Болезни Военный билет Призыв

Численные характеристики случайной функции. Случайные процессы и их характеристики. Случайные события и случайные величины

o Случайной функцией называется функция X(t), значение которой при любом значении аргумента t является случайной величиной.

Другими словами, случайной функцией называется функция, которая в результате опыта может принять тот или иной конкретный вид, при этом заранее не известно, какой именно.

o Конкретный вид, принимаемый случайной величиной в результате опыта, называется реализацией случайной функции.

Т.к. на практике аргумент t чаще всего является временным, то случайную функцию иначе называют случайным процессом.

На рисунке изображено несколько реализаций некоторого случайного процесса.

Если зафиксировать значение аргумента t, то случайная функция X(t) превратится в случайную величину, которую называют сечением случайной функции , соответствующим моменту времени t. Будем считать распределение сечения непрерывным. Тогда Х(t) при данном t определяется плотностью распределения p(x; t).

Очевидно, p(x; t) не является исчерпывающей характеристикой случайной функции X(t), поскольку она не выражает зависимости между сечениями X(t) в разные моменты времени t. Более полную характеристику дает функция -совместная плотность распределения системы случайных величин , где t 1 и t 2 -произвольные значения аргумента t случайной функции. Еще более полную характеристику случайной функции X(t) даст совместимая плотность распределения системы трех случайных величин и т.д.

o Говорят, что случайный процесс имеет порядок n , если он полностью определяется плотностью совместимого распределения n произвольных сечений процесса, т.е. системы n случайных величин , где X(t i)-сечение процесса, отвечающее моменту времени t i , но не определяется заданием совместного распределения меньшего, чем n, числа сечений.

o Если плотность совместного распределения произвольных двух сечений процесса вполне его определяет, то такой процесс называется марковским.

Пусть имеется случайная функция X(t). Возникает задача описания ее с помощью одной или нескольких неслучайных характеристик. В качестве первой из них естественно взять функцию -математическое ожидание случайного процесса. В качестве второй берется среднее квадратическое отклонение случайного процесса .

Эти характеристики являются некоторыми функциями от t. Первая из них-это средняя траектория для всех возможных реализаций. Вторая характеризует возможный разброс реализаций случайной функции около средней траектории. Но и этих характеристик недостаточно. Важно знать зависимость величин X(t 1) и X(t 2). Эту зависимость можно характеризовать с помощью корреляционной функции или корреляционного момента.

Пусть имеются два случайных процесса, по нескольку реализаций которых изображено на рисунках.

У этих случайных процессов примерно одинаковые математические ожидания и средние квадратичные отклонения. Тем не менее это различные процессы. Всякая реализация для случайной функции X 1 (t) медленно меняет свои значения с изменением t, чего нельзя сказать о случайной функции X 2 (t). У первого процесса зависимость между сечениями X 1 (t) и будет больше, чем зависимость для сечений X 2 (t) и второго процесса, т.е. убывает медленнее, чем , при увеличении Δt. Во втором случае процесс быстрее «забывает» свое прошлое.

Остановимся на свойствах корреляционной функции, которые вытекают из свойств корреляционного момента пары случайных величин.

Свойство 1. Свойство симметричности .

Свойство 2. Если к случайной функции X(t) прибавить неслучайное слагаемое , то от этого корреляционная функция не изменится, т.е. .

Действительно,

Свойство 3. , где -неслучайная функция.

Лабораторная работа № 4

СЛУЧАЙНЫЕ ПРОЦЕССЫ
И ИХ ХАРАКТЕРИСТИКИ

4.1. ЦЕЛЬ РАБОТЫ

Ознакомление с основными понятиями теории случайных процессов. Выполнение измерений моментных характеристик и оценки ПРВ мгновенных значений случайных процессов. Анализ вида автокорреляционной функции (АКФ) и спектральной плотности мощности (СПМ) случайного процесса. Исследование преобразований случайного процесса линейными стационарными и нелинейными безынерционными цепями.

4.2. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Случайные события и случайные величины
Событие , которое может произойти или не произойти в некотором опыте, называется случайным событием и характеризуется вероятностью осуществления
. Случайная величина (СВ)
может принять в опыте одно значение из некоторого множества
; это значение называется реализацией данной СВ. может быть, например, множеством вещественных чисел или его подмножеством. Если множество конечно или счетно (дискретная СВ), можно говорить о вероятности
осуществления события, которое заключается в принятии случайной величиной значения , т. е. на множестве значений дискретной случайной величины задается распределение вероятностей . Если множество несчетно (например, вся вещественная прямая), то полное описание случайной величины дает функция распределения, определяемая выражением

,

где
. Если функция распределения непрерывна и дифференцируема, то можно определить плотность распределения вероятностей (ПРВ), называемую также для краткости плотностью вероятности
(а иногда просто плотностью):

, при этом
.

Очевидно, функция распределения – неотрицательная неубывающая функция со свойствами
,
. Следовательно,
ПРВ – неотрицательная функция, удовлетворяющая условию нормировки
.

Иногда ограничиваются числовыми характеристиками случайной величины, чаще всего моментами . Начальный момент -го порядка (-й начальный момент)

,

где горизонтальная черта и
– символические обозначения интегрального оператора усреднения по ансамблю . Первый начальный момент
, называется математическим ожиданием или центром распределения.

Центральный момент -го порядка (-й центральный момент)

Наиболее употребительным из центральных моментов является второй центральный момент, или дисперсия

Вместо дисперсии часто оперируют среднеквадратическим отклонением (СКО) случайной величины
.

^ Средний квадрат , или второй начальный момент
, связан с дисперсией и математическим ожиданием:

Для описания формы ПРВ используют коэффициент асимметрии
и коэффициент эксцесса
(иногда эксцесс характеризуют величиной
).

Часто используется нормальное, или гауссовское (гауссово), распределение с ПРВ

,

где и – параметры распределения (математическое ожидание и СКО соответственно). Для гауссовского распределения
,
.

Две случайные величины и характеризуются совместной плотностью распределения
. Числовыми характеристиками совместной плотности служат начальные и центральные смешанные моменты

,
,

где и – произвольные целые положительные числа;
и – математические ожидания СВ x и y .

Наиболее часто используются смешанные моменты второго порядка – начальный (корреляционный момент):

и центральный (ковариационный момент, или ковариация )

.

Для пары гауссовских случайных величин двумерная совместная ПРВ имеет вид

где , – среднеквадратические отклонения;
– математические ожидания; коэффициент корреляции – нормированный ковариационный момент

.

При нулевом коэффициенте корреляции очевидно,

,

т. е. некоррелированные гауссовские случайные величины независимы.
^

Случайные процессы

Случайный процесс – это последовательность случайных величин, упорядоченная по возрастанию некоторой переменной (чаще всего времени). Перейти от описания случайной величины к описанию случайного процесса можно, рассматривая совместные распределения двух, трех и более значений процесса в некоторые различные моменты времени. В частности, рассматривая процесс в временных сечениях (при
), получаем -мерные совместные функцию распределения и плотность распределения вероятностей случайных величин

, определяемые выражением

.

Случайный процесс считается полностью определенным, если для любого можно записать его совместную ПРВ при любом выборе моментов времени
.

Часто при описании случайного процесса можно ограничиться совокупностью его смешанных начальных моментов (если они существуют, т.е. сходятся соответствующие интегралы)

и смешанных центральных моментов

при целых неотрицательных
и целом .

В общем случае моменты совместной ПРВ зависят от расположения сечений на оси времени и называются моментными функциями . Чаще всего используют второй смешанный центральный момент

,

называемый функцией автокорреляции или автокорреляционной функцией (АКФ). Напомним, что здесь и далее явно не указана зависимость от времени, а именно – функциями времени являются
,
и
.

Можно рассматривать совместно два случайных процесса
и
; такое рассмотрение предполагает их описание в виде совместной многомерной ПРВ, а также в виде совокупности всех моментов, в том числе смешанных. Наиболее часто при этом используют второй смешанный центральный момент

,

называемый взаимно корреляционной функцией
.

Среди всех случайных процессов выделяют СП, для которых совместная -мерная ПРВ не изменяется при одновременном изменении (сдвиге) всех временных сечений на одну и ту же величину. Такие процессы называются стационарными в узком смысле или строго стационарными .

Чаще рассматривают более широкий класс случайных процессов с ослабленным свойствам стационарности. СП называется стационарным в широком смысле , если при одновременном сдвиге сечений не изменяются лишь его моменты не выше второго порядка. Практически это означает, что СП стационарен в широком смысле, если он имеет постоянные среднее (математическое ожидание ) и дисперсию
, а АКФ зависит только от разности моментов времени, но не от их положений на временнóй оси:

1)
,

2) ,
.

Заметим, что
, откуда и следует постоянство дисперсии.

Нетрудно убедиться, что процесс, стационарный в узком смысле, стационарен и в широком смысле. Обратное утверждение вообще неверно, хотя существуют процессы, для которых стационарность в широком смысле влечет стационарность в узком смысле.

Совместная -мерная ПРВ отсчетов
гауссовского процесса, взятых во временных сечениях , имеет вид

, (4.1)

где – определитель квадратной матрицы, составленной из попарных коэффициентов корреляции отсчетов;
– алгебраическое дополнение элемента этой матрицы.

Совместная гауссовская ПРВ при любом полностью определяется математическими ожиданиями, дисперсиями и коэффициентами корреляции отсчетов, т. е. моментными функциями не выше второго порядка. Если гауссовский процесс стационарен в широком смысле, то все математические ожидания одинаковы, все дисперсии (а значит, и СКО) равны друг другу, а коэффициенты корреляции определяются только тем, насколько временные сечения отстоят друг от друга. Тогда, очевидно, ПРВ (4.1) не изменится, если все временные сечения сдвинуть влево или вправо на одну и ту же величину. Отсюда следует, что гауссовский процесс, стационарный в широком смысле, стационарен и в узком смысле (строго стационарен).

Среди строго стационарных случайных процессов часто выделяют более узкий класс эргодических случайных процессов. Для эргодических процессов моменты, найденные усреднением по ансамблю, равны соответствующим моментам, найденным усреднением по времени:

,

(здесь – символическое обозначение оператора усреднения по времени).

В частности, для эргодического процесса математическое ожидание, дисперсия и АКФ равны соответственно

,

,

Эргодичность весьма желательна, так как дает возможность практически измерять (оценивать) числовые характеристики случайного процесса. Дело в том, что обычно наблюдателю доступна лишь одна (хотя, возможно, достаточно длинная) реализация случайного процесса. Эргодичность означает, по существу, что эта единственная реализация является полноправным представителем всего ансамбля .

Измерение характеристик эргодического процесса может быть выполнено при помощи простых измерительных устройств; так, если процесс представляет собой напряжение, зависящее от времени, то вольтметр магнитоэлектрической системы измеряет его математическое ожидание (постоянную составляющую), вольтметр электромагнитной или термоэлектрической системы, подключенный через разделительную емкость (для исключения постоянной составляющей), – его среднеквадратическое значение (СКО). Устройство, структурная схема которого показана на рис. 4.1, позволяет измерить значения функции автокорреляции при различных . Фильтр нижних частот играет здесь роль интегратора, конденсатор выполняет центрирование процесса, так как не пропускает постоянную составляющую тока. Это устройство называется коррелометром .


Рис. 4.1

Достаточными условиями эргодичности стационарного случайного процесса служат условие
, а также менее сильное условие Слуцкого
.
^

Дискретные алгоритмы оценивания параметров СП

Приведенные выше выражения для нахождения оценок параметров СП и корреляционной функции справедливы для непрерывного времени. В данной лабораторной работе (как и во многих современных технических системах и приборах) аналоговые сигналы генерируются и обрабатываются цифровыми устройствами, что приводит к необходимости некоторого изменения соответствующих выражений. В частности, для определения оценки математического ожидания используется выражение выборочного среднего

,

где
– последовательность отсчетов процесса (выборка объема
). Оценкой дисперсии служит выборочная дисперсия , определяемая выражением

.

Оценка автокорреляционной функции, иначе называемая коррелограммой , находится как

.

Оценкой плотности распределения вероятностей мгновенного значения ССП служит гистограмма . Для ее нахождения диапазон возможных значений СП разбивается на интервалов равной ширины, затем для каждого -го интервала подсчитывается количество отсчетов выборки, попавших в него. Гистограмма представляет собой набор чисел
, обычно изображаемый в виде решетчатой диаграммы. Количество интервалов при заданном объеме выборки выбирается исходя из компромисса между точностью оценивания и разрешением (степенью подробности) гистограммы.
^

Корреляционно-спектральная теория случайных процессов

Если интересоваться только моментными характеристиками первого и второго порядка, которые определяют свойство стационарности в широком смысле, то описание стационарного СП осуществляется на уровне автокорреляционной функции
и спектральной плотности мощности
, связанных парой преобразований Фурье (теорема Винера–Хинчина ):

,
.

Очевидно, СПМ – неотрицательная функция. Если процесс имеет ненулевое математическое ожидание , то к СПМ добавляется слагаемое
.

Для вещественного процесса АКФ и СПМ – четные вещественные функции.

Иногда можно ограничиться числовыми характеристиками – интервалом корреляции и эффективной шириной спектра. ^ Интервал корреляции определяют по-разному, в частности, известны следующие определе

1. ПОНЯТИЕ СЛУЧАЙНОЙ ФУНКЦИИ

До определенных пор теория вероятностей ограничивалась понятием случайных величин. Их использование позволяет выполнять статические расчеты, учитывающие случайные факторы. Однако механические системы подвергаются также разнообразным динамическим, то есть изменяющимся во времени воздействиям случайного характера. К ним относятся, в частности, вибрационные и ударные воздействия при движении транспортных средств, аэродинамические силы, вызванные атмосферной турбулентностью, сейсмические силы, нагрузки, обусловленные случайными отклонениями от номинальных режимов работы машин.

Случайные динамические явления изучаются при анализе тенденций в экономике (например, изменения курса акций или валюты). Работа в условиях случайных возмущений характерна для систем управления разнообразными динамическими объектами.

Для анализа подобных явлений используется понятие случайной функции . Случайной функцией X (t ) называется такая функция аргумента t , значение которой при любом t является случайной величиной. Если аргумент принимает дискретные значения t 1 , t 2 , …, t k то говорят о случайной последовательности X 1 , X 2 ,…, X k , где X i = X (t i ).

Во многих практических задачах неслучайный аргумент t имеет смысл времени, при этом случайную функцию называют случайным процессом , а случайную последовательность – временным рядом . Вместе с тем, аргумент случайной функции может иметь и иной смысл. Например, речь может идти о рельефе местности Z (x , y ), где аргументами являются координаты местности x и y , а роль случайной функции играет высота над уровнем моря z. В дальнейшем, для определенности, имея в виду приложения случайных функций к исследованию динамических систем, будем говорить о случайных процессах.

Предположим, что при исследовании случайного процесса X (t ) произведено n независимых опытов, и получены реализации

представляющие собой n детерминированных функций. Соответствующее семейство кривых в определенной мере характеризует свойства случайного процесса. Так, на рис.1.1а представлены реализации случайного процесса с постоянными средним уровнем и разбросом значений возле среднего, на рис. 1.1б – реализации случайного процесса с постоянным средним и изменяющимся разбросом, на рис. 1.1в – реализации случайного процесса с изменяющимися во времени средним и разбросом.



Рис.1.1. Типичные реализации случайных процессов

На рис. 1.2 показаны реализации двух случайных процессов, имеющих одинаковый средний уровень и разброс, но различающихся плавностью. Реализации случайного процесса на рис. 1.2а имеют высокочастотный характер, а на рис. 1.2б – низкочастотный.

Рис. 1.2. Высокочастотный и низкочастотный случайные процессы

Таким образом, X (t ) можно рассматривать и как совокупность всевозможных реализаций, которая подчиняется определенным вероятностным закономерностям. Как и для случайных величин, исчерпывающую характеристику этих закономерностей дают функции или плотности распределения. Случайный процесс считается заданным, если заданы все многомерные законы распределения случайных величин X (t i ), X (t 2 ), …, X (t n ) для любых значений t 1 , t 2 , …, t n из области изменения аргумента t . Речь идет, в частности, об одномерной плотности распределения , двумерной плотности распределения и т.д. .

Для упрощения анализа в большинстве случаев ограничиваются моментными характеристиками, причем чаще всего используют моменты первого и второго порядков. Для характеристики среднего уровня случайного процесса служит математическое ожидание

. (1.1)

Для характеристики амплитуды отклонений случайного процесса от среднего уровня служит дисперсия

Для характеристики изменчивости (плавности) случайного процесса служит корреляционная (автокорреляционная) функция

(1.3)

Как следует из (1.3), корреляционная функция представляет собой ковариацию случайных величин X (t 1) и X (t 2). Ковариация же, как известно из курса теории вероятностей, характеризует взаимозависимость между X (t 1) и X (t 2).

В рамках корреляционной теории случайных функций, которая оперирует лишь моментами первого и второго порядков, могут быть решены многие технические задачи. В частности, могут быть определены априорная, а также условная вероятности выхода случайного процесса за пределы заданных границ. Вместе с тем, некоторые важные в практическом плане задачи не решаются средствами корреляционной теории и требуют использования многомерных плотностей распределения. К таким задачам относится, например, расчет среднего времени нахождения случайного процесса выше или ниже заданной границы.

2. ТИПЫ СЛУЧАЙНЫХ ПРОЦЕССОВ

2.1. Квазидетерминированные случайные процессы

Лекция 13 Случайные процессы Основные понятия. Закон распределения и . Стационарные, эргодичес

Лекция 13
Случайные процессы
Основные понятия. Закон распределения и основные характеристики
случайных процессов. Стационарные, эргодические, элементарные случайные
процессы
(Ахметов С.К.)

Определения

Случайным процессом X(t) называется процесс, значение которого при
любом фиксированном t = ti является СВ X(ti)
Реализацией случайного процесса X(t) называется неслучайная функция
х(t), в которую превращается случайный процесс X(t) в результате опыта
Сечение случайного процесса (случайной функции) – это случайная
величина X(ti) при t = ti.

Случайный процесс X(t) называется процессом с дискретным
временем, если система, в которой он протекает, может менять
свои состояния только в моменты t1, t2, t3….. tn, число которых
конечно или счетно

временем, если переходы системы из состояния в состояние могут
происходить в любой момент времени t наблюдаемого периода
Случайный процесс X(t) называется процессом с непрерывным
состоянием, если его сечение в любой момент t представляет
собой не дискретную, а непрерывную величину
Случайный процесс X(t) называется процессом с дискретным
состоянием, если в любой момент времени t множество его
состояний конечно или счетно, то есть, если его сечение в любой
момент t характеризуется дискретной случайной величиной

Классификация случайных процессов

Таким образом, все СП можно разделить на 4 класса:
Процессы
временем;
Процессы
временем;
Процессы
временем;
Процессы
временем.
с дискретным состоянием и дискретным
с дискретным состоянием и непрерывным
с непрерывным состоянием и дискретным
с непрерывным состоянием и непрерывным
Большинство гидрологических процессов являются
процессами с непрерывным состоянием и непрерывным
временем. Но при вводе шага дискретности по времени они
превращаются из процесса с непрерывным временем в
процесс с дискретным временем. При этом процесс остается
непрерывным по состоянию

Основные характеристики случайных процессов

Сечение случайного процесса х(t) при любом фиксированном значении
аргумента t представляет собой СВ, которая имеет закон распределения
F (t, x) = P{X(t) < x}
Это одномерный закон распределения случайного процесса X(t)
Но, он не является исчерпывающей характеристикой СП, так как
характеризует свойства любого, но отдельно взятого сечения и не дает
представления о совместном распределении двух или более сечений.
Это видно на рисунке, где показаны два СП с разными вероятностными
структурами, но примерное одинаковыми распределениями СВ в каждом
сечении

Основные характеристики случайных процессов

Поэтому более полной характеристикой СП является двумерный закон
распределения
F(t1,t2,x1,x2) = P {X(t1) < x1, X(t2) < x2}
В общем случае исчерпывающей характеристикой СП является n мерный закон распределения
На практике вместо многомерных законов распределения используют
основные характеристики СП, такие как МО, дисперсия, начальные и
центральные моменты, но только для СП эти характеристики будут не
числами, а функциями
Математическое ожидание СП X(t) - неслучайная функция mx(t),
которая при любом значении аргумента t равна математическому
ожиданию соответствующего сечения СП:
где f1(x,t) – одномерная плотность распределения СП X(t)

Основные характеристики случайных процессов

МО СП представляет собой некоторую «среднею» функцию, вокруг
которой происходит разброс СП
Если из СП X(t) вычесть его МО, то получим центрированный СП:
X0(t) = X(t) – mx(t)
Дисперсией СП X(t) называется неслучайная функция СП X(t), которая
при любом значении аргумента t равна дисперсии соот – го сечения СП X(t)
СП X(t) = D = M{2}
Среднеквадратическим отклонением СП X(t) называется неслучайная
функция σx(t), которая равна корню квадратному из дисперсии СП:
σx(t) = σ = √Dx(t)

Основные характеристики случайных процессов

Для полной характеристики СП необходимо учитывать взаимосвязь
между различными сечениями. Поэтому, к комплексу перечисленных
характеристик нужно добавить также корреляционную функцию СП:
Корреляционной (или ковариационной) функцией СП X(t) называется
неслучайная функция Kx(t,t’), которая при каждой паре значений
аргументов t и t’ равна корреляции соответствующих сечений X(t) и X(t’)
Kx(t,t’) = M{ x }
или
Kx(t,t’) = M = M - mx(t) mx(t’)
Свойства корреляционной функции:
- при равенстве t = t’ корреляционная функция равна дисперсии СП, т. е.
Kx(t,t’) = Dx(t)
- корреляционная функция Kx(t,t’) симметрична относительно своих
аргументов, то есть
Kx(t,t’) = Kx(t’,t)

Основные характеристики случайных процессов

Нормированной корреляционной функцией rx(t,t’) СП X(t) называется
функция, полученная делением корреляционной функции на произведение
среднеквадратических отклонений σx(t) σx(t’)
rx(t,t’) = /(σx(t)σx(t’)) = /(√(Dx(t)Dx(t’))
Свойства нормированной корреляционной функции:
- при равенстве аргументов t и t’ нормированная корреляционная функция
равна единице rx(t,t’) = 1
-нормированная корреляционная функция симметрична относительно
своих аргументов, то есть rx(t,t’) = rx(t’,t)
- нормированная корреляционная функция по модулю не превышает
единицу rx(t,t’) ≤ 1

Основные характеристики случайных процессов

Скалярный СП – это когда речь идет об одном СП, как было до сих
пор.
Векторный СП – это когда рассматриваются 2 и более СП.
Допустим заданы расходы воды в нескольких створах во времени
В этом случае для характеристики СП нужно знать для каждого
скалярного процесса:
-МО
-корреляционную функцию
-взаимную корреляционную функцию
Взаимной корреляционной функцией Ri,j(t,t’) двух случайных
процессов X(t) и X(t’) называется неслучайная функция двух
аргументов t и t’, которая при каждой паре значений t и t’ равна
ковариации (линейной связи) двух сечений СП X(t) и X(t’)
Ri,j(t,t’) = M

Стационарные случайные процессы

Стационарные СП – это СП, у которых все вероятностные
характеристики не зависят от времени, то есть:
- mx = const
- Dx = const
Отличие стационарных и нестационарных СП показано на рисунке
а) стационарный СП
б) нестационарный СП по МО
с) нестационарный СП по дисперсии

Свойства корреляционной функции стационарного СП

Четность функции от своего аргумента, то есть kx(τ) = kx(-τ)
τ – сдвиг всех временных аргументов СП на одинаковую величину Θ
k – корреляционная функция СП при Kx(t1,t2) = kx(τ)
Значение корреляционной функции стационарного СП при нулевом
сдвиге τ равно дисперсии СП
Dx = Kx(t1,t2) = kx(t - t) = kx(0)
|kx(τ)| ≤ kx(0)
Помимо корреляционной функции используется нормированная
корреляционная функция стационарного СП, которую называют
автокорреляционной функцией
rx(τ) = kx(τ)/Dx = kx(τ)/kx(0)

Эргодические случайные процессы

Эргодическое свойство СП – это когда по одной достаточно
продолжительной реализации СП можно судить о СП в целом
Достаточным условием эргодичности СП является условие
lim kx(τ) = 0
при τ → ∞, т.е. при увеличении сдвига между сечениями
корреляционная функция затухает
На рисунке показаны а) неэргодический и б) эргодический СП
На практике (чаще всего) мы вынуждены принимать гипотезу о
стационарности и эргодичности гидрологических процессов, чтобы по
имеющемуся раду судить о всей генеральной совокупности

Элементарные случайные процессы

Элементарный СП (э.с.п) – это такая функция аргумента t, для
которой зависимость от t представлена обычной неслучайной функцией,
в которую в качестве аргумента входит одна или несколько обычных СВ
То есть каждая СВ порождает свою реализацию СП
К примеру, если в каком – то створе ветвь спада половодья является
устойчивой и описывается уравнением
Q(t) = Qнe-at
a - районный параметр (a>0)
Qн - расход воды в начальный момент времени t = t0
то процесс спада половодья можно считать э.с.п., где a - неслучайная
величина, Qн -случайная величина