Болезни Военный билет Призыв

Что называется множеством. Множества и операции над множествами. Операции, производимые над множествами

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .

Элементы теории множеств. Множества и операции над ними

Понятие множества является одним из основных математических понятий. Это неопределяемое понятие, его можно только описать или пояснить на примерах. Так, можно говорить о множестве букв в латинском алфавите, множество всех книг в данной библиотеке, множестве студентов в данной группе, множестве всех точек данной линии. Чтобы задать множество, достаточно перечислить элементы или указать характеристические свойства элементов, т.е. такое свойство, которым обладают все элементы данного множества и только они.

Определение 1.1. Предметы (объекты), составляющие некоторое множество, называются его элементами .

Множество принято обозначать прописными латинскими буквами, а элементы множества – строчными буквами. То, что x является элементом множества A , записывается так: x A (x принадлежит A ). Запись вида x A (x A ) означает, что x не принадлежит A , т.е. не является элементом множества A .

Элементы множества принято записывать в фигурных скобках. Например, если A – множество, состоящее из первых трех букв латинского алфавита, то его записывают так: A= {a,b,c }.

Множество может содержать бесконечно много элементов (множество точек прямой, множество натуральных чисел), конечное число элементов (множество школьников в классе), либо вообще не содержать ни одного элемента (множество студентов пустой аудитории).

Определение 1.2. Множество, не содержащее ни одного элемента, называется пустым множеством , обозначается Ø.

Определение 1.3. Множество A называется подмноже-ством множества B , если каждый элемент множества A принадлежит и множеству B . Это обозначается A B (A – подмножество B ).

Пустое множество считают подмножеством любого множества. Если множество A не является подмножеством множества B , то пишут A B.

Определение 1.4. Два множества A и B называют равными , если являются подмножествами друг друга. Обозначают A = B. Это означает, что если x A , то x B и наоборот, т.е. если и , то .

Определение 1.5. Пересечение множеств A и B называют множество M , элементы которого являются одновременно элементами обоих множеств A и B. Обозначают M= A B. Т.е. x A B , то x A и x B.

Записывают A B= { x | x A и x B }. (Вместо союза и – ставятся знаки , &).

Определение 1.6. Если A B= Ø, то говорят, что множества A и B не пересекаются.

Аналогично можно определить пересечение 3-х, 4-х и любого конечного числа множеств.

Определение 1.7. Объединением множеств A и B называют множество M , элементы которого принадлежат хотя бы одному из данных множеств.Обозначают M=A B. Т.о. A B= { x | x A или x B }. (Вместо союза или – ставится знак ).

Аналогично определяется и множество A 1 A 2 A n . Оно состоит из элементов, каждый из которых принадлежит хотя бы одному из множеств A 1 , A 2 ,…, A n (а может быть, и нескольким сразу).

Пример 1.8. 1) если A= {1;2;3;4;5} и B= {1;3;5;7;9}, то A B= {1;3;5} и A B= {1;2;3;4;5;7;9}.

2) если A= {2;4} и B= {3;7}, то A B= Ø и A B= {2;3;4;7}.

3) если A= {летние месяцы} и B= {месяцы, в которых 30 дней}, то A B= {июнь} и A B= {апрель; июнь; июль; август; сентябрь; ноябрь}.

Определение 1.9. Натуральными называются числа 1,2,3,4,…, используемые для счета предметов.

Множество натуральных чисел обозначается N, N={1;2;3;4;…;n;…}. Оно является бесконечным, имеет наименьший элемент 1 и не имеет наибольшего элемента.

Пример 1.10. A – множество натуральных делителей числа 40. Перечислить элементы этого множества. Верно ли, что 5 A, 10 A, -8 A, 4 A, 0 A, 0 A.

A = {1,2,4,5,8,10,20,40}. (В,В,Н,Н,Н,В)

Множеством называют совокупность неких объединенных по определенному правилу предметов. При этом они сохраняют свои индивидуальные черты. Множества мы встречаем в повседневной жизни: совокупность монет в кошельке, тарелок в шкафу, яблок в холодильнике и т.д. Также это математическое понятие, являющееся аксиоматическим.

Математическое множество

О том, что такое множество, мы знаем благодаря Георгу Кантору, посвятившему свои математические труды этой теме. Теория множеств стала настоящей революцией в этой области науки и по сей день имеет огромное значение для изучения более сложных понятий. Множество можно определить, только задав все входящие в него предметы, и изобразить следующим образом:

  • M = {a, b, c…}

Принадлежность предмета к множеству обозначается знаком « Є ». Все элементы множества должны отличаться друг от друга. Если в множество не входит ни один элемент, его принято называть пустым.

Элементы одного множества могут быть частью другого. Множества, состоящие из одинаковых элементов, принято считать равными.

Операции, производимые над множествами

Разобрав, что называют множеством, можно переходить к описанию действий над ними.

  • Объединение. Сумма заданных множеств обозначается как Х= N+M+P. Объединение должно вмещать в себя совокупность всех элементов минимум одного из слагаемых.
  • Пересечение. Общая часть нескольких множеств называется пересечением и обозначается как Y. При пустом пересечении множеств считается, что они не пересекаются.
  • Разность. Разностью называется совокупность элементов одного множества, не принадлежащих другому.

Множество чисел

Множество, состоящее из чисел, называется числовым.

В соответствии с видами входящих элементов множества могут обозначаться:

  • Z - состоящие из целых чисел (диапазон бесконечности положительных и отрицательных чисел);
  • Q - состоящие из рациональных чисел (т.е. представленных дробью);
  • N - состоящие из натуральных чисел (натуральные числа - это те, которые мы используем при счете. Они возникают естественным образом);
  • R - состоящие из действительных чисел (положительные, отрицательные числа и ноль называют действительными. Они бывают рациональными и иррациональными. Иррациональные числа можно выразить только в формате десятичной дроби (9,999999999).

Разобрав, что такое множество чисел, вам проще будет дальше постигать математику. Это интересная наука развивает логическое мышление, требует терпения, филигранной точности и времени, но дарит огромную радость от решения сложных задач.

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,

Рассмотрим теперь кратко простые теоретико-множественные понятия и теоретико-множественные операции: пересечение, объединение, дополнение, декартово произведение и др. Для случая конечных множеств они лежат в основе арифметических действий над натуральными числами и поэтому очень важны для школьной математики. Мы ограничимся совсем краткими определениями и пояснениями.

Множество не содержащее ни одного элемента называют пустым множеством. Его обозначается знаком. Пустое множество можно определить любым противоречивым свойством, например= {х | xх}, в области множеств оно играет как бы роль нуля.

Множество N называется подмножеством множества М тогда и только тогда, когда каждый элемент множества N принадлежит множеству М. Отношение между множеством М и любым его подмножеством N называется включением и обозначается символом: МN.

Отметим следующие элементарные утверждения о понятиях подмножества и включения, прямо вытекающих из определения.

а) Каждое множество М является подмножеством самого себя: ММ. Любое подмножество N множества М, отличное от М, называется собственным подмножеством множества М; соответствующее включение также называется собственным и обозначается: МN. Принято считать, что пустое множествоявляется подмножеством любого множества М.

б) Отношение включения транзитивино, т. е. из NМ и РN следует, что РМ. Транзитивно также отношение собственного включения.

в) Очень важно не смешивать отношения принадлежностии включения: если {а}М, то аМ, и наоборот; но из {a}М не следует {а}М. Так, например, если М = {1, 2}, то это означает, что 1М и 2М, но для всех других объектов х справедливо хМ; для включения же правильны следующие утверждения:

М, {1}М, {2}М., {1, 2}М.

Другой пример. Пустое множествоне имеет элементов хM для любого объекта х. Между темсодержит одно подмножество, а именно само себя.

Введем несколько операций над множествами.

а) Пересечением множеств М и N называют множество тех объектов, которые принадлежат множествам М и N одновременно.

Обозначение: МN = {х|хМ и хN}.

б) Объединением множеств М и N называют множество тех элементов, которые содержатся по крайней мере в одном из множеств М или N. Обозначение: MN = {х | хМ или хN }.

в) Разностью множеств М и N называют множество тех элементов, которые принадлежат множеству М и не принадлежат множеству N. Обозначение: М \ N. = {х | хМ и хN}.

г)Симметрической разностью множеств М и N называют множество тех элементов, которые принадлежат только множеству М - или только множеству N.

Обозначение: MN ={ x | (xМ и хN) или (хN и хМ)}.

Введенные теоретико-множественные операции наглядно иллюстрируются рисунком 2, где множества М и N изобрансены пересекающимися кругами:

МN - точки области II;

МN - точки областей I, II, III;

М \ N - точки области I;

N \ М - точки области III;

MN - точки областей I и III.

д) В конкретных математических областях бывает полезно ввести в рассмотрение столь обширное множество U, что все рассматриваемые множества окажутся его подмножествами. Такое множество U принято называть универсальным множеством или универсумом. Отметим, что "универсальное множество" понятие относительное: оно выбирается для какого-нибудь определенного раздела науки и притом часто даже явно не определяется, а просто подразумевается.

Так, например, в элементарной планиметрии в качестве универсального множества принято рассматривать множество всех точек плоскости. Различные фигуры, изучаемые в планиметрии, можно считать множествами точек, т. е. подмножествами так выбранного универсального множества.

В элементарной арифметике универсальным множеством считается множество Z всех целых рациональных чисел и т. д.

е) Если выбрано некоторое универсальное множество U , то возникает новая теоретико-множественная операция - дополнение. Для всякого множества М (при этом подразумевается, что М - подмножество универсального множества U его дополнение, обозначаемое через М , - это множество всех элементов универсума, которые не принадлежат множеству М:

М = {х | хU и xM}

Таким образом, дополнение - это частный случай разности:

M = U \ M,
все отличие здесь состоит в том, что разность берется относительно фиксированного множества, содержащего все множества, которые в данной связи рассматриваются.

Рассмотрим теперь операции декартового произведения множеств. Пусть A и B - два множества. Тогда множество C = {(a, b) | aA, bB}
всех пар (a, b), где a и b независимо друг от друга принимают все значения соответственно из множеств A и B называется декартовым произведением множеств А и В и обозначается через А х В. Если А и В - конечные множества, содержащие соответственно m и n элементов, то сразу видно, что множество А х В содержит mn элементов.

Самостоятельный интерес представляет тот частный случай, когда множества А и В совпадают: А = В. Чтобы его рассмотреть, вы введем новый термин.

Упорядоченной парой элементов множества А будем называть объект (а 1 , а 2), состоящий из двух (не обязательно различных) элементов а 1 , а 2 А, с указанием, какой из них следует считать первым, а какой - вторым. Так, например, если А = {1, 2, 3, 4., 5}, то упорядоченные пары (2, 3) и (3, 2) следует считать по определению различными. Упорядоченными парами элементов из А считаются также объекты (1, 1), (2, 2), (3, 3), (4, 4), (5, 5). Упорядоченные пары мы будем заключать в круглые скобки и обозначать жирными строчными латинскими буквами: a = (а 1 а 2), в отличие от неупорядоченных пар, которые, как и множества элементов, записываются в фигурных скобках: {а 1 а 2 }.

Назовем множество

С = {(а 1 , а 2) | a 1 А, a 2 А}
всех упорядоченных пар (а 1 а 2) элементов из А декартовым квадратом множества А и будем обозначать его через A 2 .

Рассмотренные свойства множеств и операции над ними в неявном, виде присутствуют в начальном преподавании арифметики. Мы особенно подчеркиваем, что речь идет об их неявном присутствии: бессмысленно было бы в I или II классе давать явные определения арифметических действий. Само слово «действие» для арифметических операций указывает на то, что на начальном уровне развития детей сложение, вычитание, умножение и деление возникают как действия над конкретными множествами из мира, свойственного школьникам. Вековой опыт обучения на всех уровнях показывает, что человек обычно сначала делает нечто, а лишь затем задумывается над тем, какими же общими свойствами обладают его действия.

Теоретико-множественное обоснование арифметических действий над натуральными числами дается довольно элементарно, так как более строгое обоснование оказывается достаточно трудоемким и мы не имеем возможности провести его здесь со всей необходимой тщательностью. Как мы уже говорили, с точки зрения теории множеств натуральные кардинальные числа отвечают классам равнамощных конечных множеств, к ним, естественно, присоединяется и число нуль как кардинальное число, соответствующее пустому множеству. Тогда элементарные отношения и действия над натуральными числами вводятся следующим образом.

1.Отношение «равно», «больше», «меньше» . Пусть m и n - два натуральных числа и пусть М и N - два множества, кардинальные числа которых суть соответственно m и n. Тогда m меньше n (а n больше m), если множество М равномощно некоторому собственному подмножеству множества N. Как видно из этого же определения, m = n означает, что множества М и N равномощны. Для оправдания такого определения необходимо, конечно, показать, что оно не зависит от выбранных множеств М и N. Иначе говоря, надо доказать, что если М" и N" - два других множества с числом элементов m и n соответственно и если при этом М равномощно собственному подмножеству множества N", то и М" равномощно собственному подмножеству множества N", и наоборот. Это доказательство мы предоставим читателю. Отметим, что определение неравенства для бесконечных кардинальных чисел получается более сложным.

2.Сложение. Для определения суммы кардинальных чисел поступают так. Пусть m и n - два натуральных числа. Выбираем опять произвольно два непересекающихся множества М с m N с n элементами соответственно, и пусть S - их объединение: S = MN. Тогда по определению сумма s = m + n - это кардинальное число множества S. Покажем, что сумма s от выбора множеств M и N не зависит, а зависит только от их мощностей. Пусть М" и N"- другие множества, равномощные множествам М и N соответственно, и пусть при этом также M"N" =; тогда S" = М"N" равномощно множеству S = МN. Следует все время иметь в виду, что кардинальное число объединения есть сумма кардинальных чисел объединяемых множеств, только если последние не имеют общих элементов (имеют пустое пересечение). В случае пересекающихся множеств имеет место более общее, правило.