

    Изучением взаимодействия электрических зарядов занимались английские физики Майкл Фарадей и Джеймс Максвелл. Если поместить заряженный электроскоп под колокол воздушного насоса, то листочки электроскопа по-прежнему отталкиваются друг от друга. (Из-под колокола воздух откачан.) В результате установлено, что всякое заряженное тело окружено электрическим полем.

    Электрическое поле - это особый вид материи, отличающийся от вещества. Электрическое поле - особый вид материи, существующий вокруг заряженных тел и обнаруживающий себя по взаимодействию с другими заряженными телами.

    Наши органы чувств не воспринимают электрическое поле. Обнаружить поле можно благодаря тому, что оно действует на всякий находящийся в нем заряд. Именно этим и объясняется взаимодействие наэлектризованных тел.

    Сила, с которой электрическое поле действует на внесенный в него электрический заряд, называется электрической силой . Электрическое поле, окружающее один из зарядов, действует с некоторой силой на другой заряд, помещенный в поле первого заряда. И наоборот, электрическое поле второго заряда действует на первый.

    Проводники - это тела, способные проводить электрические заряды. К ним относятся все металлы, жидкости (растворы солей и щелочей).

    Диэлектрики - это вещества, непроводящие электрические заряды. К ним относятся: дистиллированная вода, пластмасса, резина, дерево, стекло, бумага, бетон, камни и т. д.

    1) При электризации тел выполняется закон сохранения электрического заряда. Алгебраическая сумма электрических зарядов ос­тается постоянной при любых взаимодействиях в замкнутой системе, т. е. q1 + q2 + q3 + … + qп = const, замкнутой считают систему, в которую извне не входят и не выходят наружу электрические заряды. Если же нейтральное тело приобретет электроны от какого-нибудь другого тела, то оно получит отрицательный заряд. Таким образом, те­ло заряжено отрицательно в том случае, если оно обладает избыточным, по сравнению с нормальным, числом электронов. А если нейтральное тело теряет электроны, то оно получает поло­жительный заряд. Следовательно, тело обладает положитель­ным зарядом, если у него недостаточно электронов.

    2) объяснение электризации трением: при трении электроны с одного тела переходят на другое. Там, где электронов больше, тело заряжается отрицательно, где меньше - положительно.

    3) В атомах электроны находятся на разных расстояниях от ядра, удаленные электроны слабее притягиваются к ядру, чем ближние. Особенно слабо удерживаются удаленные электроны ядрами металлов. Поэтому в металах электроны, наиболее удаленные от ядра, покидают свое место и свободно движутся между атомами. Эти электроны называют свободными электронами. Те вещества, в которых есть свободные электроны, являются проводниками.

    4) В гильзе есть свободные электроны. Как только гильза будет внесена в электрическое поле, электроны придут в движение под действием сил поля. Если палочка заряжена поло­жительно, то электроны перейдут на тот конец гильзы, который рас­положен ближе к палочке. Этот конец зарядится отрицательно. На противоположном конце гильзы будет недостаток электронов, и этот конец окажется заряженным положительно. Отрицатель­но заряженный край гильзы ближе к палочке, поэтому гильза притя­нется к ней. Когда гильза коснется палочки, то часть электронов с нее перейдет на положительно заряженную палочку. На гильзе останется положительный заряд).

    5) Если заряд передают от заряженного шара к незаряженному, и размеры шаров одинаковы, то заряд разделится пополам. Но если второй, незаряженный шар больше, чем первый, то на него перейдет больше половины заряда. Чем больше тело, которому переда­ют заряд, тем большая часть заряда на него перейдет. На этом основано заземление - передача заряда земле. Земной шар велик по сравнению с телами, находящимися на нем. Поэтому при соприкосновении с землей заряженное тело отдает ей почти весь свой заряд и практически становится электрически нейтральным.

    § 1 Электризация тел

    В этом уроке обсудим такое понятие, как электричество, и узнаем, откуда произошло это слово.

    Сейчас невозможно представить себе современный мир без электричества, а тем более без компьютера, холодильника, телевизора, электроосвещения и т. д. Все названные приборы, работают с использованием электрического тока и окружают нас в нашей жизни повсеместно. Изначально не зависящие полностью от электричества технологии, например такие, как двигатель внутреннего сгорания, постепенно становятся историей, электродвигатели активно занимают их место. Так откуда же произошло такое слово, как «электричество»?

    Слово «электрический» произошло от слова «электрон» (греч.), оно в переводе означает «янтарь» (ископаемая смола). Хотя, конечно же, следует заметить, что непосредственной связи между янтарем и всеми электрическими явлениями нет, так как же появилась такая ассоциация у древних ученых?

    По одной из легенд, дочь известного философа Древней Греции Фалеса Милетского, который жил в IV до нашей эры, пряла шерсть веретеном, изготовленным из дорогого камня - янтаря. Она сказала Фалесу, что не может очистить веретено от мелких кусочков шерсти, пуха, ниток. Причем, чем больше она чистит своим шерстяным хитоном, тем больше мусора прилипает к веретену. Фалес не смог сразу ответить дочери на вопрос.

    Вечером он решил попробовать очистить веретено и увидел, что при натирании его в темноте заметны искры. «Тут есть о чём подумать и поразмыслить с моими учениками», - сказал Фалес.

    Явление, которое было замечено девушкой, Фалес назвал электричеством (от слова электрон - «янтарь»).

    При натирании кусочка янтаря о шерстяной клочок ткани или стеклянной палочки о бумагу можно услышать легкое потрескивание, а в темноте даже увидеть маленькие искорки, причем сама палочка способствует притяжению к себе мелких предметов.

    Про тело, которое притягивает к себе другие тела после натирания, говорят, что ему сообщен электрический заряд или что оно наэлектризовано.

    Электризация - явление, в котором тела приобретают свойства притягивать другие тела.

    Тела, сделанные из разных веществ, могут электризоваться. Так, можно легко наэлектризовать натиранием о шерсть палочки из серы, эбонита, пластмассы. Тела натирают лишь только для того, чтобы увеличивать площадь их соприкосновения.

    В электризации всегда участвуют два тела, и оба при этом электризуются. Так, при натирании стеклянной палочки и листка бумаги электризуются и палочка, и бумага. Следовательно, бумага, как и стекло, притягивает к себе мелкие предметы.

    Электрическим зарядом обладает тело, которое притягивает или отталкивает другие тела. О таком теле говорят, что оно заряжено (имеет заряд).

    Заряд - это свойство тел или способность к электромагнитному взаимодействию.

    Электроскоп -прибор, который позволяет обнаружить наличие у тела заряда и оценить его.

    Проводящий изолированный стержень является основной частью электроскопа, на нем закрепляется стрелка, которая способна свободно вращаться. Когда появляется заряд, стрелка и стержень заряжаются зарядами одного знака, вследствие чего они, отталкиваясь, создают угол отклонения, значение которого пропорционально полученному заряду.

    § 2 Способы электризации тел

    Электризация тел происходит в различных случаях.

    Способы электризации тел:

    ·соприкосновение

    Рассмотрим некоторые из них.

    Эбонит получит отрицательный заряд, а шерсть - положительный заряд, если потереть эбонитовую палочку о шерсть. С помощью электроскопа обнаруживается наличие этих зарядов. Для достижения такого результата необходимо коснуться стержня электроскопа эбонитовой палочкой или шерстяной тряпкой. В этом случае часть заряда испытуемого тела переходит к стержню. Обратите внимание, что происходит кратковременный электрический ток.

    Можно рассмотреть взаимодействие двух бумажных гильз, подвешенных на нити, один заряженный от эбонитовой палочки, а другой - от шерстяной тряпочки.

    Заметим, что они притягиваются друг к другу. А это значит, что тела с разноименными зарядами притягиваются. Электрические заряды может передать не каждое вещество.

    Проводниками называют вещества, через которые передаются заряды, а вещества, через которые заряды не передаются, называют непроводниками - диэлектриками (изоляторами). Это можно выяснить с помощью электроскопа, если соединить его с заряженным телом, веществами различного рода.

    Описывая электризацию трением, для опыта всегда берутся только хорошие изоляторы - янтарь, эбонит, стекло, шелк. Вопрос - почему? Поясним: в изоляторах заряд где возник, там и остается, и не может через всю поверхность тела перейти на другие тела, соприкасающиеся с ним. Если оба трущиеся тела - металлы с изолированными ручками, то опыт не удастся, так как невозможно отделить их друг от друга сразу по всей поверхности.

    Из-за шероховатости поверхности тел в момент отрыва должны оставаться какие-то последние точки соприкосновения, через которые в последний момент сбегают избыточные электроны, и оба металла становятся не заряженными.

    Рассмотрим электризацию соприкосновением. Если погрузим шарик из парафина в дистиллированную воду, а затем вынем оттуда, то и парафин, и вода будут заряжены.

    Так почему же электризация воды и парафина произошла без трения? Разъясним: оказывается, что при электризации трением лишь увеличивается площадь соприкосновения и уменьшается расстояние между атомами трущихся тел. В опыте с водой и парафином шероховатости не могут помешать сближению их атомов.

    Таким образом, можно сказать, что трение не является обязательным условием для электризации тел. Какова же причина того, что происходит электризация в этих случаях?

    § 3 Принцип работы электрофорной машины

    Работа электрофорной машины основана на электризации тела через влияние. Наэлектризованное тело взаимодействует с любым электрически нейтральным проводником.

    При сближении таких тел за счет электрического поля заряженного тела во втором теле происходит перераспределение зарядов. Заряды, которые по знаку противоположны заряженному телу, располагаются ближе к заряженному телу. Далее от заряженного тела в проводнике (гильза или цилиндр) располагаются одноименные с заряженным телом заряды.

    Расстояние до положительных и отрицательных зарядов в цилиндре от шара разное, поэтому преобладают силы притяжения, цилиндр отклоняется в сторону наэлектризованного тела. В том случае, если коснуться рукой дальней стороны тела от заряженного шара, то тело прыгнет к заряженному шару. Уменьшая силы отталкивания, электроны перескакивают к руке.

    § 4 Краткий итог урока

    Электризацией называют явления, в которых тела приобретают свойства притягивать другие тела.

    Электризация может происходить следующими способами:

    ·соприкосновением;

    ·через влияние;

    ·при ударе;

    ·трением.

    Вещества бывают: электроположительные и электроотрицательные.

    Можно предугадать, какие заряды получат взаимодействующие тела, если знать принадлежность веществ.

    Трение лишь увеличивает площадь соприкосновения.

    Вещества - проводники и диэлектрики.

    Изоляторы накапливают заряды в местах соприкосновения (там, где они образовались).

    Заряды в проводниках распределяются равномерно по всему объему.

    Список использованной литературы:

    1. Пёрышкин А.В. Физика 8.- М.: Дрофа, 2004.
    2. Кабардин О.Ф. Справочник по физике. - М.: Дрофа, 1997.
    3. Лукашик В.И. Сборник задач по физике. – М.: Яхонт, 2000.

    Использованные изображения:

    Электризация тел

    Повторительно-обобщающий урок
    с выполнением экспериментальных заданий по карточкам

    8-й КЛАСС БАЗОВЫЙ КУРС

    Задачи урока: продолжить развитие умений наблюдать физические явления, проверять теоретические положения с помощью эксперимента, пользоваться приборами; обеспечить возможность выполнения экспериментов с учетом уровня развития каждого учащегося (дифференцированный подход при составлении индивидуальных карточек-заданий); показать учащимся способ очистки воздуха от вредных примесей, акцентировать внимание на необходимости соблюдения техники безопасности для предотвращения пожаров и аварий на производстве и в быту.

    План урока (на доске)

    1. Выполнение экспериментальных заданий по карточкам.
    2. Обсуждение результатов экспериментов по основным вопросам:

    электризация, способы электризации тел;
    два рода зарядов, взаимодействие зарядов;
    электрическое поле.

    3. Объяснение. Статическое электричество, его использование и борьба с ним.

    Ход урока

    Наш урок я бы хотела начать с отрывка из стихотворения Елизаветы Кульман «Молния»:

    - Со мною кто сравнится?
    – Я! – Дуб сказал могучий,
    Взмахнув вершиной гордой.
    Из облаков зловещих
    Летучею змеею
    Вдруг Молния блеснула
    И крепкий Дуб сломила,
    Как бы дитя, играя,
    Цветка согнуло стебель.
    - Со мною кто сравнится?
    – Я! – прозвучала Башня,
    Чье золотое темя
    Пожаром гордо блещет,
    Когда не покрывают
    Его, как флером, тучи.
    Но небеса разверзлись
    Для Молнии гремучей.
    Летит драконом страшным
    С зияющею пастью;
    Мгновенье – и не стало
    Главы у гордой Башни,
    Лишь черными ручьями
    Вниз по стенам стекает
    Расплавленное злато.
    - Нет. Мне никто не равен! -
    Сказала и стрелою
    Нырнула в волны моря,
    Где только что спесиво
    Корабль военный несся.
    В минуту с треском
    Горящие остатки
    На воздух разметало.
    Потом опять все в море
    Упало, потонуло,
    И дивного строенья
    Как будто не бывало...

    Молния – это величественное и грозное явление природы, невольно вызывающее у нас чувство страха. Долгое время человек не умел объяснять причин грозовых явлений. Люди считали грозу деянием богов, наказывающих человека за грехи. Природа молнии стала проясняться после исследований, проведенных в XVIII столетии русскими учеными М.В.Ломоносовым и Г.Рихманом и американским ученым Б.Франклином.

    Объяснение М.В.Ломоносова было таким. В земной атмосфере воздух находится в постоянном движении. Благодаря трению восходящих и нисходящих воздушных потоков друг о друга частички воздуха электризуются и, сталкиваясь с капельками воды в облаках, отдают им свой заряд. Таким образом, в облаках с течением времени скапливаются весьма большие заряды. Они-то и являются причиной молний.

    Мы постоянно находимся в океане электрических разрядов, создаваемых многочисленными машинами, станками и самим человеком (например, когда мы ходим, причесываемся). Эти разряды, конечно, не так мощны, как природные молнии, поэтому мы обычно не замечаем их, если не считать легких уколов, которые мы иногда испытываем, коснувшись рукой металлического предмета или другого человека. Но ведь такие разряды существуют и могут так же, как и большие молнии, вызывать пожары и взрывы, приводить к значительным убыткам, повреждениям и увечьям, если мы не будем знать, отчего они возникают и как от них защищаться.

    На сегодняшнем уроке мы не только закрепим знания, которые получили при изучении тем «Электризация тел», «Строение атома», но и рассмотрим ряд других вопросов. Например, как бороться на производстве и в быту со статическими зарядами? Нельзя ли заставить их работать на пользу людям?

    Приступаем к выполнению экспериментальных заданий. Необходимое оборудование и карточки-задания находятся на ваших столах (за каждым столом сидят по двое учащихся). На выполнение каждой серии экспериментов, а их будет три, вам отводится 7–10 минут.

    Первая серия экспериментов
    Электризация. Способы электризации тел

    1 Исследование электризации различных тел

    Приборы и материалы: полиэтиленовая пленка, бумажная полоска, кусок ацетатного шелка, пластмассовая ручка, штатив, нить, карандаш.

    Порядок выполнения работы

    1. Подвесьте карандаш на двух нитях к лапке штатива.
    2. Положите полиэтиленовую пленку на стол и натрите ее куском ацетатного шелка. Поднесите полиэтилен и шелк поочередно к концу подвешенного карандаша. Что вы при этом наблюдаете?
    3. Проделайте подобные опыты с пластмассовой ручкой, линейкой, бумагой, натирая их о полиэтилен или шелк.
    4. Положите на бумажную полоску полиэтиленовую пленку и сильно прижмите их друг к другу рукой. Разведите полоски, а затем приблизьте их друг к другу. Взаимодействуют ли они между собой?
    5. Ответьте на вопросы:

    а) Как можно наэлектризовать тело?
    б) Оба ли тела электризуются при соприкосновении?
    в) Как обнаружить электризацию тела?

    2 Наблюдение электризации при соприкосновении двух разнородных тел (резины и движущегося воздуха)

    Приборы и материалы: толстостенная резиновая трубка, насос, электрометр.

    Порядок выполнения работы

    1. Наденьте резиновую трубку на штуцер насоса и сделайте 10–15 резких качков, стараясь не касаться трубки руками.
    2. Поднесите трубку с насосом к шару электрометра.
    3. Наблюдайте отклонение стрелки электрометра.

    5. Подумайте, где на практике мы можем встретиться с подобным явлением.

    Комментарии учителя (после разбора опыта).
    Аналогичное явление наблюдается при перекачивании через шланги различных газов, жидкостей, в особенности нефтепродуктов – бензина, керосина и т.д. Послушайте заметку из газеты:
    «Было уже за полночь, когда рабочий Камбарской перевалочной нефтебазы И.Третьяков, заправив восемь цистерн авиационным бензином, перевел наливной шланг в очередную порожнюю емкость. Едва шланг коснулся горловины цистерны, как высоко вверх взметнулся 15-метровый оранжево-яркий столб огня. Мощной взрывной волной Третьякова отбросило далеко от цистерн. Взрыв произошел в результате соприкосновения наконечника шланга со стенкой цистерны и образовавшегося при этом разряда статического электричества...»

    3 Наблюдение электризации песка и воронки как двух разнородных тел в процессе соприкосновения

    Приборы и материалы : пластмассовая воронка, штатив, электрометр.

    Порядок выполнения работы

    1. Возьмите пластмассовую воронку и закрепите ее в лапке штатива над шаром электрометра.
    2. Сыпьте на край воронки сухой речной песок так, чтобы он скатывался по воронке в шар электрометра. 3. Наблюдайте отклонение стрелки электрометра.
    4. Попробуйте объяснить наблюдаемое явление.
    5. Подумайте, где на практике мы можем встретиться с подобными явлениями.

    Комментарии учителя (после разбора опыта).
    Послушайте заметку из журнала: «Когда шофер переливал из ведра через пластмассовую воронку бензин в топливный бак мотоцикла, неожиданно между краем воронки и ведром проскочила искра, а затем из горловины бака возник факел горящего бензина. Источником воспламенения бензино-воздушной смеси стал разряд статического электричества».
    Во избежание подобных разрядов при хранении, транспортировке и заправке горючего рекомендуется применять только металлические ведра, канистры и воронки и не использовать пластмассовые емкости.

    4 Электризация. Способы электризации тел. Наблюдение электризации бумаги при движении по ней резинового валика

    Приборы и материалы: сухая стеклянная пластина (текстолит, эбонит), лист бумаги, резиновый валик, электрометр.

    Порядок выполнения работы

    1. Положите на стеклянную пластину лист бумаги.
    2. Проведите несколько раз по бумаге резиновым валиком, плотно прижимая его к листу во время движения.
    3. Поднесите лист бумаги к шару электрометра и наблюдайте отклонение его стрелки.
    4. То же самое проделайте с резиновым валиком.
    5. Попробуйте объяснить наблюдаемое явление.
    6. Подумайте, где на практике мы можем встретиться с подобными явлениями.

    Комментарии учителя (после разбора опыта).
    Этот опыт показывает, как происходит электризация бумаги в типографских машинах (резиновый валик играет роль цилиндров этой машины). На одном из целлюлозно-бумажных комбинатов некоторое время не могли установить причину частых обрывов быстро движущейся бумажной ленты. Были приглашены ученые. Они выяснили, что причина заключалась в электризации ленты при трении ее о валки. Такая самопроизвольная электризация очень опасна, т.к. может стать причиной пожара.

    Прежде чем переходить к обсуждению второй серии экспериментальных заданий, ответьте на вопросы:

    Когда про тело можно сказать, что оно наэлектризовано или что ему сообщен электрический заряд? (Ответы учащихся.)
    Какой еще вывод можно сделать из первой серии опытов? (Наэлектризовать можно практически все тела; наэлектризованное тело взаимодействует с любым телом.)

    Переходим к опытам.

    Вторая серия экспериментов
    Два рода зарядов. Взаимодействие зарядов

    5 Исследование электризации различных тел

    Приборы и материалы : бумажная гильза на шелковой нити, подвешенная на штативе, измерительная линейка длиной 30 см из оргстекла с миллиметровыми делениями, резиновая полоска размером 300 ґ 300 мм, бумажная полоска размером 30 ґ 300 мм, кусок капроновой ткани.

    Порядок выполнения работы

    1. Наэлектризуйте трением, прижатием, ударами друг о друга резиновую полоску и линейку из оргстекла. (Оргстекло при взаимодействии с резиной заряжается положительно.)
    2. Зарядите бумажную гильзу, висящую на нити, при помощи заряженной линейки.
    3. Подносите заряженные линейку и резиновую полоску поочередно к заряженной гильзе, не касаясь ее, и наблюдайте их взаимодействие. Какими зарядами заряжены гильза и резиновая полоска?
    4. Определите с помощью заряженной гильзы знаки зарядов у предложенных вам тел после их электризации друг о друга. Результаты сведите в таблицу:

    Электризуемые тела

    Об оргстекло

    О резину

    О полиэтилен

    О бумагу

    О капрон

    Оргстекло

    0

    +

    Резина

    -

    0

    Полиэтилен

    0

    Бумага

    0

    Капрон

    0

    6 Изучение взаимодействия заряженных тел. Два рода зарядов

    Приборы и материалы: полиэтиленовая пленка, бумажная полоска, пластмассовая ручка, штатив.

    Порядок выполнения работы

    1. Маленький кусочек полиэтиленовой пленки подвесьте на нити к лапке штатива и потрите осторожно (чтобы не порвалась нить) кусочком бумаги.
    2. Наэлектризуйте бумажную и полиэтиленовую полоски. Для этого на бумажную полоску положите полиэтиленовую пленку и разгладьте рукой. Поднимите полоски за концы, разведите их и медленно поднесите друг к другу. Как они взаимодействуют?
    3. Поднесите поочередно бумажную и полиэтиленовую полоски к пленке, висящей на нити, и наблюдайте их взаимодействие.
    4. Ответьте на вопросы:

    Как взаимодействует каждая полоска с пленкой?
    Как можно объяснить различие взаимодействия?
    Какие два рода зарядов существуют в природе?
    Как взаимодействуют одноименно заряженные тела?
    Как взаимодействуют разноименно заряженные тела?

    5. Поднесите к заряженной полиэтиленовой пленке, висящей на нити, пластмассовую ручку, натертую сначала о бумагу, а затем о полиэтилен. Одинаковые ли по знаку заряды возникали на пластмассовой ручке в обоих случаях?

    7 Два рода зарядов. Взаимодействие зарядов. Взаимодействие двух заряженных тел

    Приборы и материалы: два детских воздушных шарика, газета, стеклянная палочка, кусочек шелковой ткани (бумаги).

    Порядок выполнения работы

    1. Наэлектризуйте шарики трением о газету (поочередно).
    2. Подвесьте их на длинных нитях рядом.
    3. Наблюдайте отталкивание шаров.
    4. Объясните наблюдаемые явления.
    5. Подумайте, как, имея в своем распоряжении стеклянную палочку и кусочек шелковой ткани (бумаги), определить знак заряда на шарике. Проделайте опыт, подтверждающий ваше предположение.
    6. Объясните результаты опыта.

    Какие выводы можно сделать из второй серии экспериментов?

    В природе существуют два вида электрических зарядов.
    Одноименные заряды взаимно отталкиваются, а разноименные – притягиваются.
    Одно и то же тело при электризации может зарядиться в одном случае положительно, а в другом – отрицательно, в зависимости от вещества тела, с которым оно соприкасается.

    Переходим к третьей, последней серии опытов.

    Третья серия экспериментов
    Электрическое поле

    8 Изучение зависимости силы взаимодействия заряженных тел от абсолютного значения зарядов и расстояния между ними

    Приборы и материалы: полиэтиленовые пленки (2 шт.), бумажная полоска.

    Порядок выполнения работы

    1. Положите две полиэтиленовые пленки рядом на стол (параллельно друг другу) и проведите по ним один раз рукой. Поднимите пленки за концы, разведите их и, медленно сближая, наблюдайте за их взаимодействием.
    2. Повторите опыт с этими же пленками, натерев их рукой. Как изменилась сила взаимодействия пленок?
    3. Проделайте аналогичные опыты с полиэтиленовой пленкой и бумажной полоской. Для их электризации положите на бумажную полоску полиэтиленовую пленку и потрите их рукой (первый раз – слегка, второй раз – сильнее). Каждый раз разводите полоски и, медленно поднося друг к другу, наблюдайте за их взаимодействием.
    4. Ответьте на вопросы:

    По какому признаку вы судите о силе взаимодействия заряженных тел?
    Как взаимодействуют заряженные полиэтилен с полиэтиленом и полиэтилен с бумагой?
    На оба ли заряженных тела действует электрическая сила?
    От чего зависит сила взаимодействия заряженных тел?
    Как зависит сила взаимодействия заряженных тел от значения зарядов и расстояния между ними?

    9 Наблюдение парения заряженной пушинки в электрическом поле

    Приборы и материалы : пластмассовая линейка, комочек ваты.

    Порядок выполнения работы

    1. Положите пластмассовую линейку на стол и натрите ее бумагой.
    2. Распушите очень маленький комочек ваты и положите его на линейку.
    3. Поднимите наэлектризованную линейку и легонько сдуйте с нее пушинку вверх.
    4. Поместите быстро линейку снизу пушинки и наблюдайте за ее парением в электрическом поле заряженной линейки. (Если пушинка прилипнет к линейке, сдуйте ее и снова повторите опыт, пока не добьетесь парения пушинки.)
    5. Ответьте на вопросы:

    Какой заряд получила пушинка относительно заряда линейки – одноименный или разноименный?
    Какие силы действуют на пушинку во время ее парения?
    Почему пушинка не падает в электрическом поле?

    Комментарий учителя (после разбора опыта).
    Этот опыт показывает возможность уравновешивания силы тяжести, действующей на тело, силой электрического поля. Заряженная вата, плавающая в электрическом поле линейки, играет роль капельки масла (или пылинки цинка) в опытах Иоффе и Милликена.

    10 Опыт по защите от электрических полей

    Приборы и материалы: электрометр, пластина из оргстекла, штатив, металлический стакан (из фольги), пластмассовый стакан, кусочки шерстяной материи.

    Порядок выполнения работы

    1. Наэлектризуйте пластину и закрепите ее в лапке штатива выше электрометра, но несколько в стороне, на небольшом расстоянии.
    2. Наблюдайте отклонение стрелки электрометра.
    3. На шар электрометра наденьте металлический стакан. (Внимание! Рука экспериментатора должна быть изолирована от стакана.) Наблюдайте возвращение стрелки электрометра в нулевое положение.
    4. Снимите стакан. Стрелка должна принять первоначальное положение.
    5. Наденьте на шар электрометра пластмассовый стакан. Наблюдайте уменьшение угла отклонения стрелки электрометра.
    6. Снимите стакан и наблюдайте возвращение стрелки электрометра в первоначальное положение.
    7. Попробуйте объяснить наблюдаемые явления.

    Комментарий учителя (после разбора опыта).
    Опыт доказывает, что внутри металлического тела поле отсутствует.

    Какие выводы можно сделать по третьей серии опытов?

    В пространстве, где находится электрический заряд, существует электрическое поле, и его действие вблизи заряженных тел сильное, а вдали от них – слабее.
    Можно «защититься» от действия электрического поля металлическим экраном.

    Обсуждение результатов. Учащиеся в определенной последовательности, соответствующей плану, кратко
    (1–2 мин) рассказывают о своих экспериментах и дают ответы на вопросы, предложенные в карточке-задании. Учитель комментирует, поправляет, дополняет (примерные комментарии даны ранее по тексту). Названия экспериментов учащиеся записывают в тетрадь для последующего отчета в письменной форме.

    Использование статического электричества и борьба с ним. Мы сегодня экспериментально изучили явление накопления электрических зарядов, т.е. статическое электричество. Оно может служить человеку:

    в лечебных целях – используется так называемый статический душ, положительно воздействующий на организм, для лечения органов дыхания используются специальные электроаэрозоли;
    для очистки воздуха от пыли, сажи, кислотных и щелочных паров с помощью электростатических фильтров;
    для быстрого размножения чертежей, графиков, текстов в электрокопировальных устройствах (в частности ксероксах), для быстрой и прочной окраски тканей в красильнях;
    для копчения рыбы на рыбокомбинатах – в специальных электрокамерах, где движется конвейер с рыбой, заряженной положительным зарядом, а электроды заряжены отрицательно. Копчение таким методом происходит в десятки раз быстрее, чем без электрического поля.

    Статическое электричество может причинять вред как на производстве, так и в быту, так что зачастую с ним приходится бороться. Так, при трении о воздух самолет электризуется, поэтому после посадки к нему нельзя сразу же приставлять металлический трап: может возникнуть разряд, который вызовет пожар. Сначала самолет разряжают, для чего опускают на землю металлический трос, соединенный с обшивкой самолета, и разряд происходит в землю. Микроразряды возникают, когда человек ходит по полу, покрытому полимерным покрытием, или снимает синтетическую одежду. Чтобы нейтрализовать вредное действие статического электричества:

    на производстве заземляют станки и машины, увлажняют воздух, используют специальные нейтрализаторы зарядов;
    – дома увлажняют помещения, используют специальные добавки к воде при мытье полов, антистатик для одежды.

    Домашнее задание: написать отчет по данной теме, в котором сделать выводы по всем экспериментам, проведенным на данном уроке (названия всех экспериментов заранее написаны учителем на доске ).

    Литература

    Буров В.А., Иванов А.И., Свиридов В.И. Фронтальные экспериментальные задания по физике. 9-й класс. – М.: Просвещение, 1986.
    Буров В.А., Кабанов С.Ф., Свиридов В.И. Фронтальные экспериментальные задания по физике в 6–7-х классах. – М.: Просвещение, 1981.
    Горев Л.А. Занимательные опыты по физике. – М.: Просвещение, 1985.
    Книга для чтения по физике. / Сост. И.Г.Кириллова. – М.: Просвещение, 1986.
    Луппов Г.Д. Молекулярная физика и электродинамика в опорных конспектах и тестах. – М.: Просвещение, 1992.
    Перышкин А.В., Родина Н.А. Физика-8. – М.: Просвещение, 1993.

    Цели урока:

    образовательные:

      формирование первоначальных представлений об электрическом заряде, о взаимодействии заряженных тел, о существовании двух видов электрических зарядов.

      выяснение сущности процесса электризации тел.

      определение знак заряда наэлектризованного тела.

    развивающие:

      развитие навыков выделять электрические явления в природе и технике.

      ознакомление с краткими историческими сведениями изучения электрических зарядов.

    воспитательные:

      воспитание умения работать в коллективе,

      воспитание любознательности.

    Оборудование: электроскоп, электрометры, гильза из фольги на подставке стеклянная и эбонитовая палочки, кусок меха и щелка, полиэтилен, бумага, телевизор, видеомагнитофон.

    План урока

      Организационный момент.

      Запись домашнего задания: § 25, 26, 27. Заполнить таблицу.

      Объяснение нового материала:

      Первичный контроль.

      Закрепление изученного материала.

      Подведение итогов. Выставление оценок.

    Ход урока

    Отыщи всему начало и ты многое поймёшь”. (Козьма Прутков.)

    1 ученик: Представьте себе такую сцену:

    В Древней Греции, в красивом городе Милете жил философ Фалес. И, вот однажды вечером к нему подходит его любимая дочь. Объясни, почему у меня путаются нити, когда я работаю с янтарным веретеном, к пряже прилипают пыль, соломинки. Это очень не удобно.

    Фалес берет веретено, потирает его и видит маленькие искорки.

    2 ученик: Правду говорят: “Гром не грянет - мужик не перекрестится”. А какой же гром без молнии? Сколько же миллионов раз должна сверкнуть молния, чтобы мужик, перекрестившись, наконец-то задумался: а что же это такое?

    Учитель: Между натертым янтарным веретеном, притягивающим предметы, и молнией, казалось бы ничего общего. А ведь все это -ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ

    Почему происходят эти явления? В чем суть этих явлений? Это нам предстоит выяснить на сегодняшнем и ближайших уроках.

    В тетрадях записываем дату, классная работа, тема урока.

    Электрические явления

    Каждый из вас, к концу урока должен научиться объяснить, что такое электрический заряд и электризация, как взаимодействуют друг с другом заряженные тела, и как устроен простейший прибор электроскоп.

    Рассмотрим сначала происхождение термина “электричество”

    История развития электричества начинается с Фалеса Милетского. Вначале, свойство притягивать мелкие предметы приписывалось только янтарю (окаменевшая смола хвойных деревьев). От названия которого произошло слово электричество, т.к греч. elektron-янтарь. (запись на доске)

    3 ученик: Лишь в конце XVI века и начале XVII века вспомнили об этом открытии. Английский врач и естествоиспытатель Ульям Гильберт(1544-1603) выяснил, что при трении могут электризоваться многие вещества. Он был одним из первых ученых, утвердивших опыт, эксперимент как основу исследования.

    Научное исследование электрических явлений началось в книге Гильберта, которому и принадлежит и термин “электричество”. Гильберт кропотливо исследовал множество самых различных тел и построил для этой цели специальный электрический указатель, который он описывает таким образом: “Сделай себе из любого металла стрелку длиной три или четыре дюйма, достаточно подвижную на своей игле, наподобие магнитного указателя”. С помощью этого указателя, прототипа современных электроскопов, Гильберт установил, что способностью притягивать обладают многие тела, “не только созданные природой, но и искусственно приготовленные”. Он показал, что при трении электризуется не только янтарь, но и многие другие вещества: алмаз, сапфир, сургуч и что притягивают они не только соломинки, но и металлы, дерево, листья, камешки, комки земли и даже воду и масло. Однако он нашел, что многие тела “не притягиваются и не возбуждаются никакими натираниями”. К числу их относится ряд драгоценных камней и металлы: “серебро, золото, медь, железо, также любой магнит”. Тела обнаруживающие способность притяжения, Гильберт назвал электрическими, тела не обладающие такой способностью, - неэлектрическими.

    Учитель: Если кусочек янтаря потереть о шерсть или стеклянную палочку - о бумагу или шелк, то можно услышать легкий треск, в темноте искорки, а сама палочка приобретает способность притягивать к себе мелкие предметы

    Про тело, которое после натирания притягивает к себе другие тела, говорят что оно наэлектризовано или что ему сообщили электрический заряд.

    Опыт 1. Давайте наэлектризуем расческу о сухие волосы

    По притяжению тел друг к другу можно судить, сообщен ли телам электрический заряд Существуют приборы при помощи которых можно судить о наэлектризованности тел - электроскоп (электрон – наблюдаю)

    Электроскопом называют физический прибор, который используют для обнаружения у тела электрического заряда.

    Электроскоп имеет цилиндрический корпус в который проходит металлический стержень, изолированный от корпуса пластмассовой пробкой. На одном конце стержня находится металлический шарик, а на другом? два подвижных лепестка.

    При соприкосновении заряженного тела с шариком электроскопа, его лепестки отклоняются на некоторый угол, зависящий от величины заряда, чем больше заряд электроскопа, тем больше сила отталкивания листочков. Аналогично устроен электрометр, в нем легкая стрелочка отталкивается от стержня.

    Чтобы разрядить электроскоп можно просто дотронуться до него рукой. Можно это сделать, например железной или медной проволокой, но по стеклянной или эбонитовой палочке заряды не уйдут в землю.

    Электризация может происходить несколькими способами:

    1. СОПРИКОСНОВЕНИЕМ

    Электрическими опытами занимался и Ньютон, который наблюдал электрическую пляску кусочков бумаги, помещенных под стеклом, положенным на металлическое кольцо. При натирании стекла бумажки притягивались к нему, затем отскакивали, вновь притягивались и т.д. Эти опыты Ньютон проводил еще в 1675 г.

    2. УДАРОМ (резиновый шланг резко ударить о массивный предмет и поднести к электроскопу)

    3.ТРЕНИЕМ

    Гильберт указывает, как производится электризация трением: “Их натирают телами, которые не портят их поверхность и наводят блеск, например, жестким шелком, грубым немарким сукном и сухой ладонью. Трут так же янтарь о янтарь, об алмаз, о стекло и многое другое. Так обрабатываются электрические тела”.

    Тела трут друг о друга, чтобы увеличить площадь их соприкосновения.

    Опыт 2. Положите на бумажную полоску полиэтиленовую пленку и сильно прижмите полоски рукой. Разведите полоски, а затем приблизьте их друг к другу.

    Полоски ______________________.

    Вывод: тела можно наэлектризовать ___трением ___________.

    В электризации участвуют всегда ____два _______ тела.

    электризуются после разделения_____оба _____ тела.

    Мы сделали очень важный вывод:

      Один из видов электризации - это трение тел.

      При этом участвуют всегда два (или больше) тела.

      Электризуются оба тела.

    Как вы заметили, в электризации всегда участвуют два тела: янтарь с мехом; стекло с шелком и т.д. При этом электризуются оба тела.

    4 ученик: Электризация наблюдается также при трении жидкостей о металлы в процессе течения, а также разбрызгивания при ударе. Впервые электризация жидкости при дроблении была замечена у водопадов в Швейцарии в 1786 году. С 1913 года явление получило название баллоэлектрического эффекта.

    Покоритель Джомолунгмы Н. Тенсинг в 1953 году в районе южного седла этой горной вершины на высоте 7,9 км над уровнем моря при 30 0 С и сухом ветре до 25 м/с наблюдал сильную электризацию обледеневших брезентовых палаток, вставленных одна в другую. Пространство между палатками было наполнено многочисленными электрическими искрами. Движение лавин в горах в безлунные ночи иногда сопровождается зеленовато-желтым свечением, благодаря чему лавины становятся видимыми.

    Все наэлектризованные тела притягивают к себе другие тела, например листочки бумаги. По притяжению нельзя отличить электрический заряд стеклянной палочки, потертой о шелк, от заряда полученной от эбонитовой палочки, потертой о мех. Ведь обе наэлектризованные палочки притягивают к себе кусочки бумаги.

    5 ученик: Шарль Дюфэ (1698-1739) установил два рода электрических взаимодействий: притяжение и отталкивание. Сначала он установил, что “наэлектризованные тела притягивают ненаэлектризованные и сейчас же их отталкивают, как только они наэлектризуются вследствие соседства или соприкосновения с наэлектризованными телами”. В дальнейшем он открыл “другой принцип, более общий и более замечательный, чем предыдущие”. “Этот принцип, - продолжает Дюфэ, - состоит в том, что существует электричество двух родов, в высокой степени отличной один от другого: один род я называю “стеклянным” электричеством, другой -“смоляным”…Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное. Так, например, тело, наэлектризованное стеклянным электричеством, отталкивает все тела со стеклянным электричеством, и, обратно, оно притягивает тела со смоляным электричеством. Точно так же смоляное отталкивает смоляное и притягивает стеклянное”.

    Учитель: Итак, электрический заряд? это мера свойств заряженных тел взаимодействовать друг с другом.

    Какие виды взаимодействия вы знаете? (притяжение и отталкивание)

    Условно заряды назвали положительный (на стекле потертым о шелк) и отрицательным (на янтаре, эбоните, сере, резине потертых о шерсть).

    Положительный заряд в физике обозначается +q или q

    Отрицательный заряд - -q

    6 ученик: Представление о положительном и отрицательном зарядах, было введено в 1747 году Франклином. Эбонитовая палочка от электризации о шерсть и мех заряжается отрицательно, потому что отрицательным назвал заряд, образующийся на каучуковой палочке В.Франклин. А эбонит это каучук с большой примесью серы. Заряд, который образуется на стеклянной палочке, потертой о шелк, Франклин назвал положительным. Но во времена Франклина существовал только натуральный шелк и натуральный мех. Сегодня порой трудно бывает отличить натуральный шелк и мех от искусственного. Даже разные сорта бумаги электризуют эбонит по разному. Эбонит приобретает отрицательный заряд от соприкосновения с шерстью (мехом) и капроном, но положительный от соприкосновения с полиэтиленом.

    Учитель: Давайте посмотрим как взаимодействуют заряженные тела

    Видеодемонстрация.

    Итак, тела, имеющие электрические заряды одного знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются. (см. опорный конспект)

    По способности проводить электрические заряды все тела делятся на проводники и непроводники (диэлектрики).

    Откройте учебник на стр.62-63, найдите определение проводников и диэлектриков.

    Проводники: металлы, почва, водные растворы или расплавы электролитов.

    Диэлектрики: Пластмассы, воздух, газы, стекло, резина, шелк, фарфор, керосин, капрон и т.д.

    Какие тела называются изоляторами

    Тела изготовленные из диэлектриков называются - изоляторами

    Первичный контроль: Сейчас мы выполним небольшое тестовое задание, которое проверите сами друг у друга и сразу поставите оценки. На выполнение дается пять минут.

    Вариант 1

    1. Стекло при трении о шелк заряжается:

      положительно

      отрицательно.

    2. Если наэлектризованное тело отталкивается от эбонитовой палочки, потертой о мех, то оно заряжено:

      положительно;

      отрицательно.

    3. Три пары легких шариков подвешены па нитях. Какая пара шариков не заряжена?

    4. Какая пара шариков (см. тот же рисунок) имеет одноименные заряды?

    5. Какая пара шариков (см. тот же рисунок) имеет разноименные заряды?

    Вариант 2.

    1. При натирании о мех каучук электризуется:

      положительно;

      отрицательно.

    2. Если заряженное тело притягивается к стеклянной палочке, натертой о шелк, то оно заряжено:

      положительно;

      отрицательно.

    3. Три пары легких шариков подвешены на нитях. Какая пара шариков имеет одноименные заряды?

    4. Какая пара шариков имеет разноименные заряды (см. тот же рисунок)?

    5. Какая пара шариков не заряжена (см. тот же рисунок)?

    Ответы:

    1 вариант АБАВБ

    2 вариант ББАВБ

    Закрепление: Послушайте пословицу и ответьте на вопросы:

      О каком физическом явлении (понятии, законе) в ней говориться?

      Каков физический смысл пословицы? Верна ли она с точки зрения физики?

      В чем житейский смысл этой пословицы?

    ПОСЛОВИЦЫ

    Как соломинка и янтарь (персидская)

    Что шелкова ленточка, к стене льнет (русская)

    КАЧЕСТВЕННЫЕ ЗАДАЧИ

      Какие меры предосторожности надо принять, чтобы при переливании бензина из одной цистерны в другую он не воспламенился? (Во время перевозки и при переливании бензин электризуется, может возникнуть искра, и бензин вспыхнет. Чтобы этого не произошло, обе цистерны и соединяющий их трубопровод заземляют).

      Для заземления цистерны бензовоза к ней прикрепляют стальную цепь, нижний конец которой несколькими звеньями касается земли. Почему такой цепи нет у железнодорожной цистерны? (Потому, что железнодорожная цистерна заземлена через колеса рельса)

      Может ли одно и тоже тело, например эбонитовая палочка, при трении электризоваться то отрицательно, то положительно? (Может, в зависимости от того, чем ее натирают)

      Если вынуть один капроновый чулок из другого и держать каждый в руке на воздухе, то они расширяются. Почему? (При трении чулки электризуются. Одноименные заряды отталкиваются. Поэтому поверхность чулка раздувается.)

    Электрические заряды выполняют так много полезных дел, что всех их и не перечислить.

    Например, копчение это пропитывание продукта древесным дымом. Частицы дыма не только придают продуктам особый вкус, но и предохраняют их от порчи. При электрокопчении частицы коптильного дыма заряжают положительно, а к отрицательным электродам подсоединяют, например, тушки рыбы. Заряженные частицы дыма оседают на поверхности тушки и частично поглощаются. Весь процесс электрокопчения продолжается несколько минут.

    Итог урока. Выставление оценок

    Зачем одевают кольцо золотое
    На палец, когда обручаются двое?-
    Меня любопытная дева спросила.
    Не став пред вопросом в тупик,
    Ответил я так собеседнице милой:
    Владеет любовь электрической силой,
    А золото - проводник!