Болезни Военный билет Призыв

Что называется мгновенной скоростью. Мгновенная скорость движения

Скатывание тела по наклонной плоскости (рис. 2);

Рис. 2. Скатывание тела по наклонной плоскости ()

Свободное падение (рис. 3).

Все эти три вида движения не являются равномерными, то есть в них изменяется скорость. На этом уроке мы рассмотрим неравномерное движение.

Равномерное движение – механическое движение, при котором тело за любые равные отрезки времени проходит одинаковое расстояние (рис. 4).

Рис. 4. Равномерное движение

Неравномерным называется движение , при котором тело за равные промежутки времени проходит неравные пути.

Рис. 5. Неравномерное движение

Основная задача механики – определить положение тела в любой момент времени. При неравномерном движении скорость тела меняется, следовательно, необходимо научиться описывать изменение скорости тела. Для этого вводятся два понятия: средняя скорость и мгновенная скорость.

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Например, делегация школьников добирается из Новосибирска в Сочи поездом. Расстояние между этими городами по железной дороге составляет приблизительно 3300 км. Скорость поезда, когда он только выехал из Новосибирска составляла , значит ли это, что посередине пути скорость была такой же, а на подъезду к Сочи [М1] ? Можно ли, имея только эти данные, утверждать, что время движения составит (рис. 6). Конечно нет, так как жители Новосибирска знают, что до Сочи ехать приблизительно 84 ч.

Рис. 6. Иллюстрация к примеру

Когда рассматривается движение тела на большом участке пути в целом, удобнее ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение (рис. 7).

Рис. 7. Средняя скорость

Данное определение не всегда является удобным. Например, спортсмен пробегает 400 м – ровно один круг. Перемещение спортсмена равно 0 (рис. 8), однако мы понимаем, что его средняя скорость нулю равна быть не может.

Рис. 8. Перемещение равно 0

На практике чаще всего используется понятие средней путевой скорости.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден (рис. 9).

Рис. 9. Средняя путевая скорость

Существует еще одно определение средней скорости.

Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.

Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:

Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.

Задача

Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (рис. 10).

Рис. 10. Иллюстрация к задаче

Дано: ; ; ;

Найти:

Решение:

Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдем в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведем в часы.

Средняя скорость равна:

Полный путь () состоит из пути подъема на склон () и спуска со склона ():

Путь подъема на склон равен:

Путь спуска со склона равен:

Время, за которое пройден полный путь, равно:

Ответ: .

Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.

Не всегда понятие средней скорости полезно для решения главной задачи механики. Возвращаясь к задаче про поезд, нельзя утверждать, что если средняя скорость на всем пути поезда равна , то через 5 часов он будет находиться на расстоянии от Новосибирска.

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля (рис. 11) показывает мгновенную скорость).

Рис. 11. Спидометр автомобиля показывает мгновенную скорость

Существует еще одно определение мгновенной скорости.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории (рис. 12).

Рис. 12. Мгновенная скорость

Для того чтобы лучше понять данное определение, рассмотрим пример.

Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (рис. 13), проанализируем данный график.

Рис. 13. График зависимости проекции перемещения от времени

На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A ). Пользуясь определением мгновенной скорости, найдем модуль средней скорости за промежуток времени от до . Для этого рассмотрим фрагмент данного графика (рис. 14).

Рис. 14. График зависимости проекции перемещения от времени

Для того чтобы проверить правильность нахождения мгновенной скорости, найдем модуль средней скорости за промежуток времени от до , для этого рассмотрим фрагмент графика (рис. 15).

Рис. 15. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть . Если уменьшать рассматриваемый интервал времени сильнее, то мгновенная скорость автомобиля в точке A будет определяться более точно.

Мгновенная скорость – это векторная величина. Поэтому, кроме ее нахождения (нахождения ее модуля), необходимо знать, как она направлена.

(при ) – мгновенная скорость

Направление мгновенной скорости совпадает с направлением перемещения тела.

Если тело движется криволинейно, то мгновенная скорость направлена по касательной к траектории в данной точке (рис. 16).

Задание 1

Может ли мгновенная скорость () изменяться только по направлению, не изменяясь по модулю?

Решение

Для решения рассмотрим следующий пример. Тело движется по криволинейной траектории (рис. 17). Отметим на траектории движения точку A и точку B . Отметим направление мгновенной скорости в этих точках (мгновенная скорость направлена по касательной к точке траектории). Пусть скорости и одинаковы по модулю и равны 5 м/с.

Ответ: может.

Задание 2

Может ли мгновенная скорость меняться только по модулю, не меняясь по направлению?

Решение

Рис. 18. Иллюстрация к задаче

На рисунке 10 видно, что в точке A и в точке B мгновенная скорость направлена одинаково. Если тело движется равноускоренно, то .

Ответ: может.

На данном уроке мы приступили к изучению неравномерного движения, то есть движения с изменяющейся скоростью. Характеристиками неравномерного движения являются средняя и мгновенная скорости. Понятие о средней скорости основано на мысленной замене неравномерного движения равномерным. Иногда понятие средней скорости (как мы увидели) является очень удобным, но для решения главной задачи механики оно не подходит. Поэтому вводится понятие мгновенной скорости.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «School-collection.edu.ru» ().
  2. Интернет-портал «Virtulab.net» ().

Домашнее задание

  1. Вопросы (1-3, 5) в конце параграфа 9 (стр. 24); Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Можно ли, зная среднюю скорость за определенный промежуток времени, найти перемещение, совершенное телом за любую часть этого промежутка?
  3. Чем отличается мгновенная скорость при равномерном прямолинейном движении от мгновенной скорости при неравномерном движении?
  4. Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?
  5. Первую треть трассы велосипедист ехал со скоростью 12 км в час, вторую треть - со скоростью 16 км в час, а последнюю треть - со скоростью 24 км в час. Найдите среднюю скорость велосипеда на протяжении всего пути. Ответ дайте в км/час

Если материальная точка находится в движении, то ее координаты подвергаются изменениям. Этот процесс может происходить быстро или медленно.

Определение 1

Величина, которая характеризует быстроту изменения положения координаты, называется скоростью .

Определение 2

Средняя скорость – это векторная величина, численно равная перемещению в единицу времени, и сонаправленная с вектором перемещения υ = ∆ r ∆ t ; υ ∆ r .

Рисунок 1 . Средняя скорость сонаправлена перемещению

Модуль средней скорости по пути равняется υ = S ∆ t .

Мгновенная скорость характеризует движение в определенный момент времени. Выражение «скорость тела в данный момент времени» считается не корректным, но применимым при математических расчетах.

Определение 3

Мгновенной скоростью называют предел, к которому стремится средняя скорость υ при стремлении промежутка времени ∆ t к 0:

υ = l i m ∆ t ∆ r ∆ t = d r d t = r ˙ .

Направление вектора υ идет по касательной к криволинейной траектории, потому как бесконечно малое перемещение d r совпадает с бесконечно малым элементом траектории d s .

Рисунок 2 . Вектор мгновенной скорости υ

Имеющееся выражение υ = l i m ∆ t ∆ r ∆ t = d r d t = r ˙ в декартовых координатах идентично ниже предложенным уравнениям:

υ x = d x d t = x ˙ υ y = d y d t = y ˙ υ z = d z d t = z ˙ .

Запись модуля вектора υ примет вид:

υ = υ = υ x 2 + υ y 2 + υ z 2 = x 2 + y 2 + z 2 .

Чтобы перейти от декартовых прямоугольных координат к криволинейным, применяют правила дифференцирования сложных функций. Если радиус-вектор r является функцией криволинейных координат r = r q 1 , q 2 , q 3 , тогда значение скорости запишется как:

υ = d r d t = ∑ i = 1 3 ∂ r ∂ q i ∂ q i ∂ r = ∑ i = 1 3 ∂ r ∂ q i q ˙ i .

Рисунок 3 . Перемещение и мгновенная скорость в системах криволинейных координат

При сферических координатах предположим, что q 1 = r ; q 2 = φ ; q 3 = θ , то получим υ , представленную в такой форме:

υ = υ r e r + υ φ e φ + υ θ φ θ , где υ r = r ˙ ; υ φ = r φ ˙ sin θ ; υ θ = r θ ˙ ; r ˙ = d r d t ; φ ˙ = d φ d t ; θ ˙ = d θ d t ; υ = r 1 + φ 2 sin 2 θ + θ 2 .

Определение 4

Мгновенной скоростью называют значение производной от функции перемещения по времени в заданный момент, связанной с элементарным перемещением соотношением d r = υ (t) d t

Пример 1

Дан закон прямолинейного движения точки x (t) = 0 , 15 t 2 - 2 t + 8 . Определить ее мгновенную скорость через 10 секунд после начала движения.

Решение

Мгновенной скоростью принято называть первую производную радиус-вектора по времени. Тогда ее запись примет вид:

υ (t) = x ˙ (t) = 0 . 3 t - 2 ; υ (10) = 0 . 3 × 10 - 2 = 1 м / с.

Ответ : 1 м / с.

Пример 2

Движение материальной точки задается уравнением x = 4 t - 0 , 05 t 2 . Вычислить момент времени t о с т, когда точка прекратит движение, и ее среднюю путевую скорость υ .

Решение

Вычислим уравнение мгновенной скорости, подставим числовые выражения:

υ (t) = x ˙ (t) = 4 - 0 , 1 t .

4 - 0 , 1 t = 0 ; t о с т = 40 с; υ 0 = υ (0) = 4 ; υ = ∆ υ ∆ t = 0 - 4 40 - 0 = 0 , 1 м / с.

Ответ: заданная точка остановится по прошествии 40 секунд; значение средней скорости равняется 0 , 1 м / с.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Изменяются ее координаты. Координаты могут изменяться быстро или медленно. Физическая величина, которая характеризует быстроту изменения координаты, называется скоростью.

Пример

Средняя скорость -- это вектор ная величина, численно равная перемещению в единицу времени, и сонаправленная с вектором перемещения:$\left\langle v\right\rangle =\frac{\triangle r}{\triangle t}$ ; $\left\langle v\right\rangle \uparrow \uparrow \triangle r$

Рисунок 1. Средняя скорость сонаправлена перемещению

Mодуль средней скорости по пути равен: $\left\langle v\right\rangle =\frac{S}{\triangle t}$

Мгновенная скорость дает точную информацию о движении в определенный момент времени. Выражение «скорость тела в данный момент времени» с точки зрения физики не является корректным. Однако понятие мгновенной скорости очень удобно в математических расчетах, и им постоянно пользуются.

Мгновенная скорость (или просто скорость) есть предел, к которому стремится средняя скорость $\left\langle v\right\rangle $ при стремлении промежутка времени $\triangle t$ к нулю:

$v={\mathop{lim}_{\triangle t} \frac{\triangle r}{\triangle t}\ }=\frac{dr}{dt}=\dot{r}$ (1)

Вектор $v$ направлен по касательной к криволинейной траектории, так как бесконечно малое (элементарное) перемещение dr совпадает с бесконечно малым элементом траектории ds.

Рисунок 2. Вектор мгновенной скорости $v$

В декартовых координатах уравнение (1) эквивалентно трем уравнениям

$\left\{ \begin{array}{c} v_x=\frac{dx}{dt}=\dot{x} \\ v_y=\frac{dy}{dt}=\dot{y} \\ v_z=\frac{dz}{dt}=\dot{z} \end{array} \right.$ (2)

Модуль вектора $v$ в этом случае равен:

$v=\left|v\right|=\sqrt{v^2_x+v^2_y+v^2_z}=\sqrt{x^2+y^2+z^2}$ (3)

Переход от декартовых прямоугольных координат к криволинейным осуществляется по правилам дифференцирования сложных функций. Пусть радиус-вектор r есть функция криволинейных координат: $r=r\left(q_1,q_2,q_3\right)\ $. Тогда скорость $v=\frac{dr}{dt}=\sum^3_{i=1}{\frac{\partial r}{\partial q_i}\frac{\partial q_i}{\partial t}}=\sum^3_{i=1}{\frac{\partial r}{\partial q_i}}\dot{q_i}$

Рисунок 3. Перемещение и мгновенная скорость в системах криволинейных координат

В сферических координатах, полагая $q_1=r;\ \ q_2=\varphi ;\ \ q_3=\theta $, получаем представление $v$ в следующий форме:

$v=v_re_r+v_{\varphi }e_{\varphi }+v_{\theta }e_{\theta }$, где $v_r=\dot{r};\ \ v_{\varphi }=r\dot{\varphi }sin\theta ;;\ \ v_{\theta }=r\dot{\theta }\ ;;$ \[\dot{r}=\frac{dr}{dt};;\ \ \dot{\varphi }=\frac{d\varphi }{dt};;\ \ \dot{\theta }=\frac{d\theta }{dt}; v=r\sqrt{1+{\varphi }^2sin^2\theta +{\theta }^2}\]

Мгновенная скорость - это значение производной от функции перемещения по времени в заданный момент времени, и связана с элементарным перемещением следующим соотношением: $dr=v\left(t\right)dt$

Задача 1

Закон движения точки по прямой: $x\left(t\right)=0,15t^2-2t+8$. Найти мгновенную скорость точки через 10 секунд после начала движения.

Мгновенная скорость точки -- это первая производная радиус-вектора по времени. Поэтому для мгновенной скорости можно записать:

Ответ: Через 10 с после начала движения мгновенная скорость точки 1 м/с.

Задача 2

Движение материальной точки задано уравнением~ $x=4t-0,05t^2$. Определить момент времени $t_{ост.}$, в который точка остановится, и среднюю путевую скорость $\left\langle v\right\rangle $.

Найдем уравнение мгновенной скорости: $v\left(t\right)=\dot{x}\left(t\right)=4-0,1t$

Ответ: Точка остановится через 40 секунд после начала движения. Средняя скорость её движения 0,1 м/с.

Для того, чтобы охарактеризовать насколько быстро изменяется в пространстве положение движущегося тела, используют специальное понятие скорость.

Средней скоростью тела на данном участке траектории называется отношение пройденного пути ко времени движения:

(3.1)
Если на всех участках траектории средняя скорость одинакова, то движение называется равномерным.

Вопрос о скорости бега является важным в спортивной биомеханике. Известно, что скорость бега на определенную дистанцию зависит от величины этой дистанции. Бегун может поддерживать максимальную скорость только в течение ограниченного времени. Средняя скорость стайеров обычно меньше, чем спринтеров. На рис. 3.8. показана зависимость средней скорости (V) от длины дистанции (S).

Рис. 3.8. Зависимость средней скорости бега от длины дистанции
График зависимости проведен через точки, соответствующие средним скоростям для всех рекордных результатов у мужчин на дистанциях от 50 до 2000 м. Средняя скорость растет с увеличением дистанции до 200 м, а затем убывает.

В табл. 3.1 приведены мировые рекорды скорости.

Для удобства проведения вычислений среднюю скорость можно записать и через изменение координат тела. При прямолинейном движении пройденный путь равен разности координат конечной и начальной точек. Так, если в момент времени t 0 тело находилось в точке с координатой x 0 , а в момент времени t 1 - в точке с координатой x 1 , то пройденный путь Δх = х 1 - х 0 , а время движения Δ t = t 1 - t 0 (в физике и математике принято использовать символ Δ для обозначения разности однотипных величин или для обозначения очень маленьких интервалов). В этом случае

^ Таблица 3.1

Мировые спортивные рекорды


Вид состязаний и дистанция

Мужчины

Женщины


средняя скорость, м/с

время, показанное на дистанции

средняя скорость, м/с

Бег

100 м


9,83с

10,16

10,49 с

9,53

200 м

19,72 с

10,14

21,34 с

9,37

400м

43,29 с

9,24

47,60 с

8,40

800м

1 мин 41,73 с

7,86

1 мин 53,28 с

7,06

1500м

3 мин 29,46 с

7,16

3 мин 52,47 с

6,46

5000 м

12 мин 58,39 с

6,42

14 мин 37,33 с

5,70

10000 м

27 мин 13,81 с

6,12

30 мин 13,75 с

5,51

Марафон (42 км 195 м)

2 ч 6 мин 50 с

5,5

2 ч 21 мин 0,6 с

5,0

Бег на коньках

36,45 с

13,72

39,10 с

12,78

1500м

1 мин 52,06 с

13,39

1 мин 59,30 с

12,57

5000м

6 мин 43,59 с

12,38

7 мин 14,13 с

11,35

10000 м

13 мин 48,20 с

12,07

Плавание

100 м (вольный стиль)


48,74 с

2,05

54,79 с

1,83

200 м (вольный стиль)

1 мин 47,25 с

1,86

1 мин 57,55 с

1,70

400 м (вольный стиль)

3 мин 46,95 с

1,76

4 мин 3,85 с

1,64

100 м (брасс)

1 мин 1,65 с

1,62

1 мин 7,91 с

1,47

200 м (брасс)

2 мин 13,34 с

1,50

2 мин 26,71 с

1,36

100 м (баттерфляй)

52,84 с

1,89

57,93 с

1,73

200 м (баттерфляй)

1 мин 56,24 с

1,72

2 мин 5,96 с

1,59

В общем случае средние скорости на различных участках пути могут отличаться. На рис. 3.9 представлены координаты падающего тела, моменты времени, в которые тело проходит через эти точки, а также средние скорости для выделенных интервалов.

Рис. 3.9. Зависимость средней скорости от участка пути
Из данных, приведенных на рис. 3.9 видно, что средняя скорость на всем пути (от 0 м до 5 м) равна

Средняя скорость на интервале от 2 м до 3 м равна

Движение, при котором средняя скорость изменяется, называется неравномерным.

Мы вычисляли среднюю скорость в окрестности одной и той же точки х = 2,5 м. На рис. 3.9 видно, что по мере уменьшения интервала, по которому проводятся вычисления, средняя скорость стремится к некоторому пределу (в нашем случае это 7 м/с). Этот предел называется мгновенной скоростью или скоростью в данной точке траектории.

Мгновенной скоростью движения, или скоростью в данной точке траектории называется предел, к которому стремится отношение перемещения тела в окрестности этой точки ко времени при неограниченном уменьшении интервала:

Размерность скорости в СИ - м/с.

Часто скорость указывают в других единицах (например, в км/ч). При необходимости такие значения можно перевести в СИ. Например, 54 км/ч = 54000 м/3600 с =15 м/с.

Для одномерного случая мгновенная скорость равна производной от координаты тела по времени:

При равномерном движении величины средней и мгновенной скорости совпадают и остаются неизменными.

Мгновенная скорость - величина векторная. Направление вектора мгновенной скорости показано на рис. 3.10.

Рис. 3.10. Направление вектора мгновенной скорости
Во время забега мгновенная скорость бегуна меняется. Особенно существенны такие изменения в спринте. На рис. 3.11 приводится пример такого изменения для дистанции 200 м.

Бегун начинает движение из состояния покоя и разгоняется, пока не достигнет максимальной скорости. Для бегуна-мужчины время ускорения приблизительно 2 с, а максимальная скорость приближается к 10,5 м/с. Средняя скорость на всей дистанции меньше этого значения.


Рис. 3.11. Зависимость мгновенной скорости от времени бега для дистанции 200 м, мужчины
Причина того, что бегун не может долго поддерживать свою максимальную скорость движения, состоит в том, что он начинает испытывать недостаток кислорода. Тело содержит кислород, запасенный в мышцах, а в дальнейшем получает его при дыхании. Поэтому спринтер может поддерживать свою максимальную скорость только до тех пор, пока не израсходует запас кислорода. Это кислородное истощение наступает на дистанции около 300 м. Следовательно, для больших дистанций бегун должен ограничивать себя скоростью меньше максимальной. Чем длиннее дистанция, тем меньше должна быть скорость, чтобы кислорода хватило на весь забег. Только спринтеры бегут на максимальной скорости всю дистанцию.

На соревнованиях бегун обычно стремиться либо победить соперника, либо установить рекорд. От этого зависит стратегия забега. При установлении рекорда оптимальной стратегией будет та, при которой выбирается скорость, соответствующая полному истощению запаса кислорода к моменту пересечения финиша.

В спорте используются специальные временные характеристики.

Момент времени (t) - это временная мера положения точки, тела или системы. Момент времени определяют промежутком времени до него от начала отсчета.

Моментами времени обозначают, например, начало и окончание движения или какой-либо его части (фазы). По моментам времени определяют длительность движения.

Длительность движения (Δt) - это его временная мера, которая измеряется разностью моментов времени окончания и начала движения:

Δt = t кон - t нач .

Длительность движения представляет собой количество времени, прошедшее между двумя ограничивающими его моментами времени. Сами моменты длительности не имеют. Зная путь точки и длительность ее движения, можно определять ее среднюю скорость.

Темп движения (N) - это временная мера повторности движений. Он измеряется количеством движений, повторяющихся в единицу времени (частота движений):

В повторных движениях одинаковой длительности темп характеризует их протекание во времени. Темп - величина, обратная длительности движений. Чем больше длительность каждого движения, тем меньше темп, и наоборот.

Ритм движений - это временная мера соотношения частей движений. Он определяется по соотношению промежутков времени - длительностей частей движений: Δt 2-1: Δt 2-3: Δt 4- 3 ...

Различный ритм движений для лыжников при скользящем шаге (для пяти фаз шага) показан на рис. 3.12.

Рис. 3.12. Различный ритм в скользящем шаге на лыжах: а) у высококвалифицированных лыжников;

б) у сильнейших лыжников мира;

фазы /-/// - скольжение, фазы скольжения,

фазы IV- V - стояние лыжи

Быстрота - это темп, в котором преодолевается расстояние без учета направления.

Быстрота - скалярная величина. Пусть между двумя пунктами при движении по одному шоссе одновременно движутся автомобилист, мотоциклист, велосипедист, бегун. У всех четверых одинаковы траектории, пути, перемещения. Однако их движение отличается быстротой (стремительностью), для характеристики которой и вводится понятие «скорость».