Болезни Военный билет Призыв

Большая энциклопедия нефти и газа. Экологические законы, правила, принципы


В1840 году немецкий агрохимик Юстус Либих, который изучал минеральное питание растений, сформулировал так называемый закон минимума. Исходная формулировка этого закона скорее афористична, чем понятна: «урожай управляется фактором, находящимся в минимуме». В то же время выражаемая этим законом мысль вполне соответствует здравому смыслу. Поясним ее на конкретном примере.
Некоему растению для развития необходимо 400 единиц N (азота), 60 единиц Р (фосфора), 50 - К (калия) и 0,1 - В (бора). В «распоряжении» растения, в почве, в которой оно развивается, есть 100 ед. N, 30 ед. Р, 30 ед. К и 0,08 ед. В (рис. 5.6.1). Итак, растение сталкивается с недостатком всех рассмотренных элементов питания. Недостаток какого ресурса скажется на растении в наибольшей степени?
Предположение, что сильнее всего будет влиять бор, поскольку его абсолютное количество минимально,
ошибочно. Для организма важно не абсолютное значение количества ресурса, а относительное - его доля от потребности. Вы можете убедиться, что потребности растения в азоте удовлетворены на 25%, в фосфоре на 50%, в калии на 60% и в боре - на 80%. Итак, острее всего растение ощутит недостаток азота. А какой элемент питания станет самым важным для растения, если в почву добавить 200 единиц азота? Естественно, фосфор!
Обратите внимание, что растение будет по-разному реагировать на изменение доступности важных для

него ресурсов. В приведенном примере (в начальных условиях) даже небольшое изменение доступности азота вызовет сильную реакцию растения. Напротив, изменение концентрации калия или бора окажет весьма слабое влияние на страдающий от недостатка азота организм. Мы можем убедиться, что предел развития организма определяет наиболее недостающий ресурс.
Фактор, небольшие изменения которого оказывают наибольшие воздействия на рассматриваемые организмы и который в силу этого определяет предел их развитию или распространению, называется лимитирующим (ограничивающим).
Рассмотрев этот пример, можно выразить закон минимума Либиха более понятным образом. Далее приведены две формулировки: относительно краткая и более развернутая.
Лимитирующим является тот ресурс, которого более всего недостает.
На рост и развитие организма наибольшее влияние оказывает тот ресурс, доля обеспеченности которым минимальна.
Как вы понимаете, определение того, какой именно из факторов является лимитирующим, чрезвычайно важно. Чтобы повлиять на организм, необходимо обеспечивать его именно лимитирующим ресурсом, а не каким-либо другим.
На рис. 5.6.2 показана типичная форма зависимости реакции организма (например, его роста, биомассы, урожая и т.п.) на обеспеченность ресурсом. В левой части графика ресурс может бытьлимитирующим. Небольшие изменения его доступности оказывают сильное влияние на организм. В правой части данного графика ресурса уже достаточно, и наступает насыщение.
Существуют ситуации, когда закон минимума «не работает». Это касается случаев возможной взаимозаменяемости некоторых ресурсов (для растений соли аммония и нитраты в большой степени взаимозаменяемы; насекомоядные растения и вовсе могут получать азот из «поедаемых» животных), а также в условиях изменяющейся среды. Так, в ручье, даже при условии недостатка одного из биогенов, водное растение может обеспечить свои потребности в нем (вода, из которой извлечен какой-то элемент питания, утекает, вместо нее притекает другая; обеспеченность данным элементом теряет важнейшее свойство ресурса - исчерпываемость).

Еще по теме Закон минимума Либиха:

  1. Первая партида Титул первый Закон I О ТОМ, КАКОВЫ ЭТИ ЗАКОНЫ
  2. Глава вторая О порядке издания Свода законов и местных узаконений и Полного собрания законов Российской империи

Cтраница 3


Этот закон был сформулирован в 1840 г. задолго до возникновения экологии как таковой. Позже закон минимума был истолкован как действие любого экологического фактора, находящегося в минимуме по сравнению с другими экологическими воздействиями. Иногда закон минимума расширяют до правила, указывающего на роль экологических факторов в распространении и количественном развитии организмов. Но возможна трактовка закона минимума и со стороны организма: его выносливость определяется самым слабым звеном в цепи его экологических потребностей - жизненные возможности лимитируются экологическими факторами, количество и качество которых близко к необходимому организму минимуму. Дальнейшее снижение или ухудшение этих факторов ведет организм к гибели. Это краевая трактовка закона минимума, довольно далеко уклоняющаяся от первоначального его смысла, но имеющая более широкое экологическое значение.  

Он установил также закон минимума, по которому плодородие почвы зависит от того элемента, который находится в ней в наименьшем количестве. Следовательно, избыток одного или нескольких действующих веществ не может компенсировать недостатка в почве других веществ, необходимых растению.  

Кукса очевидно намеренно делает вид, будто он не повял моей мысли относительно отсутствия в книге Либиха выражения закон минимума, и развязно пытается приписать мне удивительное утверждение, что у Либиха и мысли не было относительно незаменимости элементов друг другом. Он отыскивает выражение закон минимума в примечаниях проф.  

При увеличении интенсивности внешних воздействий Ft отклик Jt перестает быть линейным. В этой области закон минимума производства энтропии уже несправедлив, типичными становятся неустойчивости. Отметим наиболее важные, с нашей точки зрения, особенности возникающих неустойчивостей и вообще нелинейных термодинамических процессов.  

Значительная часть критических замечаний, которые направляются против закона минимума, должна быть отнесена по существу к возникшим позднее формулировкам и схемам, которые представляли попытки или упрощенного наглядного изображения закона минимума, или же уточнения и придания ему математического выражения. В понимании же Либиха закон минимума является следствием незаменимости элементов пищи растения друг другом, а незаменимость калия фосфорной кислотой или известью теперь никем не подвергается сомнению.  

Суммация сложных процессов Ф - Д, осуществляемых множеством различных организмов, ведет к такой же сте-хиометрической реакции. Стехиометрическая реакция 1 выражается законом минимума Либиха. На рис. 5 показано, что фотосинтетическая ассимиляция в морской воде ведет к истощению растворенного фосфора и азота.  

Так, например, благодаря утверждению в науке кислородной теории горения, произошло соединение живого и минерального царств природы, а А.Л. Лавуазье смог сказать: Наконец брожение, гниение и горение постоянно возвращают атмосфере и минеральному царству те элементы, которые растения и животные из него заимствовали. Либиху принадлежит заслуга открытия так называемого закона минимума, который гласит, что развитие растений замедляется и может совсем прекратиться, если содержание в почве какого-либо необходимого для его жизни химического элемента снижается ниже какого-то порогового значения. В настоящее время этот закон трактуется более широко. Особо следует отметить вклад французского химика Ж.Б. Бусенго (1802 - 1887), работами которого было доказано, что все растения, кроме бобовых, берут из почвы азот. Что касается бобовых - клевера, люцерны, то они сами обогащают почву азотом, который поглощают из воздуха.  

В их числе лицо, в собственности, владении или пользовании которого земельный участок, водоем или иной объект, где находится брошенная вещь. Если стоимость вещи явно ниже установленного законом минимума (ниже пяти минимальных зарплат), то указанное лицо, приступив к использованию вещи либо совершив иные действия по обращению ее в собственность, может стать собственником вещи. То же относится к таким вещам, как брошенный лом металлов, бракованная продукция, топляк от сплава, отвалы и сливы, образуемые при добыче полезных ископаемых, отходы производства и другие отходы. При отсутствии на указанные вещи других претендентов обращаться в суд для приобретения на эти вещи права собственности не требуется.  

Между желанием различных сторон получить как можно больше информации и нежеланием ее владельца нести связанные с ее представлением затраты или испытывать неудобства существует противоречие. Поэтому объем предоставляемой информации колеблется от обусловленного законом минимума до уровня, значительно превышающего этот минимум; от простейших финансовых количественных данных до сложных количественных и качественных сведений, которые можно найти в отчетах, совмещающих, по-видимому, бухгалтерский учет и паблик рилейшнз.  

Любой фактор, приближающийся к пределу толерантности, называется лимитирующим фактором. В 1840 г. Либих сформулировал принцип, названный позднее законом минимума Либи-ха, который звучит так: веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость урожая во времени.  

Эйлер, по существу говоря, хочет обосновать принцип наименьшего действия на законе минимума потенциальной энергии.  

Лагранжа, оказывается подведенным под несколько видоизмененный принцип наименьшего действия. Там, где нужно отличать этот видоизмененный принцип от первоначального, я буду называть его законом минимума отрицательного кинетического потенциала.  

Это правило об особенном значении тех веществ, которых наиболее не хватает для нормального развития растения, стало известным под названием либиховского закона минимума. Следует, однако, заметить, что в основном своем сочинении (1840) Либих вовсе не употребляет выражения закон минимума и не дает ему никакой математической формулировки.  

Либих экспериментально доказал, что дефицит химических элементов в почве приводит к нарушению роста и развития растений. Его предположение о том, что химический элемент, находящийся в минимуме, управляет биологической продуктивностью растений, получило название закона минимума. Многочисленные исследования, проведенные в разных странах, показали, что закон минимума применим не только к растениям, но и к животным. Доказано, что недостаток того или иного биогенного элемента в среде может стать причиной снижения продуктивности, воспроизводительной способности животных, их устойчивости к болезням. Снижение продуктивности, воспроизводительной способности и естественной резистентности (устойчивости к болезням) крупного рогатого скота, лошадей, свиней, овец, кур и уток отмечено при дефиците в кормовом рационе кальция, фосфора, калия, натрия, йода, меди, цинка и других макро - и микроэлементов.  

Существенным источником получения человеком продовольствия могут служить пищевые ресурсы людей и океанов. Но при использовании их необходимо развивать взаимоотношения в системе общество - природа, на базе экологических знаний, в частности законов минимума, лимитирующих факторов и экологической валентности, толерантности, оптимума, взаимоотношений между человеком и промышленными популяциями, закона внутреннего динамического равновесия и его следствий.  

Законы экологии — общие закономерности и принципы взаимодействия человеческого общества с природной средой.

Значение этих законов состоит в регламентации характера и направленности человеческой деятельности в пределах экосистем различного уровня. Среди законов экологии, сформулированных разными авторами, наибольшую известность получили четыре закона-афоризма американского ученого-эколога Барри Коммонера (1974):

  • «все связано со всем» (закон всеобщей связи вещей и явлений в природе);
  • «все должно куда-то деваться» (закон сохранения массы вещества);
  • «ничто не дается даром» (о цене развития);
  • «природа знает лучше» (о главном критерии эволюционного отбора).

Из закона всеобщей связи вещей и явлений в природе («все связано со всем») вытекает несколько следствий:

  • закон больших чисел - совокупное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая, т.е. имеющему системный характер. Так, мириады бактерий в почве, воде, телах живых организмов создают особую, относительно стабильную микробиологическую среду, необходимую для нормального существования всего живого. Или другой пример: случайное поведение большого числа молекул в некотором объеме газа обусловливает вполне определенные значения температуры и давления;
  • принцип Ле Шателье (Брауна) - при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия уменьшается. На биологическом уровне он реализуется в виде способности экосистем к саморегуляции;
  • закон оптимальности — любая система функционирует с наибольшей эффективностью в некоторых характерных для нее пространственно-временных пределах;
  • любые системные изменения в природе оказывают прямое или опосредованное воздействие на человека — от состояния индивидуума до сложных общественных отношений.

Из закона сохранения массы вещества («все должно куда-то деваться») вытекают по меньшей мере два постулата, имеющих практическое значение:

Барри Коммонер писан «...глобальная экосистема представляет собой единое целое, в рамках которого ничего не может быть выиграно или потеряно и которое не может являться объектом всеобщего улучшения; все, что было извлечено из нее человеческим трудом, должно быть возмещено. Платежа по этому векселю нельзя избежать; он может быть только отсрочен. Нынешний кризис окружающей среды говорит о том, что отсрочка очень затянулась».

Принцип «природа знает лучше» определяет прежде всего то, что может и что не должно иметь места в биосфере. Все в природе — от простых молекул до человека — прошло жесточайший конкурс на право существования. В настоящее время планету населяет лишь 1/1000 испытанных эволюцией видов растений и животных. Главный критерий этого эволюционного отбора — вписанность в глобальный биотический круговорот , заполненность всех экологических ниш. У любого вещества, выработанного организмами, должен существовать разлагающий его фермент, и все продукты распада должны вновь вовлекаться в круговорот. С каждым биологическим видом, который нарушал этот закон, эволюция рано или поздно расставалась. Человеческая индустриальная цивилизация грубо нарушает замкнутость биотического круговорота в глобальном масштабе, что не может остаться безнаказанным. В этой критической ситуации должен быть найден компромисс, что под силу только человеку, обладающему разумом и стремлением к этому.

Помимо формулировок Барри Коммонера современные экологи вывели еще один закон экологии - «на всех не хватит» (закон ограниченности ресурсов). Очевидно, что масса питательных веществ для всех форм жизни на Земле конечна и ограничена. Ее не хватает на всех появляющихся в биосфере представителей органического мира, поэтому значительное увеличение численности и массы каких-либо организмов в глобальном масштабе может происходить только за счет уменьшения численности и массы других. На противоречие между скоростью размножения и ограниченностью ресурсов питания применительно к народонаселению планеты впервые обратил внимание английский экономист Т.Р. Мальтус (1798), который именно этим пытался обосновать неизбежность социальной конкуренции. В свою очередь, Ч. Дарвин заимствовал у Мальтуса понятие «борьба за существование» для объяснения механизма естественного отбора в живой природе.

Закон ограниченности ресурсов — источник всех форм конкуренции, соперничества и антагонизма в природе и, к сожалению, в обществе. И сколько бы ни считали классовую борьбу, расизм, межнациональные конфликты чисто социальными явлениями — все они своими корнями уходят во внутривидовую конкуренцию, принимающую иногда гораздо более жестокие формы, чем у животных.

Существенное различие в том, что в природе в результате конкурентной борьбы выживают лучшие, а в человеческом обществе — это отнюдь не так.

Обобщенную классификацию экологических законов представил известный советский ученый Н.Ф. Реймерс. Им даны следующие формулировки:

  • закон социально-экологического равновесия (необходимости сохранения равновесия между давлением на среду и восстановлением этой среды, как природным, так и искусственным);
  • принцип культурного управления развитием (наложение ограничений на экстенсивное развитие, учет экологических ограничений);
  • правило социально-экологического замещения (необходимость выявления путей замещения человеческих потребностей);
  • закон социально-экологической необратимости (невозможность поворота эволюционного движения вспять, от сложных форм к более простым);
  • закон ноосферы Вернадского (неизбежность трансформации биосферы под влиянием мысли и человеческого труда в ноосферу — геосферу, в которой разум становится доминирующим в развитии системы «человек-природа»).

Соблюдение этих законов возможно при условии осознания человечеством своей роли в механизме поддержания стабильности биосферы. Известно, что в процессе эволюции сохраняются только те виды, которые способны обеспечивать устойчивость жизни и окружающей среды. Только человек, используя силу своего разума, может направить дальнейшее развитие биосферы по пути сохранения дикой природы, сохранения цивилизации и человечества, создания более справедливой социальной системы, перехода от философии войны к философии мира и партнерства, любви и уважения к будущим поколениям. Все это составляющие нового биосферного мировоззрения, которое должно стать общечеловеческим.

Законы и принципы экологии

Закон минимума

В 1840 г. Ю. Либих установил, что урожай часто ограничивается не теми питательными веществами, которые требуются в больших количествах, а теми, которых нужно немного, но которых мало и в почве. Сформулированный им закон гласил: «Веществом, находящимся в минимуме, управляется урожай, определяется величина и устойчивость последнего во времени». Впоследствии к питательным веществам добавили ряд других факторов, например температуру. Действие данного закона ограничивают два принципа. Первый закон Либиха строго действует только в условиях стационарного состояния. Более точная формулировка: «при стационарном состоянии лимитирующим будет то вещество, доступные количества которого наиболее близки к необходимому минимуму». Второй принцип касается взаимодействия факторов. Высокая концентрация или доступность некоторого вещества может изменять потребление минимального питательного вещества. Следующий закон сформулирован в самой экологии и обобщает закон минимума.

Закон толерантности

Этот закон формулируется следующим образом: отсутствие или невозможность развития экосистемы определяется не только недостатком, но и избытком любого из факторов (тепло, свет, вода). Следовательно, организмы характеризуются как экологическим минимумом, так и максимумом. Слишком много хорошего тоже плохо. Диапазон между двумя величинами составляет пределы толерантности, в которых организм нормально реагирует на влияние среды. Закон толерантности предложил В. Шелфорд в 1913 г. Можно сформулировать ряд дополняющих его предложений.

  • Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий в отношении другого.
  • Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены.
  • Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться диапазон толерантности к другим экологическим факторам.
  • В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному значению того или иного фактора, определенному в лаборатории.
  • Период размножения обычно является критическим; в этот период многие факторы среды часто оказываются лимитирующими.

Живые организмы изменяют условия среды, чтобы ослабить лимитирующее влияние физических факторов. Виды с широким географическим распространением образуют адаптированные к местным условиям популяции, которые называются экотипами. Их оптимумы и пределы толерантности соответствуют местным условиям.

Обобщающая концепция лимитирующих факторов

Наиболее важными факторами на суше являются свет, температура и вода (осадки), а в море — свет, температура и соленость. Эти физические условия существования могут быть лимитирующими и влияющими благоприятно. Все факторы среды зависят друг от друга и действуют согласованно. Из других лимитирующих факторов можно отметить атмосферные газы (углекислый газ, кислород) и биогенные соли. Формулируя «закон минимума», Либих и имел в виду лимитирующее воздействие жизненно важных химических элементов, присутствующих в среде в небольших и непостоянных количествах. Они называются микроэлементами и к ним относятся железо, медь, цинк, бор, кремний, молибден, хлор, ванадий, кобальт, йод, натрий. Многие микроэлементы подобно витаминам действуют как катализаторы. Фосфор, калий, кальций, сера, магний, требующиеся организмам в больших количествах, называются макроэлементами. Важным лимитирующим фактором в современных условиях является загрязнение природной среды. Главный лимитирующий фактор, по Ю. Одуму, - размеры и качество «ойкоса », или нашей «природной обители», а не просто число калорий, которые можно выжать из земли. Ландшафт не только склад запасов, но и дом, в котором мы живем. «Следует стремиться к тому, чтобы сохранить, по меньшей мере, треть всей суши в качестве охраняемого открытого пространства. Это означает, что треть всей нашей среды обитания должны составлять национальные или местные парки, заповедники, зеленые зоны, участки дикой природы и т.п.». Территория, необходимая одному человеку, по разным оценкам колеблется от 1 до 5 га. Вторая из этих цифр превосходит площадь, которая приходится ныне на одного жителя Земли.

Плотность населения приближается к одному человеку на 2 га суши. Пригодны же для сельского хозяйства только 24% суши. Хотя с площади всего лишь 0,12 га можно получить достаточно калорий, чтобы поддержать существование одного человека, для полноценного питания с большим количеством мяса, фруктов и зелени необходимо около 0,6 га на человека. Кроме того, требуется еще около 0,4 га для производства разного рода волокна (бумаги, древесины, хлопка) и еще 0,2 га для дорог, аэропортов, зданий и т.п. Отсюда концепция «золотого миллиарда», в соответствии с которой оптимальным количеством населения является 1 млрд человек, и стало быть, уже сейчас около 5 млрд «лишних людей». Человек впервые за свою историю столкнулся с предельными, а не локальными ограничениями. Преодоление лимитирующих факторов требует огромных затрат вещества и энергии. Для удвоения урожая необходимо десятикратное увеличение количества удобрений, ядохимикатов и мощности (животных или машин). К лимитирующим факторам относится и численность популяции.

Закон конкурентного исключения

Данный закон формулируется следующим образом: два вида, занимающие одну экологическую нишу, не могут сосуществовать в одном месте неограниченно долго.

То, какой вид побеждает, зависит от внешних условий. В сходных условиях победить может каждый. Важным для победы обстоятельством является скорость роста популяции. Неспособность вида к биотической конкуренции ведет к его оттеснению и необходимости приспособления к более трудным условиям и факторам.

Закон конкурентного исключения может работать и в человеческом обществе. Особенность его действия в настоящее время заключается в том, что цивилизации не могут разойтись. Им некуда уйти со своей территории, потому что в биосфере нет свободного места для расселения и нет избытка ресурсов, что приводит к обострению борьбы со всеми вытекающими отсюда последствиями. Можно говорить об экологическом соперничестве между странами и даже экологических войнах или войнах, обусловленных экологическими причинами. В свое время Гитлер оправдывал агрессивную политику нацистской Германии борьбой за жизненное пространство. Ресурсы нефти, угля и т.п. и тогда были важны. Еще больший вес они имеют в XXI в. К тому же добавилась необходимость территорий для захоронения радиоактивных и прочих отходов. Войны — горячие и холодные — приобретают экологическую окраску. Многие события в современной истории, например распад СССР, воспринимаются по-новому, если на них посмотреть с экологических позиций. Одна цивилизация может не только завоевать другую, но использовать ее для корыстных с экологической точки зрения целей. Это и будет экологический колониализм. Так переплетаются политические, социальные и экологические проблемы.

Основной закон экологии

Одним из главных достижений экологии стало открытие, что развиваются не только организмы и виды, но и . Последовательность сообществ, сменяющих друг друга в данном районе, называется сукцессией. Сукцессия происходит в результате изменения физической среды под действием сообщества, т.е. контролируется им.

Высокая продуктивность дает низкую надежность — еще одна формулировка основного закона экологии, из которой вытекает следующее правило: «Оптимальная эффективность всегда меньше максимальной». Разнообразие в соответствии с основным законом экологии непосредственно связано с устойчивостью. Однако пока неизвестно, до какой степени эта связь является причинно-следственной.

Некоторые другие важные для экологии законы и принципы.

Закон эмерджентности : целое всегда имеет особые свойства, отсутствующие у его части.

Закон необходимого разнообразия : система не может состоять из абсолютно идентичных элементов, но может иметь иерархическую организацию и интегративные уровни.

Закон необратимости эволюции : организм (популяция, вид) не может вернуться к прежнему состоянию, осуществленному в ряду его предков.

Закон усложнения организации : историческое развитие живых организмов приводит к усложнению их организации путем дифференциации органов и функций.

Биогенетический закон (Э. Геккель): онтогенез организма есть краткое повторение филогенеза данного вида, т.е. индивид в своем развитии повторяет сокращенно историческое развитие своего вида.

Закон неравномерности развития частей системы : системы одного уровня иерархии развиваются не строго синхронно, в то время как одни достигают более высокой стадии развития, другие остаются в менее развитом состоянии. Этот закон непосредственно связан с законом необходимого разнообразия.

Закон сохранения жизни : жизнь может существовать только в процессе движения через живое тело потока веществ, энергии, информации.

Принцип сохранения упорядоченности (Я. Пригожий): в открытых системах энтропия не возрастает, а уменьшается до тех пор, пока не достигается минимальная постоянная величина, всегда больше нуля.

Принцип Ле Шателье-Брауна : при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется.

Принцип экономии энергии (Л. Онсагер): при вероятности развития процесса в некотором множестве направлений, допускаемых началами термодинамики, реализуется то, которое обеспечивает минимум рассеивания энергии.

Закон максимизации энергии и информации : наилучшими шансами на самосохранение обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации; максимальное поступление вещества не гарантирует системе успеха в конкурентной борьбе.

Закон развития системы за счет окружающей среды : любая система может развиваться только за счет использования материально-энергетических и информационных возможностей окружающей ее среды; абсолютно изолированное саморазвитие невозможно.

Правило Шредингера «о питании» организма отрицательной энтропией: упорядоченность организма выше окружающей среды, и организм отдает в эту среду больше неупорядоченности, чем получает. Это правило соотносится с принципом сохранения упорядоченности Пригожина.

Правило ускорения эволюции : с ростом сложности организации биосистем продолжительность существования вида в среднем сокращается, а темпы эволюции возрастают. Средняя продолжительность существования вида птиц — 2 млн лет, вида млекопитающих — 800 тыс. лет. Число вымерших видов птиц и млекопитающих в сравнении со всем их числом велико.

Закон относительной независимости адаптации : высокая адаптивность к одному из экологических факторов не дает такой же степени приспособления к другим условиям жизни (наоборот, она может ограничивать эти возможности в силу физиолого-морфологических особенностей организмов).

Принцип минимального размера популяций : существует минимальный размер популяции, ниже которого ее численность не может опускаться.

Правило представительства рода одним видом : в однородных условиях и на ограниченной территории таксономический род, как правило, представлен только одним видом. По-видимому, это связано с близостью экологических ниш видов одного рода.

Закон обеднения живого вещества в островных его сгущениях (Г.Ф. Хильми): «Индивидуальная система, работающая в среде с уровнем организации более низким, чем уровень самой системы, обречена: постепенно теряя структуру, система через некоторое время растворится в окружающей среде». Из этого следует важный вывод для человеческой природоохранной деятельности: искусственное сохранение экосистем малого размера (на ограниченной территории, например, заповедника) ведет к их постепенной деструкции и не обеспечивает сохранения видов и сообществ.

Закон пирамиды энергий (Р. Линдеман): с одного трофического уровня экологической пирамиды переходит на другой, более высокий уровень в среднем около 10% поступившей на предыдущий уровень энергии. Обратный поток с более высоких на более низкие уровни намного слабее — не более 0,5-0,25%, и потому говорить о круговороте энергии в биоценозе не приходится.

Правило обязательности заполнения экологических ниш : пустующая экологическая ниша всегда и обязательно бывает естественно заполнена («природа не терпит пустоты»).

Принцип формирования экосистемы : длительное существование организмов возможно лишь в рамках экологических систем, где их компоненты и элементы дополняют друг друга и взаимно приспособлены. Из этих экологических законов и принципов следуют некоторые выводы, справедливые для системы «человек — природная среда». Они относятся к типу закона ограничения разнообразия, т.е. накладывают ограничения на деятельность человека по преобразованию природы.

Закон бумеранга : все, что извлечено из биосферы человеческим трудом, должно быть возвращено ей.

Закон незаменимости биосферы : биосферу нельзя заменить искусственной средой, как, скажем, нельзя создать новые виды жизни. Человек не может построить вечный двигатель, в то время как биосфера и есть практически «вечный» двигатель.

Закон шагреневой кожи : глобальный исходный природно-ресурсный потенциал в ходе исторического развития непрерывно истощается. Это следует из того, что никаких принципиально новых ресурсов, которые могли бы появиться, в настоящее время нет. Для жизни каждого человека в год необходимо 200 т твердых веществ, которые он с помощью 800 т воды и в среднем 1000 Вт энергии превращает в полезный для себя продукт. Все это человек берет из уже имеющегося в природе.

Принцип удаленности события : потомки что-нибудь придумают для предотвращения возможных отрицательных последствий. Вопрос о том, насколько законы экологии можно переносить на взаимоотношения человека с окружающей средой, остается открытым, так как человек отличается от всех других видов. Например, у большинства видов скорость роста популяции уменьшается с увеличением ее плотности; у человека, наоборот, рост населения в этом случае ускоряется. Некоторые регулирующие механизмы природы отсутствуют у человека, и это может служить дополнительным поводом для технологического оптимизма у одних, а для экологических пессимистов свидетельствовать об опасности такой катастрофы, которая невозможна ни для одного иного вида.

Основные законы и принципы экологии

Задачей экологии является поиск законов объясняющих взаимодействие организмов и среды.

(Что такое экологический фактор? Какие группы экологических факторов вам известны?)

Живой организм в природных условиях одновременно подвергается воздействию со стороны не одного, а многих экологических факторов – как биотических, так и абиотических. Любой экологический фактор динамичен, изменчив во времени и пространстве. Однако каждому живому организму требуются строго определенные уровни, количества (дозы) экологических факторов, а также определенные пределы их колебаний. Если режимы всех экологических факторов соответствуют наследственно закрепленным требованиям организма (т. е. его генотипу), то он способен выживать и давать жизнеспособное потомство.

Так растения нуждаются в значительных количествах влаги, питательных веществ (азот, фосфор, калий), но требования к другим веществам, например бору или молибдену, определяются ничтожными количествами. Тем не менее, недостаток или отсутствие любого вещества (как макро-, так и микроэлемента) отрицательно сказывается на состоянии организма, даже если все остальные присутствуют в требуемых количествах.

    Закон минимума

Исторически первым для экологии был закон, устанавливающий зависимость живых систем от факторов, ограничивающих их развитие (так называемых лимитирующих факторов).

Понятие о лимитирующих факторах было введено в 1840 г. немецким агрохимиком и физиологом Юстусом Либихом (1803-1873). Изучая влияние на рост растений содержания различных химических элементов в почве, он сформулировал правило: «Урожай (продукция) зависит от фактора, находящегося в минимуме». Это правило известно под названием закона минимума Либиха.

В качестве наглядной иллюстрации закона минимума Либиха часто изображают бочку, у которой образующие боковую поверхность дощечки имеют разную высоту. Длина самой короткой доски определяет уровень, до которого можно наполнить бочку водой. Следовательно, длина этой доски – лимитирующий фактор для количества воды, которую можно налить в бочку. Длина других досок уже не имеет значения.

Разберем закон минимума на конкретных примерах. В почве содержатся все элементы минерального питания, необходимые для данного вида растений, кроме одного из них, например цинка. Рост растений на такой почве будет сильно угнетен или вообще невозможен. Если в почву добавить нужное количество цинка, это приведет к улучшению роста растений. Но если мы будем вносить любое другое химическое вещество (например, калий, азот, фосфор), а цинка по-прежнему будет не хватать, это не даст никакого эффекта.

В 1908 г. климатолог Воейков употребил закон минимума по отношению к климатическим факторам, а в 1936 г. зоогеограф Гепнер в зоогеографии. Закон минимума Либиха относится ко всем влияющим на организм абиотическим и биотическим факторам.

Т.о, закон минимума справедлив не только для растений, но и для всех живых организмов, включая человека. Известно, что в ряде случаев недостаток каких-либо элементов в организме приходится компенсировать употреблением минеральной воды или витаминов.

(Пример. Минимальная суточная потребность в йоде взрослого человека, по данным ВОЗ, – 150–200 мкг. Йод входит в состав гормонов ЩЖ и крайне необходим нашему организму для многих физиологических процессов:

Нормального формирования и функционирования мозга,

Развития высокого интеллекта,

Нормальной функции ЩЖ,

Нормального роста и развития ребенка,

Полноценной жизни взрослого человека и продолжения рода,

Нормального течения беременности и родов, нормального развития плода и новорожденного,

Замедления развития атеросклероза и старения организма, для продления молодости и предотвращения преждевременного старения, для сохранения ясного ума и хорошей памяти долгие годы.)

В современном представлении закон минимума гласит: «Приближаясь к своему минимальному значению, необходимому для поддержания жизнедеятельности организма, экологический фактор становится лимитирующим, т.е. ограничивает возможности выживания организма.

Наиболее полно и в наиболее общем виде всю сложность влияния экологических факторов на организм отражает закон толерантности В. Шелфорда.

    Закон толерантности

Представление о лимитирующем влиянии максимума наравне с минимумом ввел американский ученый Шелфорд в 1913 г., сформулировавший закон толерантности. Толерантность (от латинского tolerantia) – означает устойчивость, терпение.

Закон толерантности – лимитирующим фактором процветания организма (вида) может быть как минимум, так и максимум экологического фактора, диапазон между которыми определяет величину выносливости – толерантности организма к данному фактору.

Относительно действия одного фактора можно проиллюстрировать этот закон так: некий организм способен существовать при температуре от -5 до +25 градусов Цельсия, т.е. диапазон его толерантности лежит в пределах этих температур. Подобно температуре действуют и другие лимитирующие факторы.

Таким образом, лимитирующими экологическими факторами следует называть такие факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным значением). Оптимум – это такое количество экологического фактора, при котором интенсивность жизнедеятельности организма максимально.

Следовательно, организмы характеризуются как экологическим минимумом, так и максимумом. Слишком много хорошего тоже плохо. Диапазон между двумя величинами составляет пределы толерантности, в которых организм нормально реагирует на влияние среды. Чем шире амплитуда колебаний фактора, при которой организм может сохранять жизнеспособность, тем выше его устойчивость, т. е. толерантность к тому или иному фактору.

Организм имеет определенные унаследованные от своих предков и передаваемые потомкам, пределы толерантности, а если фактор выходит за пределы (верхний или нижний), то уровень фактора несовместим с жизнью.

Продемонстрировать это можно на простой графической модели. Значения фактора откладываются на горизонтальной оси, а характеристики жизненного состояния – на вертикальной.

При некотором уровне фактор не сказывается отрицательно на состоянии здоровья организма, т.е. уровень является оптимальным (УФопт), и на вертикальной оси этот уровень будет соответствовать оптимуму жизненного состояния (ЖСопт). Понятно, что если фактор начнет отклоняться в ту или иную сторону от УФопт, то и состояние организма будет ухудшаться. Это и показано в виде кривой жизненного состояния, которая постепенно снижается и, в конечном счете, доходит до горизонтальной оси, что означает несовместимость уровня фактора с жизнью (точки УФлет), что означает летальный уровень.

Для организма имеет значение не только собственно амплитуда колебаний экологических факторов, но и скорость, с которой фактор изменяется. Известны эксперименты, когда при резком понижении температуры воздуха от +15 до –20°С гусеницы некоторых бабочек погибали, а при медленном, постепенном охлаждении их удавалось вернуть к жизни после значительно более низких температур.

Необходимо учитывать, что на отдельные организмы и их популяции одновременно действуют многие факторы, создающие комплекс условий, в котором могут обитать те или иные организмы. Одни факторы могут усиливать или ослаблять действие других факторов. Например, при оптимальной температуре повышается выносливость организмов к недостатку влаги и пищи. В свою очередь обилие пищи увеличивает устойчивость организмов к неблагоприятным климатическим условиям. То есть диапазон толерантности организма не остается постоянным, характер действия экологических факторов при определенных условиях может меняться, т.е. он может быть, а может и не быть лимитирующим.

Эврибионты (от греч. ευρί - «широкий» и греч. βίον - «живущий») - организмы, способные существовать в широком диапазоне природных условий окружающей среды и выдерживать их значительные изменения.

Так, например, животные, обитающие в зонах с континентальным климатом способны переносить значительные сезонные колебания температуры, влажности и других природных факторов. Жители литоральных областей регулярно подвергаются колебаниям температуры и солёности окружающей воды, а также осушению.

Эврибионтные организмы, как правило, имеют морфофизиологические механизмы, позволяющие им поддерживать постоянство своей внутренней среды даже при резких колебаниях условий окружающей среды.

Из закона толерантности следуют несколько выводов, имеющих важное значение для объяснения причин распространения и выживания организмов (Одум, 1986 г.):

    Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий в отношении другого;

    Организмы с широким диапазоном толерантности по всем факторам наиболее широко распространены;

    Если уровень одного экологического фактора выходит за пределы диапазона толерантности, то может измениться диапазон толерантности и к другим экологическим факторам (например, при низкой концентрации в почве азота, растения для предотвращения увядания потребляют больше воды);

    Экологическая ниша организма

Для определения этого важного понятия экологии, необходимо рассмотреть несколько конкретных примеров. Многие виды млекопитающих и птиц, даже близкие по своему происхождению в систематической классификации, обитают в разных местах. Например, белая куропатка живет в тундре, а ее близкая «родственница» - горная куропатка – обитатель степей и предгорий Средней Азии. Для бурого медведя обычное место обитания – тайга, а белый медведь живет на островах Северного Ледовитого океана.

Вспомним, каких лесных птиц все знают, дятел, кукушка, тетерев, ястреб-тетеревятник. У каждого из них разные требования к пищевым ресурсам (факторам), а кроме того, каждый имеет свое определенное место гнездования в одном и том же лесу, зависящее от требований к абиотическим факторам. Так тетерев строит свои гнезда непосредственно на земле, дятел гнездится в дуплах деревьев, гнездо хищника располагается в верхних частях крон самых высоких деревьев, а кукушка вообще не строит гнезд и не высиживает птенцов, пользуясь чужими гнездами.

Любой хозяйке хорошо известно, что разным комнатным растениям требуются разные режимы полива, почва, разное освещение. Одни растения выносят широкие колебания факторов, а другие нет.

Если обобщить все приведенные примеры, то становится понятным, что каждому растительному или животному организму присущи свои специфические, унаследованные от предков требования к экологическим факторам, т.е. пределы толерантности. Выживать, развиваться, размножаться организмы могут только там, где множество экологических факторов не является для них лимитирующим.

Таким образом, экологическая ниша – это совокупность всех факторов среды, в пределах которых возможно существование вида в природе и его средообразующая деятельность.

Т.е., это не только физическое пространство, занимаемое организмом, но и его функциональная роль в сообществе (положение в пищевой цепи), и его место относительно внешних факторов.

С понятием экологическая ниша связан принцип исключения Гаузе (принцип Вольтера-Гаузе) или закон конкурентного исключения , который звучит так, два вида не могут существовать в одной и той же местности, если их экологические потребности идентичны, т.е. если они занимают одну и ту же экологическую нишу. В связи с этим принципом любые два вида с идентичными экологическими потребностями бывают, разобщены в пространстве и/или во времени (живут в разных биотопах, ярусах леса, одни ведут ночной, другие – дневной образ жизни). При жесткой ограниченности возможностей пространственно-временного разобщения один из видов вырабатывает новую экологическую нишу или исчезает. Принцип был сформулирован в 1926 г. В. Вольтерра и экспериментально доказан в 1931-1935 гг. отечественным ученым Г.Гаузе.

Характеристики экологической ниши:

2. Перекрывание данной ниши с соседними

Ширина экологической ниши - относительный параметр, который оценивают путем сравнения с шириной экологической ниши других видов.

Эврибионты обычно имеют более широкие экологические ниши, чем стенобионты. Однако, одна и та же экологическая ниша может иметь различную ширину по разным направлениям: например, по пространственному распределению, пищевым связям и т.д.

Перекрывание экологической ниши возникает, если различные виды при совместном обитании используют одни и те же ресурсы. Перекрывание может быть полным или частичным, по одному или нескольким параметрам экологической ниши.

Если экологическая ниша одного вида включает в себя экологическую нишу другого (рис.1), то возникает интенсивная конкуренция, доминирующий конкурент вытеснит своего соперника на периферию зоны приспособленности.

Если экологические ниши частично перекрываются (рис.2), то их совместное сосуществование будет возможно благодаря наличию у каждого вида специфических приспособлений.

Если экологические ниши организмов двух видов сильно отличаются друг от друга, то данные виды, имеющие одно и то же место обитания, не конкурируют друг с другом (рис.3).

Конкуренция приводит к важным экологическим последствиям. В природе особи каждого вида одновременно подвергаются межвидовой и внутривидовой конкуренции. Межвидовая по своим последствиям противоположна внутривидовой, так как она сужает площадь местообитаний и количество и качество необходимых ресурсов среды.

Внутривидовая конкуренция способствует территориальному распространению видов, то есть расширению пространственной экологической ниши. Конечный результат - соотношение межвидовой и внутривидовой конкуренции. Если межвидовая конкуренция больше, то ареал данного вида уменьшается до территории с оптимальными условиями и одновременно увеличивается специализация вида.

    Ряд других важных законов для экологии.

Принцип Олли (сформулирован американским ученым В. Олли в 1931 г.) – принцип агрегации особей, обобщает лимитирующее значение численности популяции. Агрегация (скопление) особей, как правило, усиливает конкуренцию между ними за пищевые ресурсы и жизненное пространство, но приводит к повышенной способности группы в целом к выживанию. Таким образом, общая плотность, при которой наблюдается оптимальный рост и выживание популяции, варьирует в зависимости от вида и условий, поэтому как «недонаселенность», так и «перенаселенность» могут служить лимитирующими экологическими факторами. Принцип Олли диктует, например, необходимость густоты посевов, особенно в условиях полей, засоренных сорняками.

Закон необратимости эволюции. Бельгийский палеонтолог Луи Долло сформулировал в 1893 г общее положение, что эволюция представляет процесс необратимый. Это положение многократно затем подтверждалось и получило название закона Долло .

Организм (популяция, вид) не может вернуться, хотя бы частично, к прежнему состоянию, уже осуществленному в ряду его предков, даже вернувшись в среду их обитания. Так, вторично приспособившиеся к жизни в воде китообразные сохранили все черты млекопитающих, приобретая лишь внешнее, а не функциональное сходство со своими предками-рыбами.

Законны Коммонера.

Видный американский ученый Барри Коммонер в 1974 г. обобщил системность в экологии в виде четырех законов под названием "коммонера", которые в настоящее время приводятся практически в любом пособии по экологии и могут называться законами экологии. Их соблюдение - обязательное условие любой деятельности человека в природе. Эти законы являются следствием основных принципов общей теории жизни

Первый закон «Все связано со всем» . Из этого следует, что влияние на любую природную систему на Земле вызывает целый ряд эффектов, оптимальное развитие которых трудно предвидеть. Он предостерегает человека от необдуманного воздействия на отдельные части экосистем, что может привести к непредвиденным последствиям. Биосфера – наш общий дом. Экологического счастья в одной стране быть не может, с загрязнением океана, парниковым эффектом, озоновыми «дырами» и т.д. должно бороться все сообщество.

Второй закон «Все должно куда-то деваться» вытекает из фундаментального закона сохранения материи. Человек живет в замкнутом пространстве, поэтому все, что создается и все, что берется от природы, ей же определенным образом снова возвращается. Огромные количества веществ извлечены из Земли, преобразованы в новые соединения и рассеяны в окружающей среде без учета того факта, что «все куда-то девается». И как результат – огромные количества веществ накапливаются там, где по природе их не должно быть.

Третий закон «Природа знает лучше» исходит из того, что «структура организма нынешних живых существ или организмов современной природной экосистемы – наилучшие в том смысле, что они были тщательно отобраны из неудачных вариантов в процессе эволюции и что любой новый вариант, скорее всего, будет хуже существующего ныне». Человек должен сохранить экологическое равновесие биосферы, не пытаясь быть умнее природы. Без точного знания последствий преобразования природной среды, недопустимы никакие ее «улучшения».

Четвертый закон «Ни что не дается даром», по мнению Коммонера, объединяет предшествующие три закона, потому что биосфера как глобальная экосистема представляет собой единое целое, в рамках которой ничего не может быть выиграно или потеряно и которая не может являться объектом всеобщего улучшения; все, что было извлечено из нее человеческим трудом, должно быть возмещено. Платежа по этому векселю нельзя избежать; он может быть только отсрочен.

Правило природопользования. Мы уже говорили о том, что все законы экологии справедливы для человека в той же мере, как и для любого другого организма. И человек (млекопитающее из отряда приматов) в процессе эволюции приобрел свои, только ему присущие требования к экологическим факторам, т.е. имеет свою экологическую нишу. Все представляют многие из этих требований: приделы толерантности к температуре, давлению, составляющим элементам пищи. Эти требования сравнительно узкие: реально человек может выживать только в пределах суши, причем в экваториальном поясе, на относительно небольшой (до 4 км) высоте над уровнем моря.

Наши требования к экологическим факторам одинаковы в любых условиях: под водой, в космическом пространстве, в производственном помещении. Тем не менее, человек освоил любые условия. Сделать это ему позволил разум, благодаря которому он может имитировать свою экологическую нишу. В космическом или подводном корабле многочисленная аппаратура поддерживает подходящие для человека условия, в высоких и средних широтах требования к температуре обеспечиваются за счет отопления и одежды, а чистота воздуха в цехах за счет систем очистки.

Таким образом, несмотря на то, что человек освоил практически всю территорию планеты и околоземное космическое пространство, его экологическая ниша остается неизменной, и наши требования к экологическим факторам мы передадим своим потомкам.

Отсюда можно сформулировать правило природопользования: сохранить жизнь и процветание человека и всех других живых организмов, населяющих планету, означает сохранить их экологические ниши и природные комплексы (системы), где они локализуются.

Другие законы экологии

ПРАВИЛО АЛЛЕНА, правило (установлено Дж. Алленом, 1877), согласно к-рому выступающие части тела теплокровных животных (конечности, хвост, уши и др.) относительно увеличиваются по мере продвижения от севера к югу в пределах ареала одного вида. Явление вытекает из принципа уменьшения теплоотдачи при сокращении отношения поверхности тела к объему. Согласно П. А., теплокровному животному, обитающему в регионах с холодным климатом, необходимо, чтобы сильно выступающие части были короткими, а животным, обитающим в регионах с теплым климатом, напротив, сильно выступающие части тела создают определенную выгоду. Напр., у арктической лисицы морда, ноги и хвост короче, чем у лисицы умеренного пояса. П. А. является частным случаем правила Бергмана

ПРАВИЛО БЕРГМАНА Правило Бергмана - экогеографическое правило, сформулированное в 1847 г немецким биологом Карлом Бергманом. Правило гласит, что среди сходных форм гомойотермных (теплокровных) животных наиболее крупными являются те, которые живут в условиях более холодного климата - в высоких широтах или в горах . Если существуют близкие виды (например, виды одного рода), которые существенно не отличаются по характеру питания и образу жизни, то более крупные виды также встречаются в условиях более сурового (холодного) климата .

Правило основано на предположении, что общая теплопродукция у эндотермных видов зависит от объема тела, а скорость теплоотдачи - от площади его поверхности. При увеличении размеров организмов объем тела растет быстрее, чем его поверхность.

Например, амурская форма тигра с Дальнего Востока крупнее суматранской из Индонезии . Северные подвиды волка в среднем крупнее южных. Среди близкий видов рода медведь наиболее крупные обитают в северных широтах (белый медведь, бурые медведи с о. Кодьяк), а наиболее мелкие виды (например, очковый медведь ) - в районах с теплым климатом.

Экологические стратегии выживания.

Экологическая стратегия выживания - стремление орга­низмов к выживанию. Экологических стратегий выживания множество. Например, еще в 30-х гг. А. Г. Роменский (1938) среди растений различал три основные типа стратегий выжи­вания, направленных на повышение вероятности выжить и ос­тавить после себя потомство: виоленты, патиенты и экспле-ренты.

Виоленты (силовики) - подавляют всех конкурентов, на­пример, деревья, образующие коренные леса.

Патиенты - виды, способные выжить в неблагоприятных условиях («тенелюбивые», «солелюбивые» и т. п.)

Эксплеренты (наполняющие) - виды, способные быстро появляться там, где нарушены коренные сообщества, - на вы-Рубках и гарях (осины), на отмелях и т. д.

Очевидно, что каждый организм испытывает на себе ком­бинацию г- и К-отбора, но г-отбор преобладает на ранней ста­дии развития популяции, а К-отбор уже характерен для стаби­лизированных систем. Но все-таки оставляемые отбором осо­би должны обладать достаточно высокой плодовитостью и дос­таточно развитой способностью выжить при наличии конку­ренции и «пресса» хищников. Конкуренция г- и К-отбора по­зволяет выделять разные типы стратегий и ранжировать виды по величинами и К в любой группе организмов.

Предварительные замечания.

1. Живые организмы относятся к категории сверхсложных систем, при изучении которых неизбежны определенные упрощения.

2. Все факторы, влияющие на данный организм в данный момент времени, действуют одновременно. Рассуждения о влиянии одного (отдельно взятого) экологического фактора – это упрощение, позволяющее лучше понять отдельные закономерности. Идеально было бы непрерывно регистрировать значения всех экологических факторов и ответную реакцию живой системы (организма).

3. Наиболее простой вариант – это измерение значений определенного показателя жизнедеятельности (П ж) организма в экспериментальных условиях при различных значениях одного изучаемого экологического фактора (Ф э) и постоянном (оптимальном) значении всех других экологических факторов: П ж = f(Ф э). Подобные эксперименты называются однофакторнымиопытами ; в них должно соблюдаться «правило единственного различия» между вариантами опыта.

Показателями жизнедеятельности организма могут служить продуктивность, скорость прироста биомассы, интенсивность дыхания, интенсивность обмена веществ, двигательная активность и многое другое. Показатели «благополучия и процветания» вида (популяции) – рождаемость, продуктивность, численность, выживаемость и т. п.

Например, количественную зависимость чистой первичной продуктивности растения (ЧПП) от температуры воздуха (t в), типа ЧПП = f(t в), можно получить в условиях активного эксперимента. Для этого растения выращивают при различной температуре воздуха (варианты опыта), следя за тем, чтобы значения остальных экологических факторов (обеспеченность влагой, элементами питания и т. д.) оставались одинаковыми и оптимальными во всех вариантах (правило единственного различия).

«Закон минимума» Ю. Либиха

«Идея о том, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, впервые была ясно показана в 1840 г. Ю. Либихом», – утверждает Ю. Одум. Юстус Либих (1803 – 1873), выдающийся немецкий химик, один из основателей агрохимии, автор теории минерального питания растений. На основании многочисленных экспериментов Ю. Либих (1840) сделал важнейшие научные обобщения, по существу сформулировал первые экологические законы задолго до появления самой экологии. Он установил, что урожай растений зависит от того элемента минерального питания, который находится в почве в относительном минимуме (по отношению к потребности растения).

«Закон» минимума (Ю. Либих, 1840 г.): «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость урожая во времени».

Например, пусть в почве содержится оптимальное количество влаги, фосфора, калия, всех других элементов минерального питания растений, за исключением азота, которого не хватает. Тогда именно содержание азота будет лимитировать урожайность растений. Если в этих условиях последовательно увеличивать количество вносимых азотных удобрений (на различных опытных делянках), то в той же последовательности будет возрастать и урожайность растений (до определенного уровня).


Ю. Либих установил также, что урожайность может ограничиваться, лимитироваться не только теми элементами питания, которые требуются растениям в больших количествах (N, P, K и др.), но и теми, которые необходимы в очень малых количествах (микроэлементами). В современной формулировке это положение известно как «закон равнозначности основных экологических факторов ».

Не меньшее, а может быть и большее значение для экологии, имеет и разработанная Ю. Либихом теория минерального питания растений, которая сыграла огромную роль в формировании представлений о взаимодействии живого и неживого на уровне атомов химических элементов. Мы не станем специально останавливаться на тех многочисленных уточнениях и дополнениях к «закону минимума», которые появились за более чем полтора века развития науки – это будет ясно из последующего изложения.

Закон толерантности В. Шелфорда

Многочисленные эксперименты показали, что в отношении действия многих, но далеко не всех, экологических факторов на организм наблюдаются общие закономерности:

1) жизнедеятельность организма может лимитироваться не только недостатком, но и «избытком» воздействия определенного фактора;

2) жизнедеятельность организма (вида) возможна только в определенном диапазоне значений фактора (от и до);

3) при постоянстве остальных факторов существует «наилучшее», оптимальное для организма значение изучаемого фактора;

4) виды организмов строго индивидуальны по отношению к действию факторов среды – оптимум для одного вида может быть непереносимым для другого.

Эти общие закономерности можно объединить в «правило оптимума » или так называемый «закон толерантности ». Обычно формулировку закона толерантности связывают с именем американского эколога В. Шелфорда, хотя установить авторство в данном случае просто невозможно.

Толерантность (от лат. tolerantia – терпение, терпимость) – выносливость организма (вида) к действию данного экологического фактора. Синоним: экологическая валентность .

Закон толерантности (В. Шелфорд, 1913 г.) – лимитирующим фактором процветания организма может являться как минимум (недостаток), так и максимум (избыток) экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору.

Экологическая валентность – степень приспособляемости вида к изменениям условий среды – то же, что и толерантность .

Пределы толерантности организма к действию данного экологического фактора определяются в так называемых стрессовых экспериментах (стрессовыми эксперименты называются потому, что в них необходимо добиться гибели организма). Если представить результаты эксперимента в виде графика, получится знаменитая колоколообразная кривая толерантности (рис. 1.1).

На кривойтолерантности (рис. 1.1) выделяют: экологическийминимум («гибель от недостатка»), экологический максимум («гибель от избытка») и оптимум (наилучшее), а также зону(диапазон)нормальнойжизнедеятельности , зонуоптимума и зоныугнетения (стресса).


Диапазон значений фактора между экологическим минимумом и максимумом – диапазон толерантности , (пределы толерантности вида, пределы выносливости вида к действию данного экологического фактора) обозначается приставками:

эври – широкий и стено – узкий.

Например, эвритермный вид (переносит колебания температуры среды в широком диапазоне) или стенотермный вид (может существовать только при незначительном колебании температур вблизи оптимума).

Часто встречаются названия:

стенотермный – эвритермный (в отношении температуры);

стеногидрический – эвригидрический (в отношении воды);

стеногалинный – эвригалинный (в отношении солености);

стенофаг – эврифаг (в отношении пищи);

стенобионт – эврибионт (в отношении местообитания).

Для характеристики организмов, имеющих узкий диапазон толерантности к определённым экологическим факторам (стено -), часто используют окончания: ...фил – «любит» или...фоб – «не любит». Например, стенотермный и криофильный вид (крио – холод).

Рис. 1.1. Общий вид (схема) кривой толерантности.