Болезни Военный билет Призыв

Что означает в уравнениях. Альтернатива правилам нахождения неизвестных. Примеры различных типов уравнений

Уравнение - это два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение - значит найти все значения неизвестных, при которых оно обращается в верное равенство, или установить, что таких значений нет.

В школьном курсе, как правило, рассматривают уравнения, в которых неизвестные принимают числовые значения. Числовое значение неизвестного, удовлетворяющее уравнению с одним неизвестным, называется корнем или решением этого уравнения. Набор чисел, удовлетворяющих уравнению с несколькими неизвестными, называется его решением.

В математике рассматривают также уравнения, в которых неизвестными являются целые числа (диофантовы уравнения), векторы (векторные уравнения), функции (дифференциальные, интегральные, функциональные уравнения) и объекты другой природы. Вместе с уравнением указывают его область определения (множество допустимых значений неизвестных); если это не сделано, то предполагается, что это - естественная общая область определения выражений, стоящих в левой и правой частях уравнения.

Уравнение - одно из важнейших понятий математики. В большинстве практических и научных задач, где какую‑то величину нельзя непосредственно измерить или вычислить по готовой формуле, удается составить соотношение (или несколько соотношений), которым оно удовлетворяет. Так получают уравнение (или систему уравнений) для определения неизвестной величины.

Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры. Привычная нам буквенная запись уравнений окончательно сложилась в XVI в.; традиция обозначать неизвестные последними буквами латинского алфавита $x,y,z,…,$ а известные величины (параметры) - первыми $a,b,c,…$ идет от французского ученого Р. Декарта.

Обычный путь алгебраического (чаще говорят, аналитического) решения уравнения состоит в том, что с помощью преобразований его сводят к более простым уравнениям. Если все решения одного уравнения являются решениями другого, то второе уравнение называется следствием первого. Если каждое из двух уравнений - следствие другого (т. е. множества их решений совпадают), то такие уравнения называются равносильными. Применяя к обеим частям уравнения одно и то же преобразование, мы приходим к следствию этого уравнения. Если же это преобразование обратимо, то получается уравнение, равносильное данному. (Например, умножая обе части уравнения на одно и то же число, мы получаем следствие данного уравнения. Если это число отлично от нуля, то выполненное преобразование обратимо, так что полученное уравнение равносильно исходному).

Решая уравнение с одним неизвестным, мы пытаемся прийти к простейшим уравнениям, для решения которых есть готовые формулы. Это линейные уравнения, квадратные уравнения, уравнения вида $φ(x)=c$, где $c$ - число, а $φ$ - одна из основных элементарных функций: степенная $\varphi (x)={{x}^{n}}$, показательная $\varphi (x)={{a}^{x}}$, логарифмическая $\varphi (x)={{\log }_{a}}x$, тригонометрические $\varphi (x)=\sin x$, $\varphi (x)=\cos x$, $\varphi (x)=\mathrm{tg}\, x$.

Заметим, что запись общего решения уравнения $φ(x)=c$ требует введения функции $ψ$, обратной к функции $φ$. Если $\varphi (x)={{x}^{n}}$, то $\psi (c)=\sqrt[n]{c}$; если $\varphi (x)={{a}^{x}}$, то $\psi (c)={{\log }_{a}}c$; если $\varphi (x)=\sin x$ и $−π/2≤x≤π/2$, то $\psi (c)=\arcsin x$.

Как же сводятся уравнения к простейшим? Для конкретного типа уравнений (алгебраических, тригонометрических, иррациональных, показательных, логарифмических и т.п.) разработаны частные приемы решения. Из общих методов решения уравнений остановимся на трех, которые встречаются чаще всего.

Если левую часть уравнения $f(x)=0$ удается разложить на множители: $f(x)={{f}_{1}}(x)\cdot \ldots \cdot {{f}_{m}}(x),$ то оно распадается на уравнения ${{f}_{1}}(x)=0,$ ${{f}_{2}}(x)=0 …,$ ${{f}_{1}}(x)=0,$ объединение множеств их решений дает множество решений данного уравнения. Например, уравнение ${{x}^{3}}-7x+6=0$ можно решить так: $({{x}^{3}}-x)-(6x-6)=0,$ $x(x-1)(x+1)-6(x-1)=0,$ $(x-1)({{x}^{2}}+x-6)=0.$ Решая уравнения $x−1=0$ и ${{x}^{2}}+x-6=0,$ находим все корни данного уравнения: $1, 2$ и $−3.$ Этот метод принято называть методом разложения на множители.

Часто удается упростить уравнение, принимая в качестве новой неизвестной некоторую функцию от старой неизвестной. Например, уравнение $\sin x+\cos x=\sin 2x$ можно свести к квадратному уравнению, положив $y=\sin x+\cos x.$ Тогда $\sin 2x={{y}^{2}}-1,$ и мы приходим к уравнению ${{y}^{2}}-y-1=0.$

Иногда удается решить уравнение, анализируя функциональные свойства его левой и правой частей.

Например, так как левая часть уравнения ${{2}^{x}}+{{3}^{x}}=5$ возрастает, а правая - постоянна, то это уравнение не может иметь более одного корня. Единственный корень $x=1$ легко угадывается.

Решая уравнение ${{\sin }^{3}}x+{{\cos }^{5}}x=\sqrt{2},$ заметим, что при всех $x$ выполняются неравенства ${{\sin }^{3}}x\le {{\sin }^{2}}x,$ $co{{s}^{5}}x\le {{\cos }^{2}}x,$ откуда $si{{n}^{3}}x+{{\cos }^{5}}x\le$ ${{\sin }^{2}}x+{{\cos }^{2}}x=1,$ а так как $\sqrt{2}>1,$ то данное уравнение не имеет корней.

Уравнение. Рис. 1.

Уравнение. Рис. 2.

До сих пор мы разбирали приемы решения уравнений, позволяющие найти корень уравнения как число или комбинацию известных функций от параметров. Однако далеко не все уравнения, возникающие на практике, можно решить подобным образом. Например, в начале XIX в. было доказано, что не существует общей формулы для решения алгебраических уравнений начиная с пятой степени. Да и в тех случаях, когда уравнение удается решить, формула для корней может быть чересчур громоздкой. Поэтому в математике разработаны различные методы приближенного решения уравнений. Простейший из них основан на том, что если функция $f(x)$ непрерывна во всех точках отрезка $$ и принимает на его концах значения разных знаков, то уравнение $f(x)=0$ имеет на этом отрезке корень.

Приближенное решение уравнений тесно связано с построением графиков функций.

Например, построив график функции $y={{x}^{3}}+x,$ мы можем заключить, что уравнение ${{x}^{3}}+x=1$ имеет один корень и этот корень лежит на отрезке $$, более точно - на отрезке $$, еще более точно - на отрезке $$ (рис. 1). Эта информация практически более полезна, чем точная формула Кардано, выражающая этот корень:

$\sqrt{\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{1}{27}}}+\sqrt{\frac{1}{2}-\sqrt{\frac{1}{4}+\frac{1}{27}}}$

(все равно извлекать радикалы можно лишь приближенно). Для отыскания корней с любой степенью точности» существуют «быстрые» алгоритмы, основанные на методе последовательных приближений (см. Приближенные вычисления).

С помощью графика особенно удобно проводить исследование уравнений; например, по графику $y={{x}^{3}}-x$ (рис. 2) мы сразу видим, что уравнение ${{x}^{3}}-x=c$ имеет три корня при $\left| c \right| 2/\sqrt{3}.$


Получив общее представление о равенствах , и познакомившись с одним из их видов - числовыми равенствами , можно начать разговор еще об одном очень важном с практической точки зрения виде равенств - об уравнениях. В этой статье мы разберем, что такое уравнение , и что называют корнем уравнения. Здесь мы дадим соответствующие определения, а также приведем разнообразные примеры уравнений и их корней.

Навигация по странице.

Что такое уравнение?

Целенаправленное знакомство с уравнениями обычно начинается на уроках математики во 2 классе. В это время дается следующее определение уравнения :

Определение.

Уравнение – это равенство, содержащее неизвестное число, которое надо найти.

Неизвестные числа в уравнениях принято обозначать с помощью маленьких латинских букв, например, p , t , u и т.п., но наиболее часто используются буквы x , y и z .

Таким образом, уравнение определяется с позиции формы записи. Иными словами, равенство является уравнением, когда подчиняется указанным правилам записи – содержит букву, значение которой нужно найти.

Приведем примеры самых первых и самых простых уравнений. Начнем с уравнений вида x=8 , y=3 и т.п. Чуть сложнее выглядят уравнения, содержащие вместе с числами и буквами знаки арифметических действий, например, x+2=3 , z−2=5 , 3·t=9 , 8:x=2 .

Разнообразие уравнений растет после знакомства со – начинают появляться уравнения со скобками, например, 2·(x−1)=18 и x+3·(x+2·(x−2))=3 . Неизвестная буква в уравнении может присутствовать несколько раз, к примеру, x+3+3·x−2−x=9 , также буквы могут быть в левой части уравнения, в его правой части, или в обеих частях уравнения, например, x·(3+1)−4=8 , 7−3=z+1 или 3·x−4=2·(x+12) .

Дальше после изучения натуральных чисел происходит знакомство с целыми, рациональными, действительными числами, изучаются новые математические объекты: степени, корни, логарифмы и т.д., при этом появляются все новые и новые виды уравнений, содержащие эти вещи. Их примеры можно посмотреть в статье основные виды уравнений , изучающиеся в школе.

В 7 классе наряду с буквами, под которыми подразумевают некоторые конкретные числа, начинают рассматривать буквы, которые могут принимать различные значения, их называют переменными (смотрите статью ). При этом в определение уравнения внедряется слово «переменная», и оно становится таким:

Определение.

Уравнением называют равенство, содержащее переменную, значение которой нужно найти.

Например, уравнение x+3=6·x+7 – уравнение с переменной x , а 3·z−1+z=0 – уравнение с переменной z .

На уроках алгебры в том же 7 классе происходит встреча с уравнениями, содержащими в своей записи не одну, а две различные неизвестные переменные. Их называют уравнениями с двумя переменными. В дальнейшем допускают присутствие в записи уравнений трех и большего количества переменных.

Определение.

Уравнения с одной, двумя, тремя и т.д. переменными – это уравнения, содержащие в своей записи одну, две, три, … неизвестные переменные соответственно.

Например, уравнение 3,2·x+0,5=1 – это уравнение с одной переменной x , в свою очередь уравнение вида x−y=3 – это уравнение с двумя переменными x и y . И еще один пример: x 2 +(y−1) 2 +(z+0,5) 2 =27 . Понятно, что такое уравнение – это уравнение с тремя неизвестными переменными x , y и z .

Что такое корень уравнения?

С определением уравнения непосредственно связано определение корня этого уравнения. Проведем некоторые рассуждения, которые нам помогут понять, что такое корень уравнения.

Допустим, перед нами находится уравнение с одной буквой (переменной). Если вместо буквы, входящей в запись этого уравнения, подставить некоторое число, то уравнение обратиться в числовое равенство. Причем, полученное равенство может быть как верным, так и неверным. Например, если вместо буквы a в уравнение a+1=5 подставить число 2 , то получится неверное числовое равенство 2+1=5 . Если же мы в это уравнение подставим вместо a число 4 , то получится верное равенство 4+1=5 .

На практике в подавляющем большинстве случаев интерес представляют такие значения переменной, подстановка которых в уравнение дает верное равенство, эти значения называют корнями или решениями данного уравнения.

Определение.

Корень уравнения – это такое значение буквы (переменной), при подстановке которого уравнение обращается в верное числовое равенство.

Отметим, что корень уравнения с одной переменной также называют решением уравнения. Другими словами, решение уравнения и корень уравнения – это одно и то же.

Поясним это определение на примере. Для этого вернемся к записанному выше уравнению a+1=5 . Согласно озвученному определению корня уравнения, число 4 есть корень этого уравнения, так как при подстановке этого числа вместо буквы a получаем верное равенство 4+1=5 , а число 2 не является его корнем, так как ему отвечает неверное равенство вида 2+1=5 .

На этот момент возникает ряд естественных вопросов: «Любое ли уравнение имеет корень, и сколько корней имеет заданное уравнение»? Ответим на них.

Существуют как уравнения, имеющие корни, так и уравнения, не имеющие корней. Например, уравнение x+1=5 имеет корень 4 , а уравнение 0·x=5 не имеет корней, так как какое бы число мы не подставили в это уравнение вместо переменной x , мы получим неверное равенство 0=5 .

Что касается числа корней уравнения, то существуют как уравнения, имеющие некоторое конечное число корней (один, два, три и т.д.), так и уравнения, имеющие бесконечно много корней. Например, уравнение x−2=4 имеет единственный корень 6 , корнями уравнения x 2 =9 являются два числа −3 и 3 , уравнение x·(x−1)·(x−2)=0 имеет три корня 0 , 1 и 2 , а решением уравнения x=x является любое число, то есть, оно имеет бесконечное множество корней.

Пару слов стоит сказать о принятой записи корней уравнения. Если уравнение не имеет корней, то обычно так и пишут «уравнение не имеет корней», или применяют знак пустого множества ∅. Если уравнение имеет корни, то их записывают через запятую, или записывают как элементы множества в фигурных скобках. Например, если корнями уравнения являются числа −1 , 2 и 4 , то пишут −1 , 2 , 4 или {−1, 2, 4} . Допустимо также записывать корни уравнения в виде простейших равенств. Например, если в уравнение входит буква x , и корнями этого уравнения являются числа 3 и 5 , то можно записать x=3 , x=5 , также переменной часто добавляют нижние индексы x 1 =3 , x 2 =5 , как бы указывая номера корней уравнения. Бесконечное множество корней уравнения обычно записывают в виде , также при возможности используют обозначения множеств натуральных чисел N , целых чисел Z , действительных чисел R . Например, если корнем уравнения с переменной x является любое целое число, то пишут , а если корнями уравнения с переменной y является любое действительное число от 1 до 9 включительно, то записывают .

Для уравнений с двумя, тремя и большим количеством переменных, как правило, не применяют термин «корень уравнения», в этих случаях говорят «решение уравнения». Что же называют решением уравнений с несколькими переменными? Дадим соответствующее определение.

Определение.

Решением уравнения с двумя, тремя и т.д. переменными называют пару, тройку и т.д. значений переменных, обращающую это уравнение в верное числовое равенство.

Покажем поясняющие примеры. Рассмотрим уравнение с двумя переменными x+y=7 . Подставим в него вместо x число 1 , а вместо y число 2 , при этом имеем равенство 1+2=7 . Очевидно, оно неверное, поэтому, пара значений x=1 , y=2 не является решением записанного уравнения. Если же взять пару значений x=4 , y=3 , то после подстановки в уравнение мы придем к верному равенству 4+3=7 , следовательно, эта пара значений переменных по определению является решением уравнения x+y=7 .

Уравнения с несколькими переменными, как и уравнения с одной переменной, могут не иметь корней, могут иметь конечное число корней, а могут иметь и бесконечно много корней.

Пары, тройки, четверки и т.д. значений переменных часто записывают кратко, перечисляя их значения через запятую в круглых скобках. При этом записанные числа в скобках соответствуют переменным в алфавитном порядке. Поясним этот момент, вернувшись к предыдущему уравнению x+y=7 . Решение этого уравнения x=4 , y=3 кратко можно записать как (4, 3) .

Наибольшее внимание в школьном курсе математики, алгебры и начал анализа уделяется нахождению корней уравнений с одной переменной. Правила этого процесса мы очень подробно разберем в статье решение уравнений .

Список литературы.

  • Математика . 2 кл. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др.] - 3-е изд. - М.: Просведение, 2012. - 96 с.: ил. - (Школа России). - ISBN 978-5-09-028297-0.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


















Корни уравнения не изменяются, если какое – нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак. 3х – 8 = х – 14 3х –х = х = -6 х = -3












Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Решение логарифмического уравнения вида основано на том, что такое уравнение равносильно уравнению f(x)=g(x) при дополнительных условиях f(x) Согласно определению логарифма,




0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" class="link_thumb"> 23 Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два решения: 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р"> 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два решения:"> 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р"> title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р">




















Тригонометрическое уравнение вида все члены которого имеют одну и ту же степень относительно синуса и косинуса, называется однородным. Однородное уравнение легко сводиться к уравнению относительно, если все его члены разделить на. При этом если, то такое деление не приведет к потере решений, поскольку значение не удовлетворяет уравнению. Если же, то выносится за скобки.


Уравнение вида равносильно уравнению,где Наиболее часто применяется метод, состоящий в том, что все члены уравнения, состоящие в правой части, переносятся в левую часть; после чего левая часть уравнения разлагается на множители, при этом применяются формулы разложения тригонометрических функций в произведение, формулы понижения степени, формулы преобразования произведения тригонометрических функций в систему.




Иррациональные уравнения Уравнения, содержащие один знак радикала второй степени -В-Возведение обеих частей уравнения в степень. При возведении обеих частей уравнения в четную степень, получается уравнение, неравносильное исходному. Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляют в начальное уравнение и проверяют, верно ли получается числовое равенство.


Равенство нулю произведения(частного) двух выражений. Произведение двух выражений равно нулю, если хотя бы одно из выражений равно нулю, а другое при этом имеет смысл. Формально это записывается так: Формальная запись частного от деления двух выражений равных нулю:




Уравнения, содержащие два(три) знака радикала второй степени Возведение в квадрат обеих частей уравнения. Сначала уравнение нужно преобразовать так, чтобы в одной части стояли радикалы, а в другой- остальные члены исходного уравнения. Так поступают, если в уравнении два радикала. Если же их три, то два из них оставляют в одной части уравнения, а третий переносят в другую. Затем обе части уравнения возводят в квадрат и проводятся необходимые преобразования. Далее все члены уравнения, не содержащие радикалов, снова переносятся в одну сторону уравнения, а оставшийся радикал(теперь он один!)-в другую. Полученное уравнение вновь возводят в квадрат, и в итоге получается уравнение, не содержащее радикалов.







Уравнения, содержащие радикалы третьей и более высоких степей. При решении уравнений, содержащих радикалы третьей степени, бывает полезно пользоваться следующими тождествами: Решить уравнение: Решение: Возведем обе части этого уравнения в третью степень и воспользуемся выше приведённым тождеством: Заметим, что выражение, стоящее в скобках, равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим: Раскроем скобки, приведем подобные члены и решим квадратное уравнение. Его корни х=5 и х=-25/2. Если считать (по определению), что корень нечетной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения. Ответ:5,-25/2


Уравнение с параметром При каких значениях а уравнение имеет два корня, один из которых больше 1, а другой меньше? Решение: Рассмотрим функцию: и построим эскиз её графика. При а=0 функция становится линейной и двух пересечений с осью Ох(корней уравнения у=0) иметь не может. При а>0 графиком функции является парабола, ветви которой направлены вверх. Необходимым и достаточным условием существования корней таких, что а в этом случае является единственное условие: Если же а 0 графиком функции является парабола, ветви которой направлены вверх. Необходимым и достаточным условием существования корней таких, что а в этом случае является единственное условие: Если же а">


Графический способ решения систем уравнений Система уравнений состоит из двух или более алгебраических уравнений. Решение системы называется такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество. Решить систему - значит найти все её решения или доказать что их нет.


Графическое решение систем Графический способ решения систем уравнений состоит в следующем: Строятся графики каждого уравнения системы; Определяются точки пересечения графиков; Записывается ответ: координаты точек пересечения построенных графиков. Графический способ решения систем уравнений в большинстве случаев не дает точного решения системы, однако он может быть полезен для наглядной иллюстрации рассуждений.




Равносильность уравнений Равносильными (эквивалентными) уравнения называются в том случае, если все корни первого уравнения являются корнями второго уравнения, а все корни второго уравнения – корнями первого. Равносильные преобразования уравнения – это преобразования, приводящие к равносильному уравнению: 1)Прибавление одновременно к обеим частям уравнения любого числа (в частности, перенос слагаемых из одной части уравнения в другую с изменением знака) 2) Умножение (и деление) обеих частей уравнения одновременно на любое число, отличное от нуля. Кроме того, для уравнений в области действительных чисел: 3) Возведением обеих частей уравнения в любую нечетную степень 4) Возведение обеих частей уравнения при условии, что они неотрицательны, в любую четную натуральную степень



Показательные уравнения. Показательным называют уравнение, в котором неизвестное входит только в показатели степеней при постоянных основаниях. Показательное уравнение вида равносильно уравнению Имеются два основных метода решения показательных уравнений: 1)приведение уравнения к виду,а затем к виду; 2) введение новой переменной. Пример: Решим уравнение:


Список используемой литературы: Д.И.Аверьянов – «Большой справочник для поступающих в ВУЗы» 1998г. В.К.Егерев- «Сборник задач по математике для поступающих в ВУЗы под редакцией М.И.Сканави». 1997г. Ю.Н.Макарычев – «Алгебра. Дополнительные главы к школьному учебнику. 8 класс.» 2003г. Ю.Н.Макарычев – «Алгебра. Дополнительные главы к школьному учебнику. 9 класс.» 2003г.


Презентацию подготовили: Шманова Виктория Деева Александра 11 класс МОУ «СОШ 1» г. Шумиха 2007г. подробная информация по тел


УРАВНЕНИЯ
Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида (x - 1)2 = (x - 1)(x - 1) выполняется при всех значениях переменной x. Для обозначения тождества часто вместо обычного знака равенства = пишут знак є, который читается "тождественно равно". Тождества используются в алгебре при записи разложения многочленов на множители (как в приведенном выше примере). Встречаются они и в тригонометрии в таких соотношениях, как sin2x + cos2x = 1, а в общем случае выражают формальное отношение между двумя на первый взгляд различными математическими выражениями. Если уравнение, содержащее переменную x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17. Уравнения служат мощным средством решения практических задач. Точный язык математики позволяет просто выразить факты и соотношения, которые, будучи изложенными обычным языком, могут показаться запутанными и сложными. Неизвестные величины, обозначаемые в задаче символами, например x, можно найти, сформулировав задачу на математическом языке в виде уравнений. Методы решения уравнений составляют в основном предмет того раздела математики, который называется теорией уравнений.
ТИПЫ УРАВНЕНИЙ
Алгебраические уравнения. Уравнения вида fn = 0, где fn - многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида fn = a0 xiyj... vk + a1 xlym... vn + ј + asxpyq... vr, где x, y, ..., v - переменные, а i, j, ..., r - показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так: f(x) = a0xn + a1xn - 1 + ... + an - 1x + an или, в частном случае, 3x4 - x3 + 2x2 + 4x - 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f(x) = 0. Если a0 № 0, то n называется степенью уравнения. Например, 2x + 3 = 0 - уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени - кубическими. Аналогичные названия имеют и уравнения более высоких степеней.
Трансцендентные уравнения. Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

Где lg - логарифм по основанию 10.
Дифференциальные уравнения. Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.
Интегральные уравнения. Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s) = тK (s, t) f (t) dt, где f (s) и K(s,t) заданы, а f (t) требуется найти.
Диофантовы уравнения. Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3x - 5y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5n, y = 4 + 3n.
РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.
Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом. 1. Если равные величины увеличить на одно и то же число, то результаты будут равны. 2. Если из равных величин вычесть одно и то же число, то результаты будут равны. 3. Если равные величины умножить на одно и то же число, то результаты будут равны. 4. Если равные величины разделить на одно и то же число, то результаты будут равны. Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.
Квадратные уравнения. Решения общего квадратного уравнения ax2 + bx + c = 0 можно получить с помощью формулы


Таким образом, существуют два решения, которые в частном случае могут совпадать.
Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители. Например, уравнение x3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x2 - x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю: Таким образом, корни равны x = -1,
Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде


Решение такой системы находится с помощью определителей


Оно имеет смысл, если

>
>>">



>">

и
отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации - система
">

Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей
и
отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации - система

(2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное число решений. Общая теория рассматривает m линейных уравнений с n переменными:


Если m = n и матрица (aij) невырожденна, то решение единственно и может быть найдено по правилу Крамера:


где Aji - алгебраическое дополнение элемента aij в матрице (aij). В более общем плане существуют следующие теоремы. Пусть r - ранг матрицы (aij), s - ранг окаймленной матрицы (aij; bi), которая получается из aij присоединением столбца из чисел bi. Тогда: (1) если r = s, то существует n - r линейно независимых решений; (2) если r См. также АЛГЕБРА .

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "УРАВНЕНИЯ" в других словарях:

    Уравнение равенство вида или, где f и g функции (в общем случае векторные) одного или нескольких аргументов, а также задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут… … Википедия

    уравнения - решать дифференциальные уравнения решение … Глагольной сочетаемости непредметных имён

    Уравнения Эйлера Лагранжа (в физике также уравнения Лагранжа Эйлера или уравнения Лагранжа) являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти… … Википедия

    Механика сплошных сред Сплошная среда Классическая меха … Википедия

    - (англ. RANS (Reynolds averaged Navier Stokes)) уравнения Навье Стокса (уравнения движения вязкой жидкости) осредненные по Рейнольдсу. Используются для описания турбулентных течений. Метод осреднения Рейнольдса заключается в замене случайно… … Википедия

    Уравнения Эйлера Лагранжа являются основными формулами вариационного исчисления, c помощью которых ищутся экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации, и, совместно с принципом действия,… … Википедия

    Уравнения Прока обобщение уравнений Максвелла, призванное описывать массивные частицы со спином 1. Уравнения Прока обычно записываются в виде, где антисимметричный тензор электромагнитного поля … Википедия