Болезни Военный билет Призыв

1 доверительный интервал для математического ожидания. Математика и информатика. Учебное пособие по всему курсу. Доверительный интервал для математического ожидания

В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную выборочную статистику, которая используется для оценки параметра генеральной совокупности. Например, выборочное среднее - это точечная оценка математического ожидания генеральной совокупности, а выборочная дисперсия S 2 - точечная оценка дисперсии генеральной совокупности σ 2 . было показано, что выборочное среднее является несмещенной оценкой математического ожидания генеральной совокупности. Выборочное среднее называется несмещенным, поскольку среднее значение всех выборочных средних (при одном и том же объеме выборки n ) равно математическому ожиданию генеральной совокупности.

Для того чтобы выборочная дисперсия S 2 стала несмещенной оценкой дисперсии генеральной совокупности σ 2 , знаменатель выборочной дисперсии следует положить равным n – 1 , а не n . Иначе говоря, дисперсия генеральной совокупности является средним значением всевозможных выборочных дисперсий.

При оценке параметров генеральной совокупности следует иметь в виду, что выборочные статистики, такие как , зависят от конкретных выборок. Чтобы учесть этот факт, для получения интервальной оценки математического ожидания генеральной совокупности анализируют распределение выборочных средних (подробнее см. ). Построенный интервал характеризуется определенным доверительным уровнем, который представляет собой вероятность того, что истинный параметр генеральной совокупности оценен правильно. Аналогичные доверительные интервалы можно применять для оценки доли признака р и основной распределенной массы генеральной совокупности.

Скачать заметку в формате или , примеры в формате

Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении

Построение доверительного интервала для доли признака в генеральной совокупности

В этом разделе понятие доверительного интервала распространяется на категорийные данные. Это позволяет оценить долю признака в генеральной совокупности р с помощью выборочной доли р S = Х/ n . Как указывалось , если величины n р и n (1 – р) превышают число 5, биномиальное распределение можно аппроксимировать нормальным. Следовательно, для оценки доли признака в генеральной совокупности р можно построить интервал, доверительный уровень которого равен (1 – α)х100% .


где p S - выборочная доля признака, равная Х/ n , т.е. количеству успехов, деленному на объем выборки, р - доля признака в генеральной совокупности, Z - критическое значение стандартизованного нормального распределения, n - объем выборки.

Пример 3. Предположим, что из информационной системы извлечена выборка, состоящая из 100 накладных, заполненных в течение последнего месяца. Допустим, что 10 из этих накладных составлены с ошибками. Таким образом, р = 10/100 = 0,1. Доверительному уровню 95% соответствует критическое значение Z = 1,96.

Таким образом, вероятность того, что от 4,12% до 15,88% накладных содержат ошибки, равна 95%.

Для заданного объема выборки доверительный интервал, содержащий долю признака в генеральной совокупности, кажется более широким, чем для непрерывной случайной величины. Это объясняется тем, что измерения непрерывной случайной величины содержат больше информации, чем измерения категорийных данных. Иначе говоря, категорийные данные, принимающие лишь два значения, содержат недостаточно информации для оценки параметров их распределения.

В ычисление оценок, извлеченных из конечной генеральной совокупности

Оценка математического ожидания. Поправочный коэффициент для конечной генеральной совокупности (fpc ) использовался для уменьшения стандартной ошибки в раз. При вычислении доверительных интервалов для оценок параметров генеральной совокупности поправочный коэффициент применяется в ситуациях, когда выборки извлекаются без возвращения. Таким образом, доверительный интервал для математического ожидания, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Пример 4. Чтобы проиллюстрировать применение поправочного коэффициента для конечной генеральной совокупности, вернемся к задаче о вычислении доверительного интервала для средней суммы накладных, рассмотренной выше в примере 3. Предположим, что за месяц в компании выписываются 5000 накладных, причем =110,27долл., S = 28,95 долл., N = 5000, n = 100, α = 0,05, t 99 = 1,9842. По формуле (6) получаем:

Оценка доли признака. При выборе без возвращения доверительный интервал для доли признака, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Доверительные интервалы и этические проблемы

При выборочном исследовании генеральной совокупности и формулировании статистических выводов часто возникают этические проблемы. Основная из них - как согласуются доверительные интервалы и точечные оценки выборочных статистик. Публикация точечных оценок без указания соответствующих доверительных интервалов (как правило, имеющих 95%-ный доверительный уровень) и объема выборки, на основе которых они получены, может породить недоразумения. Это может создать у пользователя впечатление, что точечная оценка - именно то, что ему необходимо, чтобы предсказать свойства всей генеральной совокупности. Таким образом, необходимо понимать, что в любых исследованиях во главу угла должны быть поставлены не точечные, а интервальные оценки. Кроме того, особое внимание следует уделять правильному выбору объемов выборки.

Чаще всего объектами статистических манипуляций становятся результаты социологических опросов населения по тем или иным политическим проблемам. При этом результаты опроса выносят на первые страницы газет, а ошибку выборочного исследования и методологию статистического анализа печатают где-нибудь в середине. Чтобы доказать обоснованность полученных точечных оценок, необходимо указывать объем выборки, на основе которой они получены, границы доверительного интервала и его уровень значимости.

Следующая заметка

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 448–462

Центральная предельная теорема утверждает, что при достаточно большом объеме выборок выборочное распределение средних можно аппроксимировать нормальным распределением. Это свойство не зависит от вида распределения генеральной совокупности.

Пусть CB X образуют генеральную совокупность и в — неизвестный параметр CB X. Если статистическая оценка в * является состоятельной, то чем больше объем выборки, тем точнее получаем значение в. Однако на практике мы имеем выборки не очень большого объема, поэтому не можем гарантировать большую точность.

Пусть в* — статистическая оценка для в. Величина |в* - в| называется точностью оценки. Ясно, что точность является CB, т. к. в* — случайная величина. Зададим малое положительное число 8 и потребуем, чтобы точность оценки |в* - в| была меньше 8, т. е. | в* - в | < 8.

Надежностью g или доверительной вероятностью оценки в по в * называется вероятность g, с которой осуществляется неравенство |в * - в| < 8, т. е.

Обычно надежность g задают наперед, причем, за g берут число, близкое к 1 (0,9; 0,95; 0,99; ...).

Так как неравенство |в * - в| < S равносильно двойному неравенству в* - S < в < в* + 8, то получаем:

Интервал (в * - 8, в* + 5) называется доверительным интервалом, т. е. доверительный интервал покрывает неизвестный параметр в с вероятностью у. Заметим, что концы доверительного интервала являются случайными и изменяются от выборки к выборке, поэтому точнее говорить, что интервал (в * - 8, в * + 8) покрывает неизвестный параметр в, а не в принадлежит этому интервалу.

Пусть генеральная совокупность задана случайной величиной X, распределенной по нормальному закону, причем, среднее квадратическое отклонение а известно. Неизвестным является математическое ожидание а = М (X). Требуется найти доверительный интервал для а при заданной надежности у.

Выборочная средняя

является статистической оценкой для хг = а.

Теорема. Случайная величина хВ имеет нормальное распределение, если X имеет нормальное распределение, и М (ХВ) = а,

А (XВ) = а, где а = у/Б (X), а = М (X). л/и

Доверительный интервал для а имеет вид:

Находим 8.

Пользуясь соотношением

где Ф(г) — функция Лапласа, имеем:

Р { | XВ - а | <8} = 2Ф

таблице значений функции Лапласа находим значение t.

Обозначив

T, получим F(t) = g Так как g задана, то по

Из равенстваНаходим— точность оценки.

Значит, доверительный интервал для а имеет вид:

Если задана выборка из генеральной совокупности X

нГ к" X2 Xm
n. n1 n2 nm

n = U1 + ... + nm, то доверительный интервал будет:

Пример 6.35. Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю Xb = 10,43, объем выборки n = 100 и среднее квадратическое отклонение s = 5.

Воспользуемся формулой

Доверительный интервал – предельные значения статистической величины, которая с заданной доверительной вероятностью γ будет находится в этом интервале при выборке большего объема. Обозначается как P(θ - ε . На практике выбирают доверительную вероятность γ из достаточно близких к единице значений γ = 0.9 , γ = 0.95 , γ = 0.99 .

Назначение сервиса . С помощью этого сервиса определяются:

  • доверительный интервал для генерального среднего, доверительный интервал для дисперсии;
  • доверительный интервал для среднего квадратического отклонения, доверительный интервал для генеральной доли;
Полученное решение сохраняется в файле Word (см. пример). Ниже представлена видеоинструкция, как заполнять исходные данные.

Пример №1 . В колхозе из общего стада в 1000 голов овец выборочной контрольной стрижке подверглись 100 овец. В результате был установлен средний настриг шерсти 4,2 кг на одну овцу. Определить с вероятностью 0,99 среднюю квадратическую ошибку выборки при определении среднего настрига шерсти на одну овцу и пределы, в которых заключена величина настрига, если дисперсия равна 2,5 . Выборка бесповторная.
Пример №2 . Из партии импортируемой продукции на посту Московской Северной таможни было взято в порядке случайной повторной выборки 20 проб продукта «А». В результате проверки установлена средняя влажность продукта «А» в выборке, которая оказалась равной 6 % при среднем квадратическом отклонении 1 %.
Определите с вероятностью 0,683 пределы средней влажности продукта во всей партии импортируемой продукции.
Пример №3 . Опрос 36 студентов показал, что среднее количество учебников, прочитанных ими за учебный год, оказалось равным 6. Считая, что количество учебников, прочитанных студентом за семестр, имеет нормальный закон распределения со средним квадратическим отклонением, равным 6, найти: А) с надежностью 0,99 интервальную оценку для математического ожидания этой случайной величины; Б) с какой вероятностью можно утверждать, что среднее количество учебников, прочитанных студентом за семестр, вычисленное по данной выборке, отклонится от математического ожидания по абсолютной величине не больше, чем на 2.

Классификация доверительных интервалов

По виду оцениваемого параметра:

По типу выборки:

  1. Доверительный интервал для бесконечной выборки;
  2. Доверительный интервал для конечной выборки;
Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. На практике обычно имеют дело с бесповторными выборками.

Расчет средней ошибки выборки при случайном отборе

Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называется ошибкой репрезентативности .
Обозначения основных параметров генеральной и выборочной совокупности.
Формулы средней ошибки выборки
повторный отбор бесповторный отбор
для средней для доли для средней для доли
Соотношение между пределом ошибки выборки (Δ), гарантируемым с некоторой вероятностью Р(t), и средней ошибкой выборки имеет вид: или Δ = t·μ, где t – коэффициент доверия, определяемый в зависимости от уровня вероятности Р(t) по таблице интегральной функции Лапласа.

Формулы расчета численности выборки при собственно-случайном способе отбора

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения X N(m ; ). Это основное предположение математической статистики основано на центральной предельной теореме. Пусть известно генеральное среднее квадратическое отклонение , но неизвестно математическое ожидание теоретического распределения m (среднее значение ).

В таком случае среднее выборочное , полученное в ходе эксперимента (п.3.4.2), также будет являться случайной величинойm ;
). Тогда «нормализованное» отклонение
N(0;1) – является стандартной нормальной случайной величиной.

Задача состоит в поиске интервальной оценки для m . Построим двусторонний доверительный интервал для m так, чтобы истинное математическое ожидание принадлежало ему с заданной вероятностью (надежностью) .

Установить такой интервал для величины
– это значит найти максимальное значение этой величины
и минимальное
, которые являются границам критической области:
.

Т.к. такая вероятность равна
, то корень этого уравнения
можно найти с помощью таблиц функции Лапласа (Таблица 3, приложение 1).

Тогда с вероятностью можно утверждать, что случайная величина
, то есть искомое генеральное среднее принадлежит интервалу
. (3.13)

Величину
(3.14)

называют точностью оценки.

Число
квантиль нормального распределения – можно найти как аргумент функции Лапласа (Таблица 3, приложение 1), учитывая соотношение 2Ф(u )= , т.е. Ф(u )=
.

Обратно, по заданному значению отклонения можно найти, с какой вероятностью, неизвестное генеральное среднее принадлежит интервалу
. Для этого нужно вычислить

. (3.15)

Пусть из генеральной совокупности извлечена случайная выборка методом повторного отбора. Из уравнения
можно найти минимальный объем повторной выборки n , необходимый для того, чтобы доверительный интервал с заданной надежностью не превышал наперед заданного значения. Оценку требуемого объема выборки производят по формуле:

. (3.16)

Исследуем точность оценки
:

1) При возрастании объема выборки n величина уменьшается , и значит, точность оценки увеличивается .

2) С увеличением надежности оценки увеличивается значение аргументаu (т.к. Ф (u ) монотонно возрастает) и значит увеличивается . В таком случае увеличение надежности уменьшает точность ее оценки .

Оценку
(3.17)

называют классической (где t - некий параметр, зависящий от и n ), т.к. она характеризует наиболее часто встречающиеся законы распределения.

3.5.3 Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном среднем квадратическом отклонении 

Пусть известно, что генеральная совокупность подчинена закону нормального распределения X N(m ;), где величина среднего квадратического отклонения неизвестна.

Для построения доверительного интервала оценки генерального среднего в этом случае используется статистика
, имеющая распределение Стъюдента с k = n –1 степенями свободы. Это следует из того, что N(0;1) (см. п.3.5.2), а
(см. п.3.5.3) и из определения распределения Стъюдента (ч.1.п.2.11.2).

Найдем точность классической оценки распределения Стъюдента: т.е. найдем t из формулы (3.17). Пусть вероятность выполнения неравенства
задана надежностью :

. (3.18)

Поскольку T St(n -1), очевидно, что t зависит от и n , поэтому обычно пишут
.

(3.19)

где
– функция распределения Стъюдента сn -1 степенями свободы.

Решая это уравнение относительно m , получим интервал
который с надежностью  покрывает неизвестный параметр m .

Величина t , n -1 , служащая для определения доверительного интервала случайной величины T (n -1), распределенной по Стъюденту с n -1 степенями свободы, называется коэффициентом Стъюдента . Его следует находить по заданным значениям n и  из таблиц «Критические точки распределения Стьюдента». (Таблица 6, приложение 1), которые и представляют собой решения уравнения (3.19).

В итоге получаем следующее выражение точности  доверительного интервала для оценки математического ожидания (генерального среднего), если неизвестна дисперсия:

(3.20)

Т.о., существует общая формула построения доверительных интервалов для математического ожидания генеральной совокупности:

где точность доверительного интервала в зависимости от известной или неизвестной дисперсии находится по формулам соответственно 3.16. и 3.20.

Задача 10. Проведены некоторые испытания, результаты которых занесены в таблицу:

x i

Известно, что они подчиняются закону нормального распределения с
. Найти оценкуm * для математического ожидания m , построить для него 90% доверительный интервал.

Решение:

Итак, m (2.53;5.47).

Задача 11. Глубина моря измеряется прибором, систематическая ошибка которого равна 0, а случайные ошибки распределяются по нормальному закону, со средним квадратическим отклонением =15м. Сколько надо сделать независимых измерений, чтобы определить глубину с ошибками не более 5м при доверительной вероятности 90%?

Решение:

По условию задачи имеем X N(m ; ), где =15м, =5м, =0.9. Найдем объем n .

1) С заданной надежностью = 0.9 найдем по таблицам 3 (Приложение 1) аргумент функции Лапласа u = 1.65.

2) Зная заданную точность оценки =u =5, найдем
. Имеем

. Поэтому число испытаний n 25.

Задача 12. Выборка температуры t за первые 6 дней января представлена в таблице:

Найти доверительный интервал для математического ожидания m генеральной совокупности с доверительной вероятностью
и оценить генеральное стандартное отклонение s .

Решение:


и
.

2) Несмещённую оценку найдем по формуле
:

=-175

=234.84

;
;

=-192

=116


.

3) Поскольку генеральная дисперсия неизвестна, но известна ее оценка, то для оценки математического ожидания m используем распределение Стъюдента (Таблица 6, приложение 1) и формулу (3.20).

Т.к. n 1 =n 2 =6, то ,
, s 1 =6.85 имеем:
, отсюда -29.2-4.1<m 1 < -29.2+4.1.

Поэтому -33.3<m 1 <-25.1.

Аналогично имеем,
, s 2 = 4.8, , поэтому

–34.9< m 2 < -29.1. Тогда доверительные интервалы примут вид: m 1 (-33.3;-25.1) и m 2 (-34.9;-29.1).

В прикладных науках, например, в строительных дисциплинах, для оценки точности объектов используются таблицы доверительных интервалов, которые приведены в соответствующей справочной литературе.

Пусть случайая величина Х генеральной совокупности распределена нормально, учитывая, что дисперсия и среднее квадратическое отклонение s этого распределения известны. Требуется оценить неизвестное математическое ожидание по выборочной средней. В данном случае задача сводится к нахождению доверительного интервала для математического ожидания с надёжностью b. Если задаться значением доверительной вероятности (надёжности) b, то можно найти вероятность попадания в интервал для неизвестного математического ожидания, используя формулу (6.9а):

где Ф(t ) – функция Лапласа (5.17а).

В результате можно сформулировать алгоритм отыскания границ доверительного интервала для математического ожидания, если известна дисперсия D = s 2:

  1. Задать значение надёжности – b .
  2. Из (6.14) выразить Ф(t) = 0,5× b. Выбрать значение t из таблицы для функции Лапласа по значению Ф(t) (см. Приложение 1).
  3. Вычислить отклонение e по формуле (6.10).
  4. Записать доверительный интервал по формуле (6.12) такой, что с вероятностью b выполняется неравенство:

.

Пример 5 .

Случайная величина Х имеет нормальное распределение. Найти доверительные интервалы для оценки с надежностью b = 0,96 неизвестного математического ожидания а, если даны:

1) генеральное среднее квадратическое отклонение s = 5;

2) выборочная средняя ;

3) объём выборки n = 49.

В формуле (6.15) интервальной оценки математического ожидания а с надёжностью b все величины, кроме t, известны. Значение t можно найти, используя (6.14): b = 2Ф(t) = 0,96. Ф(t) = 0,48.

По таблице Приложения 1 для функции Лапласа Ф(t) = 0,48 находят соответствующее значение t = 2,06. Следовательно, . Подставив в формулу (6.12) вычисленное значение e, можно получить доверительный интервал: 30-1,47 < a < 30+1,47.

Искомый доверительный интервал для оценки с надёжностью b = 0,96 неизвестного математического ожидания равен: 28,53 < a < 31,47.